-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
322 lines (265 loc) · 15 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import os
import re
import torch
import random
import time
import logging
import argparse
import numpy as np
from tqdm import tqdm, trange
from torch.utils.tensorboard import SummaryWriter
from torch.utils.data import DataLoader, SequentialSampler
import torch.nn.functional as F
from transformers import (BertConfig, AdamW, get_linear_schedule_with_warmup)
from modeling import Observer, Reranker
from dataset import MSMARCODataset, get_collate_function
from utils import generate_rank, eval_results
logger = logging.getLogger(__name__)
logging.basicConfig(format = '%(asctime)s-%(levelname)s-%(name)s- %(message)s',
datefmt = '%d %H:%M:%S',
level = logging.INFO)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if args.n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
def save_model(model, output_dir, save_name, args):
save_dir = os.path.join(output_dir, save_name)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
model_to_save = model.module if hasattr(model, 'module') else model
model_to_save.save_pretrained(save_dir)
torch.save(args, os.path.join(save_dir, 'training_args.bin'))
def train(args, observer, model):
""" Train the model """
tb_writer = SummaryWriter(args.log_dir)
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)
train_dataset = MSMARCODataset("train",
args.collection_memmap_dir, args.tokenize_dir,
args.max_query_length, args.max_doc_length)
# NOTE: Must Sequential! Pos, Neg, Pos, Neg, ...
train_sampler = SequentialSampler(train_dataset)
collate_fn = get_collate_function()
train_dataloader = DataLoader(train_dataset, sampler=train_sampler,
batch_size=args.train_batch_size, num_workers=args.data_num_workers,
collate_fn=collate_fn)
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs
# Prepare optimizer and schedule (linear warmup and decay)
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
model_optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
model_scheduler = get_linear_schedule_with_warmup(model_optimizer, num_warmup_steps=args.warmup_steps,
num_training_steps=t_total) # ##############################
no_decay = ['bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in observer.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay},
{'params': [p for n, p in observer.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
observer_optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)
observer_scheduler = get_linear_schedule_with_warmup(observer_optimizer, num_warmup_steps=args.warmup_steps,
num_training_steps=t_total) # ##############################
# multi-gpu training (should be after apex fp16 initialization)
if args.n_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=args.device)
observer = torch.nn.DataParallel(observer, device_ids=args.device)
# Train!
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_dataset))
logger.info(" Num Epochs = %d", args.num_train_epochs)
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d",
args.train_batch_size * args.gradient_accumulation_steps)
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps)
logger.info(" Total optimization steps = %d", t_total)
global_step = 0
model_tr_loss, model_tr_loss_weight, model_logging_loss, model_logging_loss_weight = 0.0, 0.0, 0.0, 0.0
observer_tr_loss, observer_tr_loss_weight, observer_logging_loss, observer_logging_loss_weight = 0.0, 0.0, 0.0, 0.0
model.zero_grad()
observer.zero_grad()
train_iterator = trange(int(args.num_train_epochs), desc="Epoch")
set_seed(args) # Added here for reproductibility (even between python 2 and 3)
for epoch_idx, _ in enumerate(train_iterator):
epoch_iterator = tqdm(train_dataloader, desc="Iteration")
for step, (batch, _, _) in enumerate(epoch_iterator):
batch = {k: v.to(args.device[0]) for k, v in batch.items()}
# ####### observation probability
observer.eval()
with torch.no_grad():
observer_score = observer(**batch, weight=None, is_training=False) # [B, 1]
observer_score = torch.cat((observer_score[0::2], observer_score[1::2]), dim=1) # [bs//2, 2]
