-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpruning_train_gd_prune_bn.py
995 lines (724 loc) · 38.5 KB
/
pruning_train_gd_prune_bn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
# https://github.com/pytorch/vision/blob/master/torchvision/models/__init__.py
import argparse
import os, sys, math
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models
from utils import convert_secs2time, time_string, time_file_str
# from models import print_log
import models
import random
import numpy as np
from collections import OrderedDict
import os
os.environ['CUDA_VISIBLE_DEVICES']='0,1'
import warnings
warnings.filterwarnings('ignore')
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
# Train data
parser.add_argument('--train_data', metavar='DIR', default='/dev/shm/ImageNet/', help='path to train dataset')
# Val data
parser.add_argument('--val_data', metavar='DIR', default='/dev/shm/ImageNet/', help='path to val dataset')
parser.add_argument('--save_dir', type=str, default='./logs', help='Folder to save checkpoints and log.')
parser.add_argument('--arch', '-a', metavar='ARCH', default='resnet18',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: resnet18)')
# Acceleration
parser.add_argument('--ngpu', type=int, default=2, help='0 = CPU.')
parser.add_argument('-j', '--workers', default=16, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=100, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N', help='manual epoch number (useful on restarts)')
# batch size && lr changed for multi-gpu
parser.add_argument('-b', '--batch-size', default=128*3, type=int, metavar='N', help='mini-batch size (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--cos', '--cosine_annealing', default=0, type=int, help='cosine annealing')
parser.add_argument('--mask_0_decay', type=float, default=1, help='The Decay Rate of the Mask0(Pruned Weight).')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M', help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W',
help='weight decay (default: 1e-4)')
parser.add_argument('--print_freq', '-p', default=2600*2, type=int, metavar='N', help='print frequency (default: 100)')
parser.add_argument('--resume', default='', type=str, metavar='PATH', help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true', help='evaluate model on validation set')
parser.add_argument('--use_pretrain', dest='use_pretrain', action='store_true', help='use pre-trained model or not')
parser.add_argument('--lambda_hard', type=float, default=0.5, help='hard pruning ratio, 1 - lambda_hard == soft pruning ratio.')
parser.add_argument('--exp_or_poly', type=str, default='poly', help='Exp. or polynomial(x**3) increase of pruing rate')
# random seed
parser.add_argument('--manualSeed', type=int, help='manual seed')
# compress rate
parser.add_argument('--rate', type=float, default=0.9, help='compress rate of model')
parser.add_argument('--layer_begin', type=int, default=3, help='compress layer of model')
parser.add_argument('--layer_end', type=int, default=3, help='compress layer of model')
parser.add_argument('--layer_inter', type=int, default=1, help='compress layer of model')
parser.add_argument('--epoch_prune', type=int, default=1, help='compress layer of model')
parser.add_argument('--skip_downsample', type=int, default=1, help='compress layer of model')
parser.add_argument('--use_sparse', dest='use_sparse', action='store_true', help='use sparse model as initial or not')
parser.add_argument('--sparse',
default='/data/yahe/imagenet/resnet50-rate-0.7/checkpoint.resnet50.2018-01-07-9744.pth.tar',
type=str, metavar='PATH', help='path of sparse model')
parser.add_argument('--lr_adjust', type=int, default=30, help='number of epochs that change learning rate')
