-
Notifications
You must be signed in to change notification settings - Fork 6
/
convert.py
119 lines (96 loc) · 3.9 KB
/
convert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import json
import os
import tensorflow as tf
import numpy as np
import soundfile as sf
from util.wrapper import load
from analyzer import read_whole_features, SPEAKERS, pw2wav
from analyzer import Tanhize
from datetime import datetime
from importlib import import_module
args = tf.app.flags.FLAGS
tf.app.flags.DEFINE_string('checkpoint', None, 'root of log dir')
tf.app.flags.DEFINE_string('src', 'SF1', 'source speaker [SF1 - SM2]')
tf.app.flags.DEFINE_string('trg', 'TM3', 'target speaker [SF1 - TM3]')
tf.app.flags.DEFINE_string('output_dir', './logdir', 'root of output dir')
tf.app.flags.DEFINE_string('module', 'model.vae', 'Module')
tf.app.flags.DEFINE_string('model', None, 'Model')
tf.app.flags.DEFINE_string('file_pattern', './dataset/vcc2016/bin/Testing Set/{}/*.bin', 'file pattern')
if args.model is None:
raise ValueError(
'\n You MUST specify `model`.' +\
'\n Use `python convert.py --help` to see applicable options.'
)
module = import_module(args.module, package=None)
MODEL = getattr(module, args.model)
FS = 16000
def make_output_wav_name(output_dir, filename):
basename = str(filename, 'utf8')
basename = os.path.split(basename)[-1]
basename = os.path.splitext(basename)[0]
print('Processing {}'.format(basename))
return os.path.join(
output_dir,
'{}-{}-{}.wav'.format(args.src, args.trg, basename)
)
def get_default_output(logdir_root):
STARTED_DATESTRING = datetime.now().strftime('%0m%0d-%0H%0M-%0S-%Y')
logdir = os.path.join(logdir_root, 'output', STARTED_DATESTRING)
print('Using default logdir: {}'.format(logdir))
return logdir
def convert_f0(f0, src, trg):
mu_s, std_s = np.fromfile(os.path.join('./etc', '{}.npf'.format(src)), np.float32)
mu_t, std_t = np.fromfile(os.path.join('./etc', '{}.npf'.format(trg)), np.float32)
lf0 = tf.where(f0 > 1., tf.log(f0), f0)
lf0 = tf.where(lf0 > 1., (lf0 - mu_s)/std_s * std_t + mu_t, lf0)
lf0 = tf.where(lf0 > 1., tf.exp(lf0), lf0)
return lf0
def nh_to_nchw(x):
with tf.name_scope('NH_to_NCHW'):
x = tf.expand_dims(x, 1) # [b, h] => [b, c=1, h]
return tf.expand_dims(x, -1) # => [b, c=1, h, w=1]
def main():
logdir, ckpt = os.path.split(args.checkpoint)
arch = tf.gfile.Glob(os.path.join(logdir, 'architecture*.json'))[0] # should only be 1 file
with open(arch) as fp:
arch = json.load(fp)
normalizer = Tanhize(
xmax=np.fromfile('./etc/xmax.npf'),
xmin=np.fromfile('./etc/xmin.npf'),
)
features = read_whole_features(args.file_pattern.format(args.src))
x = normalizer.forward_process(features['sp'])
x = nh_to_nchw(x)
y_s = features['speaker']
y_t_id = tf.placeholder(dtype=tf.int64, shape=[1,])
y_t = y_t_id * tf.ones(shape=[tf.shape(x)[0],], dtype=tf.int64)
machine = MODEL(arch)
z = machine.encode(x)
x_t = machine.decode(z, y_t) # NOTE: the API yields NHWC format
x_t = tf.squeeze(x_t)
x_t = normalizer.backward_process(x_t)
# For sanity check (validation)
x_s = machine.decode(z, y_s)
x_s = tf.squeeze(x_s)
x_s = normalizer.backward_process(x_s)
f0_s = features['f0']
f0_t = convert_f0(f0_s, args.src, args.trg)
output_dir = get_default_output(args.output_dir)
saver = tf.train.Saver()
sv = tf.train.Supervisor(logdir=output_dir)
with sv.managed_session() as sess:
load(saver, sess, logdir, ckpt=ckpt)
while True:
try:
feat, f0, sp = sess.run(
[features, f0_t, x_t],
feed_dict={y_t_id: np.asarray([SPEAKERS.index(args.trg)])}
)
feat.update({'sp': sp, 'f0': f0})
y = pw2wav(feat)
oFilename = make_output_wav_name(output_dir, feat['filename'])
sf.write(oFilename, y, FS)
except:
break
if __name__ == '__main__':
main()