observer_score = 1.0 / (1.0 - F.sigmoid(observer_score[:, 1] / args.debias_ratio)) # [bs//2]
# ####### relevance probability
model.eval()
with torch.no_grad():
relevance_score = model(**batch, weight=None, is_training=False) # [B, 1]
relevance_score = torch.cat((relevance_score[0::2], relevance_score[1::2]), dim=1) # [bs//2, 2]
relevance_score = 1.0 / (1.0 - F.sigmoid(relevance_score[:, 1] / args.debias_ratio)) # [bs//2]
# ####### ranker
model.train()
model_outputs = model(**batch, weight=observer_score, is_training=True) # #############################################
model_loss, model_loss_weight, _ = model_outputs # ###########
if args.n_gpu > 1:
model_loss = model_loss.mean()
model_loss_weight = model_loss_weight.mean()
if args.gradient_accumulation_steps > 1:
model_loss = model_loss / args.gradient_accumulation_steps
model_loss_weight = model_loss_weight / args.gradient_accumulation_steps
model_loss_weight.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)
# ####### observer
observer.train()
observer_outputs = observer(**batch, weight=relevance_score, is_training=True) # #############################################
observer_loss, observer_loss_weight, _ = observer_outputs # ###########
if args.n_gpu > 1:
observer_loss = observer_loss.mean()
observer_loss_weight = observer_loss_weight.mean()
if args.gradient_accumulation_steps > 1:
observer_loss = observer_loss / args.gradient_accumulation_steps
observer_loss_weight = observer_loss_weight / args.gradient_accumulation_steps
observer_loss_weight.backward()
torch.nn.utils.clip_grad_norm_(observer.parameters(), args.max_grad_norm)
# #################
model_tr_loss += model_loss.item()
model_tr_loss_weight += model_loss_weight.item()
observer_tr_loss += observer_loss.item()
observer_tr_loss_weight += observer_loss_weight.item()
if (step + 1) % args.gradient_accumulation_steps == 0:
model_optimizer.step()
model_scheduler.step()
model.zero_grad()
observer_optimizer.step()
observer_scheduler.step()
observer.zero_grad()
global_step += 1
# logging
if args.logging_steps > 0 and global_step % args.logging_steps == 0:
tb_writer.add_scalar('train/model_lr', model_scheduler.get_lr()[0], global_step)
cur_loss = (model_tr_loss - model_logging_loss) / args.logging_steps
tb_writer.add_scalar('train/model_loss', cur_loss, global_step)
model_logging_loss = model_tr_loss
cur_loss = (model_tr_loss_weight - model_logging_loss_weight) / args.logging_steps
tb_writer.add_scalar('train/model_loss_weight', cur_loss, global_step)
model_logging_loss_weight = model_tr_loss_weight
tb_writer.add_scalar('train/observer_lr', observer_scheduler.get_lr()[0], global_step)
cur_loss = (observer_tr_loss - observer_logging_loss) / args.logging_steps
tb_writer.add_scalar('train/observer_loss', cur_loss, global_step)
observer_logging_loss = observer_tr_loss
cur_loss = (observer_tr_loss_weight - observer_logging_loss_weight) / args.logging_steps
tb_writer.add_scalar('train/observer_loss_weight', cur_loss, global_step)
observer_logging_loss_weight = observer_tr_loss_weight
# model save
if args.save_steps > 0 and global_step % args.save_steps == 0:
save_model(model, args.model_save_dir, 'ckpt-{}'.format(global_step), args)
save_model(observer, args.observer_save_dir, 'ckpt-{}'.format(global_step), args)
# evaluate
if args.evaluate_during_training and (global_step % args.training_eval_steps == 0):
mrr = evaluate(args, model, mode="dev", prefix="step_{}".format(global_step))
tb_writer.add_scalar('dev/MRR@10', mrr, global_step)
def evaluate(args, model, mode, prefix):
eval_output_dir = args.eval_save_dir
if not os.path.exists(eval_output_dir):
os.makedirs(eval_output_dir)
eval_dataset = MSMARCODataset(mode,
args.collection_memmap_dir, args.tokenize_dir,
args.max_query_length, args.max_doc_length)
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)
# Note that DistributedSampler samples randomly
collate_fn = get_collate_function()
eval_dataloader = DataLoader(eval_dataset, batch_size=args.eval_batch_size,
num_workers=args.data_num_workers, collate_fn=collate_fn)