args = parser.parse_args()
args.use_cuda = args.ngpu>0 and torch.cuda.is_available()
args.prefix = time_file_str()
#cudnn.benchmark = True
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if args.use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
cudnn.benchmark = True
def main(mask_0_decay, manualSeed, manual_lambda_hard, use_resume=False):
best_prec1 = 0
use_resume = False
#use_resume = True # start from checkpoint
if not os.path.isdir(args.save_dir):
os.makedirs(args.save_dir)
args.manualSeed = manualSeed # set manualSeed
args.mask_0_decay = mask_0_decay # set mask 0 decay
args.lambda_hard = manual_lambda_hard
is_asfp = True
sfp_type= "sfp"
if is_asfp:
sfp_type="asfp"
# 在 使用 Gradient Decay 的情况下,soft_to_hard 模式 不再 表示 一部分软剪枝,一部分硬剪枝,
# 而是同一时刻 所有结点 都是 部分 软剪枝
soft_to_hard_type = 'soft_to_hard'
#soft_to_hard_type = 'soft_or_hard'
#grad_decay_type = 'cos_anneal'
grad_decay_type = 'poly' # gradient decay 用的 衰减类型
args.exp_or_poly = 'exp'
is_poly = True
if args.exp_or_poly == "exp":
is_poly = False
log = open(os.path.join(args.save_dir, 'log_seed_{}_{}_sigma_1e-5_grad_decay_mask_bn_{}_final_lambda_hard_{}_{}_{}_pretrain_lambda_hard_1.txt'.format(args.manualSeed, mask_0_decay, grad_decay_type, args.lambda_hard, args.exp_or_poly , soft_to_hard_type)), 'w')
print_log('save dir : {}'.format(args.save_dir), log)
# version information
print_log("PyThon version : {}".format(sys.version.replace('\n', ' ')), log)
print_log("PyTorch version : {}".format(torch.__version__), log)
print_log("cuDNN version : {}".format(torch.backends.cudnn.version()), log)
print_log("Vision version : {}".format(torchvision.__version__), log)
# create model
print_log("=> creating model '{}'".format(args.arch), log)
print('Use Pretrain ', args.use_pretrain)
model = models.__dict__[args.arch](pretrained=args.use_pretrain)# Not use pretrained model
if args.use_sparse:
print_log("use sparse == True", log)
print('use sparse == True')
model = import_sparse(model)
#print_log("=> Model : {}".format(model), log)
print_log("=> parameter : {}".format(args), log)
print_log("Compress Rate: {}".format(args.rate), log)
print_log("Mask_0_decay: {}".format(args.mask_0_decay), log)
print_log("Layer Begin: {}".format(args.layer_begin), log)
print_log("Layer End: {}".format(args.layer_end), log)
print_log("Layer Inter: {}".format(args.layer_inter), log)
print_log("Epoch prune: {}".format(args.epoch_prune), log)
print_log("Skip downsample : {}".format(args.skip_downsample), log)
print_log("Workers : {}".format(args.workers), log)
print_log("Learning-Rate : {}".format(args.lr), log)
print_log("Use Pre-Trained : {}".format(args.use_pretrain), log)
print_log("lr adjust : {}".format(args.lr_adjust), log)
print_log("lambda_hard : {}".format(args.lambda_hard), log)
print_log("exp_or_poly : {}".format(args.exp_or_poly), log)
#print_log("use regularize: {}".format(args.regularize), log)
print_log("cos : {}".format(args.cos), log)
print_log("grad_decay_type : {}".format(grad_decay_type), log)
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
else:
model = torch.nn.DataParallel(model).cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay,
nesterov=True)
# optionally resume from a checkpoint
# args.resume = r'logs/resnet50-rate-0.6/checkpoint.resnet50.2021-06-19-5902.pth.tar'
args.resume = r'logs/resnet50-rate-0.6/checkpoint.resnet50.2021-09-25-4028.pth.tar' # cosine_anneal_lr_180_epoch
print('use_resume ', use_resume)
if args.resume and use_resume==True:
if os.path.isfile(args.resume):
print_log("=> loading checkpoint '{}'".format(args.resume), log)
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch'] # modify the args, effects all experiments starting not from 1
