-
Notifications
You must be signed in to change notification settings - Fork 44
/
amr_parsing.py
executable file
·437 lines (378 loc) · 21 KB
/
amr_parsing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
#!/usr/bin/python
"""
Interface for the parser:
parse command line
read in corpus
"""
from __future__ import absolute_import
import sys,codecs,time,string
#from optparse import OptionParser
import re
import random
import cPickle as pickle
from common.SpanGraph import *
from common.AMRGraph import *
import subprocess
from Aligner import *
from parser import *
from model import Model
import argparse
from preprocessing import *
import constants
from graphstate import GraphState
#import matplotlib.pyplot as plt
reload(sys)
sys.setdefaultencoding('utf-8')
log = sys.stderr
LOGGED= False
#experiment_log = open('log/experiment.log','a')
experiment_log = sys.stdout
def get_dependency_graph(stp_dep,FROMFILE=False):
if FROMFILE:
depfile = codecs.open(stp_dep,'r',encoding='utf-8')
inputlines = depfile.readlines()
else:
inputlines = stp_dep.split('\n')
dpg_list = []
dep_lines = []
i = 0
for line in inputlines:
if line.strip():
dep_lines.append(line)
#label = line.split('(')[0]
#gov_node = DNode(line.split('(')[1].split(',')[0])
#dep_node = DNode(line.strip().split('(')[1].split(',')[1][:-1])
#dpg.add_edge(gov_node,dep_node,label)
else:
dpg = SpanGraph.init_dep_graph(dep_lines)
dep_lines = []
dpg_list.append(dpg)
if not dpg.is_empty():
dpg_list.append(dpg)
return dpg_list
def write_parsed_amr(parsed_amr,instances,amr_file,suffix='parsed',hand_alignments=None):
output = open(amr_file+'.'+suffix,'w')
for pamr,inst in zip(parsed_amr,instances):
if inst.comment:
output.write('# %s\n' % (' '.join(('::%s %s')%(k,v) for k,v in inst.comment.items() if k in ['id','date','snt-type','annotator'])))
output.write('# %s\n' % (' '.join(('::%s %s')%(k,v) for k,v in inst.comment.items() if k in ['snt','tok'])))
if hand_alignments:
output.write('# ::alignments %s ::gold\n' % (hand_alignments[inst.comment['id']]))
#output.write('# %s\n' % (' '.join(('::%s %s')%(k,v) for k,v in inst.comment.items() if k in ['alignments'])))
else:
output.write('# ::id %s\n'%(inst.sentID))
output.write('# ::snt %s\n'%(inst.text))
try:
output.write(pamr.to_amr_string())
except TypeError:
import pdb
pdb.set_trace()
output.write('\n\n')
output.close()
def write_span_graph(span_graph_pairs,instances,amr_file,suffix='spg'):
output_d = open(amr_file+'.'+suffix+'.dep', 'w')
output_p = open(amr_file+'.'+suffix+'.parsed','w')
output_g = open(amr_file+'.'+suffix+'.gold','w')
for i in xrange(len(instances)):
output_d.write('# id:%s\n%s' % (instances[i].comment['id'],instances[i].printDep()))
output_p.write('# id:%s\n%s' % (instances[i].comment['id'],span_graph_pairs[i][0].print_dep_style_graph()))
output_g.write('# id:%s\n%s' % (instances[i].comment['id'],span_graph_pairs[i][1].print_dep_style_graph()))
output_p.write('# eval:Unlabeled Precision:%s Recall:%s F1:%s\n' % (span_graph_pairs[i][2][0],span_graph_pairs[i][2][1],span_graph_pairs[i][2][2]))
output_p.write('# eval:Labeled Precision:%s Recall:%s F1:%s\n' % (span_graph_pairs[i][2][3],span_graph_pairs[i][2][4],span_graph_pairs[i][2][5]))
output_p.write('# eval:Tagging Precision:%s Recall:%s\n' % (span_graph_pairs[i][2][6],span_graph_pairs[i][2][7]))
output_d.write('\n')
output_p.write('\n')
output_g.write('\n')
output_d.close()
output_p.close()
output_g.close()
def main():
'''
usage = "Usage:%prog [options] amr_file"
opt = OptionParser(usage=usage)
opt.add_option("-v",action="store",dest="verbose",type='int',
default=0,help="set up verbose level")
opt.add_option("-a",action="store_true",dest="align",
default=False,help="do alignment between sentence and amr")
opt.add_option("-b",action="store",dest="begin",type='int',
default=0,help="for debugging"
"When do alignment, where the alignment begins"
"When test oracle, where to begin")
opt.add_option("-s",action="store",dest="start_step",type='int',
