-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
192 lines (162 loc) · 8.27 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
import os
import time
import altair as alt
import streamlit as st
import json
import pandas as pd
import numpy as np
from spotify_unwrapped import SpotifyUnwrapped
from openai import OpenAI
colours = {
"artist": alt.value('red'),
"tracks": alt.value('steelblue'),
"albums": alt.value('purple'), #"#7D3C98
"podcasts": alt.value('chartreuse')
}#, '#F4D03F', '#D35400', '#7D3C98']
# pd.DataFrame({
# 'x': range(6),
# 'color': ['red', 'steelblue', 'chartreuse', '#F4D03F', '#D35400', '#7D3C98']
# })
def main():
st.title("Unwrapping Spotify's Unwrapped")
st.write("Select your data and click submit.")
# upload all of the json files
uploaded_file = st.file_uploader("Choose a JSON file", accept_multiple_files=True, type=["json"])
analysis_options = {
"standard" : "Standard (Top 5 Artists, Songs, Podcasts, Artist Recommendations)",
"detailed" : "Detailed (Top 5 Artists, Songs, Albums, Podcasts, Artist Recommendations, genres and albums)"
}
option = st.selectbox(
'Which version would you like?',
(analysis_options["standard"],
analysis_options["detailed"])
)
st.write('You selected:', option)
if option == analysis_options["detailed"]:
sample_rate = st.slider('Please select your sample rate.', 0., 0.5, 0.01)
st.write(f"Sampling {100*sample_rate}% of input items for the album lookups.")
# Add a switch (checkbox)
recommendation_switch = st.checkbox("Do you want artist/song recommendations?")
st.write("Recommendations will also be provided. Please be patient with the query.")
with st.form(key='my_form_to_submit'):
submit_button = st.form_submit_button(label='Submit')
if submit_button and uploaded_file is not None:
# the main object that we will update with each item
unwrapped = SpotifyUnwrapped() # sk_wrap = SketchUnwrapper()
# stream the data
all_dfs = []
for file in uploaded_file:
#json_data = json.load(file)
df = unwrapped.json_batch_update(file)
all_dfs.append(df)
# outputs
st.write("## Unwrapping your 2023 Spotify Data...")
unwrapped.finalise_dataframes(all_dfs)
year_top_artist_streams, year_top_artist_time = unwrapped.get_yearly_top_artists()
year_top_songs_streams, year_top_songs_time = unwrapped.get_yearly_top_songs()
year_top_podcs_streams, year_top_podcs_time = unwrapped.get_yearly_top_podcasts()
# artist plots
for a, lab in zip([year_top_artist_streams, year_top_artist_time], ["Streams", "Time (hours)"]):
if lab == "Streams":
out = "number of streams"
else:
out = "total time (hours)"
st.write(f"### Your top 5 artists by {out} are...")
st.write(alt.Chart(a).mark_bar().encode(
x=lab,
y=alt.Y("Artist", sort=None),
color=colours["artist"]
).properties(height=500, width=750))
# Song summaries and plot
for a, lab in zip([year_top_songs_streams, year_top_songs_time], ["Streams", "Time (hours)"]):
if lab == "Streams":
out = "number of streams"
else:
out = "total time (hours)"
st.write(f"### Your top 5 tracks by {out} are...")
st.write(alt.Chart(a).mark_bar().encode(
x=lab,
y=alt.Y("Track", sort=None),
color=colours["tracks"]
).properties(height=500, width=750))
# Podcast summaries and plot
for a, lab in zip([year_top_podcs_streams, year_top_podcs_time], ["Streams", "Time (hours)"]):
if lab == "Streams":
out = "number of streams"
else:
out = "total time (hours)"
st.write(f"### Your top 5 podcasts by {out} are...")
st.write(alt.Chart(a).mark_bar().encode(
x=lab,
y=alt.Y("Podcast", sort=None),
color=colours["podcasts"]
).properties(height=500, width=750))
if option == analysis_options["detailed"]:
# Album summaries and plot
with st.spinner('Please wait. Calculating your top albums...'):
# add a slider in here for the sample rate.
time.sleep(5)
year_top_artist_streams, year_top_albums_cum_time = unwrapped.get_yearly_top_albums(sample_rate)
unwrapped.get_yearly_album_artwork(year_top_artist_streams)
unwrapped.get_yearly_album_artwork(year_top_albums_cum_time)
for res, out in zip([year_top_artist_streams, year_top_albums_cum_time], ["Streams", "Time (hours)"]):
st.write(f"### Your top 5 Albums by {out} are...")
images = [f"album_artwork/{row['Artist']}_{row['Album']}.jpg" for _, row in res.iterrows()]
captions = [f"{row['Artist']} - {row['Album']}" for _, row in res.iterrows()]
st.image(images, caption=captions, width=125)
# for _, row in year_top_albums_streams.iterrows():
# st.image(f"album_artwork/{row['Artist']}_{row['Album']}.jpg", caption=f"{row['Artist']} - {row['Album']}") #, use_column_width=True)
# with st.spinner('Please wait. Calculating your top genres...'):
# time.sleep(5)
# year_top_albums_streams, year_top_albums_cum_time = unwrapped.get_yearly_top_albums(sample_rate=0.01)
# st.write(f"### Your top 5 Albums by {out} are...\n{list(year_top_albums_streams['Album'])}")
# print(year_top_albums_streams)
# print(year_top_albums_cum_time)
# for a, lab in zip([year_top_albums_streams, year_top_albums_cum_time], ["Streams", "Time (hours)"]):
# if lab == "Streams":
# out = "number of streams"
# else:
# out = "total time (hours)"
# st.write(f"### Your top 5 albums by {out} are...")
# st.write(alt.Chart(a).mark_bar().encode(
# x=lab,
# y=alt.Y("Album", sort=None),
# color=colours["albums"]
# ).properties(height=500, width=750))
# to do integrate album and podcasts into the unwrapped app.
# album summaries and plot
if recommendation_switch:
print("Getting the GPT predictions for artists...")
top_artists_str = ""
for a in year_top_artist_streams["Artist"]:
top_artists_str += a + ", "
print(top_artists_str)
#client = OpenAI()
# defaults to getting the key using os.environ.get("OPENAI_API_KEY")
# # if you saved the key under a different environment variable name, you can do something like:
client = OpenAI(
api_key=os.environ.get("OPENAI_API_KEY"),
)
with st.spinner('Please wait. Generating recommendations...'):
time.sleep(5)
recommender = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[
{"role": "system", "content": "My top artists are " + top_artists_str + "and I want to listen to more artists like them. Recommend five more artists."},
]
)
recs = recommender.choices[0].message.content
st.success("### Your recommendations are...\n",)
st.success(recs)
# else:
# st.warning("Skipping recommendation step.")
if __name__ == "__main__":
main()
# def make_yearly_top_songs(self, df:pd.DataFrame) -> None:
# for _, row in df.iterrows():
# if row["minsPlayed"] > 0.5:
# self.monthly_songs_num_plays[row["endTime"].month].update(item=row["trackName"], weight=1)
# self.monthly_songs_cum_time[row["endTime"].month].update(item=row["trackName"], weight=np.ceil(row["minsPlayed"]).astype(int))
# for month, month_sk in self.monthly_songs_num_plays.items():
# self.yearly_songs_num_plays.merge(month_sk)
# self.yearly_songs_cum_time.merge(self.monthly_songs_cum_time[month])