#args.start_epoch = 0
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
optimizer.load_state_dict(checkpoint['optimizer'])
print_log("=> loaded checkpoint '{}' (epoch {})".format(args.resume, checkpoint['epoch']), log)
else:
print_log("=> no checkpoint found at '{}'".format(args.resume), log)
else:
args.start_epoch = 0
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.train_data, 'train')
valdir = os.path.join(args.val_data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True, sampler=None)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion, log)
return
filename = os.path.join(args.save_dir, 'checkpoint.{:}.{:}.pth.tar'.format(args.arch, args.prefix))
bestname = os.path.join(args.save_dir, 'best.{:}.{:}.pth.tar'.format(args.arch, args.prefix))
lambda_hard = args.lambda_hard
warm_up = 0
epoch_iter = 1
# 最大 epoch 设置 为 0.9 * args.epochs
cos_annel_func = lambda epoch_t: (epoch_t / warm_up) if epoch_t < warm_up else 0.5 * (math.cos((epoch_t - warm_up)/(0.9*args.epochs*epoch_iter - warm_up) * math.pi) + 1) * (epoch_t < 0.9 * args.epochs)
if soft_to_hard_type == 'soft_to_hard':
lambda_hard = (1. - 0.) * ( 1. - (1. - (args.start_epoch + 1.)/(args.epochs+1e-7) ) ** 3 ) # x^3 递增
if grad_decay_type.find('cos') >=0:
lambda_hard = 1 - cos_annel_func(args.start_epoch)
else:
assert grad_decay_type == '' # 如果是 soft_or_hard, 则 不使用 gard_decay, 等价于使用 poly
if args.start_epoch >= (args.epochs) * 9/10 or args.start_epoch >= (args.epochs) * 8/10 and args.use_pretrain: # 对于 预训练模型,初始学习率比较低,需要 提前终止 梯度衰减
lambda_hard = args.lambda_hard
m = Mask(model, lambda_hard)
m.init_length()
mask_0_decay = args.mask_0_decay
sigma = 1e-3 # smoother mask_0_decay supported by PGMPF
#sigma = 1e-7 # control the accuracy of mask 0 decay for models trained from scratch
if args.use_pretrain:
sigma *= 0.01
#sigma = 1e-9 # for pretrained model
print_log("sigma : {}".format(sigma), log)
# use 0.01 * sigma: to prevent divide 0
alpha_decay = -np.log(sigma / (args.mask_0_decay + 0.01 * sigma)) / args.epochs
#coeffi = np.pi / (2 * args.epochs) # cos() decrease
# comp_rate = args.rate + mask_0_decay * (1-args.rate)
D = 1 / 8
asymptotic_k = np.log(4) / (D * args.epochs)
# comp_rate = 1 - (1 - args.rate) * ( 1 - np.exp(-asymptotic_k*0))
#comp_rate = args.rate + (1 - args.rate) * np.exp(-asymptotic_k * 0)
#comp_rate = args.rate
print('start_epoch ',args.start_epoch)
comp_rate = args.rate + (1 - args.rate) * np.exp(-asymptotic_k*args.start_epoch)
if is_poly:
comp_rate =1. - (1-args.rate) * ( 1. - (1. - (args.start_epoch + 1.)/(args.epochs+1e-7) ) ** 3 ) # x^3 递增
if is_asfp == False:
comp_rate = args.rate
print("-" * 10 + "one epoch begin" + "-" * 10)
print("the compression rate now is {:}".format(comp_rate)) # modified
#val_acc_1 = validate(val_loader, model, criterion, log)
#print(">>>>> accu before is: {:}".format(val_acc_1))
m.model = model
#m.init_mask(comp_rate) # modified
m.init_mask(comp_rate) # 暂时,beta 是 一个常量,可以设计 成 随着 epoch增加 而 逐渐 增大 的 数字
mask_0_decay = args.mask_0_decay * np.exp(-alpha_decay * args.start_epoch)
if args.start_epoch > (args.epochs) * 4 / 5:
mask_0_decay = 0
m.do_mask(mask_0_decay)
model = m.model
#m.if_zero()
#exit(0)
if args.use_cuda:
model = model.cuda()
val_acc_2 = validate(val_loader, model, criterion, log)
print(">>>>> accu after is: {:}".format(val_acc_2))
start_time = time.time()
epoch_time = AverageMeter()
for epoch in range(args.start_epoch, args.epochs):
#if epoch < 90:
current_lr = adjust_learning_rate(optimizer, epoch)
#current_lr = adjust_learning_rate_cosine(optimizer, epoch, args)
need_hour, need_mins, need_secs = convert_secs2time(epoch_time.val * (args.epochs - epoch))
need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