default=0,help="where the step begins,for testing oracle")
opt.add_option("-o",action="store",dest="sentfilep",
help="output sentences to file and parse the sentence into dependency graph")
opt.add_option("-i",action="store",dest="parsedfilep",
help="read parsed dependency graph from file")
opt.add_option("-g",action="store",dest="userActfile",
help="read user input action sequences as guide")
opt.add_option("-d",action="store",dest="oracle",type='int',default=0,\
help="test the output actions of deterministic oracle: "
"1: tree oracle 2: list-based oracle")
'''
arg_parser = argparse.ArgumentParser(description="Brandeis transition-based AMR parser 1.0")
arg_parser.add_argument('-v','--verbose',type=int,default=0,help='set up verbose level for debug')
arg_parser.add_argument('-b','--begin',type=int,default=0,help='specify which sentence to begin the alignment or oracle testing for debug')
arg_parser.add_argument('-s','--start_step',type=int,default=0,help='specify which step to begin oracle testing;for debug')
#arg_parser.add_argument('-i','--input_file',help='the input: preprocessed data instances file for aligner or training')
arg_parser.add_argument('-d','--dev',help='development file')
arg_parser.add_argument('-a','--add',help='additional training file')
arg_parser.add_argument('-as','--actionset',choices=['basic'],default='basic',help='choose different action set')
arg_parser.add_argument('-m','--mode',choices=['preprocess','test_gold_graph','align','userGuide','oracleGuide','train','parse','eval'],help="preprocess:generate pos tag, dependency tree, ner\n" "align:do alignment between AMR graph and sentence string")
arg_parser.add_argument('-dp','--depparser',choices=['stanford','stanfordConvert','stdconv+charniak','clear','mate','turbo'],default='stdconv+charniak',help='choose the dependency parser')
arg_parser.add_argument('--coref',action='store_true',help='flag to enable coreference information')
arg_parser.add_argument('--prop',action='store_true',help='flag to enable semantic role labeling information')
arg_parser.add_argument('--rne',action='store_true',help='flag to enable rich name entity')
arg_parser.add_argument('--verblist',action='store_true',help='flag to enable verbalization list')
#arg_parser.add_argument('--onto',action='store_true',help='flag to enable charniak parse result trained on ontonotes')
arg_parser.add_argument('--onto',choices=['onto','onto+bolt','wsj'],default='wsj',help='choose which charniak parse result trained on ontonotes')
arg_parser.add_argument('--model',help='specify the model file')
arg_parser.add_argument('--feat',help='feature template file')
arg_parser.add_argument('-iter','--iterations',default=1,type=int,help='training iterations')
arg_parser.add_argument('amr_file',nargs='?',help='amr annotation file/input sentence file for parsing')
arg_parser.add_argument('--prpfmt',choices=['xml','plain'],default='plain',help='preprocessed file format')
arg_parser.add_argument('--amrfmt',choices=['sent','amr','amreval'],default='sent',help='specifying the input file format')
arg_parser.add_argument('--smatcheval',action='store_true',help='give evaluation score using smatch')
arg_parser.add_argument('-e','--eval',nargs=2,help='Error Analysis: give parsed AMR file and gold AMR file')
arg_parser.add_argument('--section',choices=['proxy','all'],default='all',help='choose section of the corpus. Only works for LDC2014T12 dataset.')
args = arg_parser.parse_args()
amr_file = args.amr_file
instances = None
train_instance = None
constants.FLAG_COREF=args.coref
constants.FLAG_PROP=args.prop
constants.FLAG_RNE=args.rne
constants.FLAG_VERB=args.verblist
constants.FLAG_ONTO=args.onto
constants.FLAG_DEPPARSER=args.depparser
# using corenlp to preprocess the sentences
if args.mode == 'preprocess':
instances = preprocess(amr_file,START_SNLP=True,INPUT_AMR=args.amrfmt, PRP_FORMAT=args.prpfmt)
print "Done preprocessing!"