# Eval!
logger.info("***** Running evaluation {} *****".format(prefix))
logger.info(" Num examples = %d", len(eval_dataset))
logger.info(" Batch size = %d", args.eval_batch_size)
output_file_path = f"{eval_output_dir}/{prefix}.{mode}.score.tsv"
with open(output_file_path, 'w') as outputfile:
for batch, qids, docids in tqdm(eval_dataloader, desc="Evaluating"):
model.eval()
with torch.no_grad():
batch = {k: v.to(args.device[0]) for k, v in batch.items()}
outputs = model(**batch, weight=None, is_training=False)
scores = outputs.squeeze(dim=1).detach().cpu().numpy() # ################## (bs,)
assert len(qids) == len(docids) == len(scores)
for qid, docid, score in zip(qids, docids, scores):
outputfile.write(f"{qid}\t{docid}\t{score}\n")
rank_output = f"{eval_output_dir}/{prefix}.{mode}.rank.tsv"
generate_rank(output_file_path, rank_output)
if mode == "dev":
mrr = eval_results(rank_output)
return mrr
def run_parse_args():
parser = argparse.ArgumentParser()
## Required parameters
parser.add_argument("--task", choices=["train", "dev", "eval", "test"], required=True)
parser.add_argument("--output_dir", type=str, default=f"../passage_exp/ANCE_IPW") # XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
parser.add_argument("--msmarco_dir", type=str, default=f"../passage_exp/marco_passage_data/msmarco-passage")
parser.add_argument("--collection_memmap_dir", type=str, default="../passage_exp/marco_passage_data/collection_memmap")
parser.add_argument("--tokenize_dir", type=str, default="../passage_exp/marco_passage_data/tokenize")
parser.add_argument("--max_query_length", type=int, default=32)
parser.add_argument("--max_doc_length", type=int, default=256)
parser.add_argument("--debias_ratio", type=float, default=2.0)
## Other parameters
parser.add_argument("--eval_ckpt", type=int, default=None)
parser.add_argument("--per_gpu_eval_batch_size", default=64, type=int)
parser.add_argument("--per_gpu_train_batch_size", default=64, type=int)
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
parser.add_argument("--no_cuda", action='store_true')
parser.add_argument('--seed', type=int, default=42)
parser.add_argument("--evaluate_during_training", action="store_true")
parser.add_argument("--training_eval_steps", type=int, default=20000)
parser.add_argument("--save_steps", type=int, default=20000)
parser.add_argument("--logging_steps", type=int, default=100)
parser.add_argument("--data_num_workers", default=5, type=int)
parser.add_argument("--learning_rate", default=3e-6, type=float)
parser.add_argument("--weight_decay", default=0.01, type=float)
parser.add_argument("--warmup_steps", default=10000, type=int)
parser.add_argument("--adam_epsilon", default=1e-8, type=float)
parser.add_argument("--max_grad_norm", default=1.0, type=float)
parser.add_argument("--num_train_epochs", default=1, type=int)
args = parser.parse_args()
time_stamp = time.strftime("%b-%d_%H:%M:%S", time.localtime())
args.log_dir = f"{args.output_dir}/log/{time_stamp}"
args.model_save_dir = f"{args.output_dir}/models"
args.observer_save_dir = f"{args.output_dir}/observer_models"
args.eval_save_dir = f"{args.output_dir}/rerank100_eval_results"
return args
def main():
args = run_parse_args()
logger.info(args)
# Setup CUDA, GPU
device = [1]
args.n_gpu = len(device)
args.device = device
# Setup logging
logger.warning("Device: %s, n_gpu: %s", device, args.n_gpu)
# Set seed
set_seed(args)
if args.task == "train":
load_model_path = f"bert-base-uncased"
load_observer_path = f"bert-base-uncased"
else:
assert args.eval_ckpt is not None
load_model_path = f"{args.model_save_dir}/ckpt-{args.eval_ckpt}"
load_observer_path = f"{args.observer_save_dir}/ckpt-{args.eval_ckpt}"
model_config = BertConfig.from_pretrained(load_model_path)
model = Reranker.from_pretrained(load_model_path, config=model_config)
model.to(args.device[0])
if args.task == "train":
observer_config = BertConfig.from_pretrained(load_observer_path)
observer = Observer.from_pretrained(load_observer_path, config=observer_config)
observer.to(args.device[0])
logger.info("Training/evaluation parameters %s", args)
# Evaluation
if args.task == "train":
train(args, observer, model)
else:
if args.n_gpu > 1:
model = torch.nn.DataParallel(model, device_ids=args.device)
result = evaluate(args, model, args.task, prefix=f"ckpt-{args.eval_ckpt}")
print(result)
if __name__ == "__main__":
main()