print_log(
' [{:s}] :: {:3d}/{:3d} ----- cur_lr={:.5f}, [{:s}] {:s}'.format(args.arch, epoch, args.epochs, current_lr, time_string(), need_time),
log)
#val_acc_0 = validate(val_loader, model, criterion, log)
# train for one epoch
train(train_loader, model, m, criterion, optimizer, epoch, log)
# evaluate on validation set
val_acc_1 = validate(val_loader, model, criterion, log)
if (epoch % args.epoch_prune == 0 or epoch == args.epochs - 1):
# if (random.randint(1,args.epoch_prune)==1 or epoch == args.epochs-1):
m.model = model
if soft_to_hard_type == 'soft_to_hard':
lambda_hard = (1. - 0.) * ( 1. - (1. - (epoch + 1.)/(args.epochs+1e-7) ) ** 3 ) # x^3 递增
if grad_decay_type.find('cos') >=0:
lambda_hard = 1 - cos_annel_func(epoch)
if epoch >= (args.epochs) * 9/10 or epoch >= (args.epochs) * 8/10 and args.use_pretrain: # 对于 预训练模型,初始学习率比较低,需要 提前终止 梯度衰减
lambda_hard = args.lambda_hard
m.lambda_hard = lambda_hard
#print("lambda_hard : %.3f" % m.lambda_hard)
mask_0_decay = args.mask_0_decay * np.exp(-alpha_decay * epoch)
if epoch >= (args.epochs) * 4 / 5:
mask_0_decay = 0
if is_asfp == True:
comp_rate = args.rate + (1 - args.rate) * np.exp(-asymptotic_k * epoch)
if is_poly:
comp_rate =1. -(1- args.rate) * ( 1. - (1. - (epoch + 1.)/(args.epochs+1e-7) ) ** 3 ) # x^3 递增
if epoch >= (args.epochs) * 9/10:
comp_rate = args.rate
print_log('lambda_hard : {}, mask_0_decay : {}, comp rate : {}'.format(m.lambda_hard, mask_0_decay, comp_rate), log)
#print("comp rate: %.3f" % comp_rate)
m.init_mask(comp_rate)
m.do_mask(mask_0_decay)
#m.if_zero()
model = m.model
if args.use_cuda:
model = model.cuda()
val_acc_2 = validate(val_loader, model, criterion, log)
# remember best prec@1 and save checkpoint
is_best = val_acc_2 > best_prec1
best_prec1 = max(val_acc_2, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer': optimizer.state_dict(),
}, is_best, filename, bestname)
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
# break
log.close()
def import_sparse(model):
checkpoint = torch.load(args.sparse)
new_state_dict = OrderedDict()
for k, v in checkpoint['state_dict'].items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
print("sparse_model_loaded")
return model
def train(train_loader, model, m, criterion, optimizer, epoch, log):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target) in enumerate(train_loader):
#if i>= 3:
#break
# measure data loading time
data_time.update(time.time() - end)
if args.use_cuda:
target = target.cuda()
input = input.cuda()
#target = target.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data.item(), input.size(0))
top1.update(prec1, input.size(0))
top5.update(prec5, input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
# 如果有硬剪枝的话,此处会 屏蔽 被 硬剪枝结点的梯度信息。
# 软剪枝的结点也可能考虑 对 梯度信息做 自适应的抑制
# 在 网络depth较大时,引入的 梯度噪声 过多,可能 不利于模型优化,类似dropout 丢弃 某些层的 衰减
for index, p in enumerate(m.model.parameters()):
if (index in m.mask_index) and abs(m.compress_rate[index] - 1) > 1e-7:
rand_x = 0 # 默认 rand_x < 0.5 成立
rand_x = random.random() # Layer-Wise
rand_x = np.random.random(size=(p.data.shape[0],1,1,1)) # (outs, 1, 1, 1) # channel-wise
# 使用 梯度衰减时,不使用 mat_hard
tensor_mask = m.mat[index].view_as( p.data ).cpu().numpy()
#print("tensor_mask.size == ", tensor_mask.shape)
grad_tensor = p.grad.data.cpu().numpy()
#grad_tensor = np.where(tensor_mask == 0, 0, grad_tensor)
# 对梯度进行衰减, 衰减 系数为 1 - lambda_hard
# 需要保证 lambda_hard 的 最终值为 1,否则 就是 软剪枝了。
# rand_x < 0.5时,部分流通 被衰减的梯度,
# rand_x >= 0.5时,完全阻止 被衰减的梯度。 hard pruning biased gradient drop
grad_tensor = grad_tensor * ( tensor_mask + (1-tensor_mask) * (1-m.lambda_hard) *(rand_x < 0.5))
# rand_x < 0.5, 完全流通 梯度
# else, 部分 流通 梯度
#grad_tensor = grad_tensor * ( tensor_mask + (1-tensor_mask) * (1-m.lambda_hard) )
