-
Notifications
You must be signed in to change notification settings - Fork 3
/
train.py
88 lines (74 loc) · 3.68 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import argparse
import os
from time import sleep
import infolog
import tensorflow as tf
from hparams import hparams
from infolog import log
from tacotron.synthesize import tacotron_synthesize
from tacotron.train import tacotron_train
from trainDuration import duration_train
log = infolog.log
def save_seq(file, sequence, input_path):
'''Save Tacotron-2 training state to disk. (To skip for future runs)
'''
sequence = [str(int(s)) for s in sequence] + [input_path]
with open(file, 'w') as f:
f.write('|'.join(sequence))
def read_seq(file):
'''Load Tacotron-2 training state from disk. (To skip if not first run)
'''
if os.path.isfile(file):
with open(file, 'r') as f:
sequence = f.read().split('|')
return [bool(int(s)) for s in sequence[:-1]], sequence[-1]
else:
return [0, 0, 0], ''
def prepare_run(args):
modified_hp = hparams.parse(args.hparams)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = str(args.tf_log_level)
run_name = args.name or args.model
log_dir = os.path.join(args.base_dir, 'logs-{}'.format(run_name))
os.makedirs(log_dir, exist_ok=True)
infolog.init(os.path.join(log_dir, 'Terminal_train_log'), run_name, args.slack_url)
return log_dir, modified_hp
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--base_dir', default='')
parser.add_argument('--hparams', default='',
help='Hyperparameter overrides as a comma-separated list of name=value pairs')
parser.add_argument('--tacotron_input', default='training_data/train.txt')
parser.add_argument('--wavenet_input', default='tacotron_output/gta/map.txt')
parser.add_argument('--duration_input', default='training_data/train.txt')
parser.add_argument('--name', help='Name of logging directory.')
parser.add_argument('--model', default='Tacotron')
parser.add_argument('--input_dir', default='training_data', help='folder to contain inputs sentences/targets')
parser.add_argument('--output_dir', default='output', help='folder to contain synthesized mel spectrograms')
parser.add_argument('--mode', default='synthesis', help='mode for synthesis of tacotron after training')
parser.add_argument('--GTA', default='True', help='Ground truth aligned synthesis, defaults to True, only considered in Tacotron synthesis mode')
parser.add_argument('--restore', type=bool, default=True, help='Set this to False to do a fresh training')
parser.add_argument('--summary_interval', type=int, default=250,
help='Steps between running summary ops')
parser.add_argument('--embedding_interval', type=int, default=10000,
help='Steps between updating embeddings projection visualization')
parser.add_argument('--checkpoint_interval', type=int, default=5000,
help='Steps between writing checkpoints')
parser.add_argument('--eval_interval', type=int, default=10000,
help='Steps between eval on test data')
parser.add_argument('--tacotron_train_steps', type=int, default=150000, help='total number of tacotron training steps')
parser.add_argument('--wavenet_train_steps', type=int, default=750000, help='total number of wavenet training steps')
parser.add_argument('--tf_log_level', type=int, default=1, help='Tensorflow C++ log level.')
parser.add_argument('--slack_url', default=None, help='slack webhook notification destination link')
args = parser.parse_args()
accepted_models = ['Tacotron', 'Duration']
if args.model not in accepted_models:
raise ValueError('please enter a valid model to train: {}'.format(accepted_models))
log_dir, hparams = prepare_run(args)
if args.model == 'Tacotron':
tacotron_train(args, log_dir, hparams)
elif args.model == 'Duration':
duration_train(args, log_dir, hparams)
else:
raise ValueError('Model provided {} unknown! {}'.format(args.model, accepted_models))
if __name__ == '__main__':
main()