p.grad.data = torch.from_numpy(grad_tensor)
if args.use_cuda:
p.grad.data = p.grad.data.cuda()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print_log('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Data {data_time.val:.3f} ({data_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5), log)
print_log(' **Train** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5, error1=100-top1.avg), log)
def validate(val_loader, model, criterion, log):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
#if i >= 5:
# break
if args.use_cuda:
target = target.cuda()
input = input.cuda()
#target = target.cuda(async=True)
with torch.no_grad():
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data.item(), input.size(0))
top1.update(prec1, input.size(0))
top5.update(prec5, input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
'''
if i % args.print_freq == 0:
print_log('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5), log)
'''
print_log(' **Test** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5,
error1=100 - top1.avg), log)
return top1.avg
def save_checkpoint(state, is_best, filename, bestname):
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, bestname)
def print_log(print_string, log):
print("{:}".format(print_string))
log.write('{:}\n'.format(print_string))
log.flush()
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // args.lr_adjust))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def adjust_learning_rate_cosine(optimizer, epoch, args):
"""Decay the learning rate based on schedule"""
lr = args.lr
if args.cos: # cosine lr schedule
lr *= 0.5 * (1. + math.cos(math.pi * epoch / args.epochs))
else: # stepwise lr schedule
for milestone in args.schedule:
lr *= 0.1 if epoch >= milestone else 1.
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size).item())
return res
class Mask:
def __init__(self, model, lambda_hard):
self.model_size = {}
self.model_length = {}
self.compress_rate = {}
self.mat = {}
self.model = model
self.mask_index = []
self.filter_codebook = {}
self.mat_hard = {} # identify hard pruned nodes
self.lambda_hard=lambda_hard
def get_codebook(self, weight_torch, compress_rate, length):
weight_vec = weight_torch.view(length)
weight_np = weight_vec.cpu().numpy()
weight_abs = np.abs(weight_np)
weight_sort = np.sort(weight_abs)
threshold = weight_sort[int(length * (1 - compress_rate))]
weight_np[weight_np <= -threshold] = 1
weight_np[weight_np >= threshold] = 1
#weight_np[abs(weight_np) >= threshold ] = 1
weight_np[weight_np != 1] = 0
#print("codebook done")
return weight_np
# 梯度 衰减的情况下,不再区分 软剪枝 和 硬 剪枝的 mask, hard_codebook 为 全 1
def get_filter_codebook_gradient_decay(self, weight_torch,compress_rate,length, index):
# momentum pruning 需要传入 index
codebook = np.ones(length)
hard_codebook = np.ones(length) # hard_codebook 为 全 1
filter_codebook = np.ones(weight_torch.size(0)) # filter-level codebook
if len( weight_torch.size())==4:
filter_pruned_num = int(weight_torch.size()[0]*(1-compress_rate))
#filter_hard_pruned_num = int(weight_torch.size()[0]*(1-compress_rate)*self.lambda_hard)
weight_vec = weight_torch.view(weight_torch.size()[0],-1)
# weight_vec (out_channels, -1)
# 2-norm
# dim=1 对 第二维进行reduced
norm2 = torch.norm(weight_vec,2,1) # 当前 通道 L2-norm 重要性
norm2_np = norm2.cpu().numpy() # 只考虑 当前 的 通道 L2-Norm重要性
#norm2_np = None
# 筛选出 不重要的 结点的 下标
filter_index = norm2_np.argsort()[:filter_pruned_num]
#filter_index_hard = norm2_np.argsort()[:filter_hard_pruned_num]
# norm1_sort = np.sort(norm1_np)
# threshold = norm1_sort[int (weight_torch.size()[0] * (1-compress_rate) )]
kernel_length = weight_torch.size()[1] *weight_torch.size()[2] *weight_torch.size()[3]
# codebook 和 hard_codebook 表示 生成 剪枝策略
for x in range(0,len(filter_index)):
filter_codebook[filter_index[x]] = 0
codebook [filter_index[x] *kernel_length : (filter_index[x]+1) *kernel_length] = 0
#hard_codebook [filter_index_hard[x] *kernel_length : (filter_index_hard[x]+1) *kernel_length] = 0
#for x in range(0,len(filter_index_hard)):
# hard_codebook [filter_index_hard[x] *kernel_length : (filter_index_hard[x]+1) *kernel_length] = 0
#print("filter codebook done")
else:
pass
return codebook, hard_codebook, filter_codebook
def get_filter_codebook(self, weight_torch, compress_rate, length):
codebook = np.ones(length)
if len(weight_torch.size()) == 4:
# 当前 权值向量 W(out_channels, in_channels, kernelsize, kernelsize)
# 需要 被剪掉的 filter 的数量
filter_pruned_num = int(weight_torch.size()[0] * (1 - compress_rate))
weight_vec = weight_torch.view(weight_torch.size()[0], -1)
# norm1 = torch.norm(weight_vec, 1, 1)
# norm1_np = norm1.cpu().numpy()
# weight_vec (out_channels, -1)
# 2-norm
# dim=1 对 第二维进行reduced
norm2 = torch.norm(weight_vec, 2, 1)
norm2_np = norm2.cpu().numpy()
filter_index = norm2_np.argsort()[:filter_pruned_num]
# norm1_sort = np.sort(norm1_np)
# threshold = norm1_sort[int (weight_torch.size()[0] * (1-compress_rate) )]
# 权值向量 W (out_channels, in_channels, kernel_size, kernel_size)
kernel_length = weight_torch.size()[1] * weight_torch.size()[2] * weight_torch.size()[3]
for x in range(0, len(filter_index)):
codebook[filter_index[x] * kernel_length: (filter_index[x] + 1) * kernel_length] = 0
#print("filter codebook done")
else:
pass
return codebook
def convert2tensor(self, x):
x = torch.FloatTensor(x)
return x
def init_length(self):
for index, item in enumerate(self.model.parameters()):
self.model_size[index] = item.size()
for index1 in self.model_size:
for index2 in range(0, len(self.model_size[index1])):
# 第一个维度 out_channels
if index2 == 0:
self.model_length[index1] = self.model_size[index1][0]
else: # 剩下的维度
self.model_length[index1] *= self.model_size[index1][index2]
def init_rate(self, layer_rate):
if 'vgg' in args.arch:
cfg_5x = [24, 22, 41, 51, 108, 89, 111, 184, 276, 228, 512, 512, 512]
cfg_official = [64, 64, 128, 128, 256, 256, 256, 512, 512, 512, 512, 512, 512]
# cfg = [32, 64, 128, 128, 256, 256, 256, 256, 256, 256, 256, 256, 256]
cfg_index = 0
pre_cfg = True
for index, item in enumerate(self.model.named_parameters()):
self.compress_rate[index] = 1
if len(item[1].size()) == 4:
print(item[1].size())
if not pre_cfg:
self.compress_rate[index] = layer_rate
self.mask_index.append(index)
print(item[0], "self.mask_index", self.mask_index)
else:
self.compress_rate[index] = 1 - cfg_5x[cfg_index] / item[1].size()[0]
self.mask_index.append(index)
print(item[0], "self.mask_index", self.mask_index, cfg_index, cfg_5x[cfg_index], item[1].size()[0],
)
cfg_index += 1
elif "resnet" in args.arch:
for index, item in enumerate(self.model.parameters()):
self.compress_rate[index] = 1
for key in range(args.layer_begin, args.layer_end + 1, args.layer_inter):
self.compress_rate[key] = layer_rate
if args.arch == 'resnet18':
# last index include last fc layer
last_index = 60
skip_list = [21, 36, 51]
elif args.arch == 'resnet34':
last_index = 108
skip_list = [27, 54, 93]
elif args.arch == 'resnet50':
last_index = 159
skip_list = [12, 42, 81, 138]
elif args.arch == 'resnet101':
last_index = 312
skip_list = [12, 42, 81, 291]
elif args.arch == 'resnet152':
last_index = 465
skip_list = [12, 42, 117, 444]
self.mask_index = [x for x in range(0, last_index, 3)]
# skip downsample layer
if args.skip_downsample == 1:
for x in skip_list:
self.compress_rate[x] = 1
self.mask_index.remove(x)
#print(self.mask_index)
else:
pass
def init_mask(self, layer_rate):
self.init_rate(layer_rate)
#for index, item in enumerate(self.model.parameters()):
for index, (name, item) in enumerate(self.model.named_parameters()):
# 需要被 mask: 剪枝的 层
if (index in self.mask_index):
#print('name = ', name, item.data.size())
#self.mat[index] = self.get_filter_codebook(item.data, self.compress_rate[index],
# self.model_length[index])
# 生成了 当前的剪枝决策策略, 梯度衰减时,mat_hard 为 全 1
self.mat[index], self.mat_hard[index], self.filter_codebook[name] = \
self.get_filter_codebook_gradient_decay(item.data,
self.compress_rate[index],
self.model_length[index], index ) # 动量剪枝 需要 传入 index
self.mat[index] = self.convert2tensor(self.mat[index])
self.mat_hard[index] = self.convert2tensor(self.mat_hard[index])
self.filter_codebook[name] = self.convert2tensor(self.filter_codebook[name])
if args.use_cuda:
self.mat[index] = self.mat[index].cuda()
self.mat_hard[index] = self.mat_hard[index].cuda()
self.filter_codebook[name] = self.filter_codebook[name].cuda()
else:
#print('name = ', name, item.data.size())
pass
#print("mask Ready")
def do_mask(self, mask_0_decay):
pre_filter_codebook = None
# for index, item in enumerate(self.model.parameters()):
for index, (name, item) in enumerate(self.model.named_parameters()):
if (index in self.mask_index):
#print('name = ', name)
a = item.data.view(self.model_length[index])
#b = a * self.mat[index]*(1 -mask_0_decay) + a*mask_0_decay
if abs(mask_0_decay) < 1e-4:
b = a * self.mat[index]
else:
b = a * ( self.mat[index] + mask_0_decay*( 1 - self.mat[index] )* self.mat_hard[index] )
# 只有 mask_0_decay 等于 0 的 时候,才算是 真正的 剪枝。
item.data = b.view(self.model_size[index])
else:
if 'bn' in name and 'running' not in name: # only decay the weight, bias of BN layer
conv_name = name.replace('bn', 'conv')
# the name of the first conv
# NOTE: change according to the network,
# only for resnet-56 for cifar-10/100
#if 'conv_1' in conv_name and 'stage' not in conv_name and 'layer' not in conv_name:
# conv_name = conv_name.replace('conv_1', 'conv_1_3x3')
if conv_name not in self.filter_codebook:
#print(name, ' conv_name ', conv_name, ' not in self.filter_codebook')
if 'bias' in conv_name:
cur_filter_codebook = pre_filter_codebook # use pre_filter_codebook of bn_x.weight
else:
continue
else:
cur_filter_codebook = self.filter_codebook[conv_name]
a = item.data
# decay the bn parameters
b = a * ( cur_filter_codebook + mask_0_decay * (1 - cur_filter_codebook))
#item.data = a
item.data = b
pre_filter_codebook = cur_filter_codebook
if 'bias' in name:
pre_filter_codebook = None # reset to None
#print("mask Done")
def if_zero(self):
for index, item in enumerate(self.model.parameters()):
#if(index in self.mask_index):
if index in [x for x in range(args.layer_begin, args.layer_end + 1, args.layer_inter)]:
a = item.data.view(self.model_length[index])
b = a.cpu().numpy()
print("layer: %d, number of nonzero weight is %d, zero is %d" % (
index, np.count_nonzero(b), len(b) - np.count_nonzero(b)))
if __name__ == '__main__':
mask_0_decay_list = [0.0]
mask_0_decay_list = [1.0]
#lambda_hard_list = [0.0]
lambda_hard_list = [1.0] # 使用 momentum importance 剪枝时,目前只关注 软剪枝,不关注 硬剪枝。
used_seed = {}
used_seed = {}
for t in range(1):# 实验次数
for lambda_hard in lambda_hard_list:
manualSeed = random.randint(1, 10000)
while used_seed.__contains__(manualSeed):
manualSeed = random.randint(1, 10000)
used_seed[manualSeed] = 1 # 标记为使用过的种
random.seed(manualSeed)
torch.manual_seed(manualSeed)
if args.use_cuda:
torch.cuda.manual_seed_all(manualSeed)
for i in range(len(mask_0_decay_list)):
print("i == ", i, " mask_0_decay[i] == ", mask_0_decay_list[i])
main(mask_0_decay_list[i], manualSeed, i==0)# only resume one time
#main(mask_0_decay_list[i], manualSeed, False)
# break