# preprocess the JAMR aligned amr
elif args.mode == 'test_gold_graph':
instances = preprocess(amr_file,START_SNLP=False,INPUT_AMR=args.amrfmt, PRP_FORMAT=args.prpfmt)
#instances = pickle.load(open('data/gold_edge_graph.pkl','rb'))
gold_amr = []
for inst in instances:
GraphState.sent = inst.tokens
gold_amr.append(GraphState.get_parsed_amr(inst.gold_graph))
#pseudo_gold_amr = [GraphState.get_parsed_amr(inst.gold_graph) for inst in instances]
write_parsed_amr(gold_amr,instances,amr_file,'abt.gold')
#instances = preprocess_aligned(amr_file)
print "Done output AMR!"
# do alignment
elif args.mode == 'align':
if args.input_file:
instances = pickle.load(open(args.input_file,'rb'))
else:
raise ValueError("Missing data file! specify it using --input or using preprocessing!")
gold_instances_file = args.input_file.split('.')[0]+'_gold.p'
print >> log, "Doing alignment..."
if LOGGED:
saveerr = sys.stderr
sys.stderr = open('./log/alignment.log','w')
amr_aligner = Aligner(verbose=args.verbose)
ref_graphs = []
begin = args.begin
counter = 1
#for snt, amr in zip(snts[begin:],amrs[begin:]):
for i in range(len(instances)):
snt = instances[i].text
amr = instances[i].amr
if args.verbose > 1:
print >> log, counter
print >> log, "Sentence:"
print >> log, snt+'\n'
print >> log, "AMR:"
print >> log, amr.to_amr_string()
alresult = amr_aligner.apply_align(snt,amr)
ref_amr_graph = SpanGraph.init_ref_graph(amr,alresult)
#ref_graphs.append(ref_amr_graph)
instances[i].addGoldGraph(ref_amr_graph)
if args.verbose > 1:
#print >> log, "Reference tuples:"
#print >> log, ref_depGraph.print_tuples()
print >> log, amr_aligner.print_align_result(alresult,amr)
#raw_input('ENTER to continue')
counter += 1
pickle.dump(instances,open(gold_instances_file,'wb'),pickle.HIGHEST_PROTOCOL)
#pickle.dump(ref_graphs,open('./data/ref_graph.p','wb'),pickle.HIGHEST_PROTOCOL)
if LOGGED:
sys.stderr.close()
sys.stderr = saveerr
print >> log, "Done alignment and gold graph generation."
sys.exit()
# test user guide actions
elif args.mode == 'userGuide':
print 'Read in training instances...'
train_instances = preprocess(amr_file,False)
sentID = int(raw_input("Input the sent ID:"))
amr_parser = Parser()
amr_parser.testUserGuide(train_instances[sentID])
sys.exit()
# test deterministic oracle
elif args.mode == 'oracleGuide':
train_instances = preprocess(amr_file,START_SNLP=False,INPUT_AMR=args.amrfmt, PRP_FORMAT=args.prpfmt)
try:
hand_alignments = load_hand_alignments(amr_file+str('.hand_aligned'))
except IOError:
hand_alignments = []
start_step = args.start_step
begin = args.begin
amr_parser = Parser(oracle_type=DET_T2G_ORACLE_ABT,verbose=args.verbose)
#ref_graphs = pickle.load(open('./data/ref_graph.p','rb'))
n_correct_total = .0
n_parsed_total = .0
n_gold_total = .0
pseudo_gold_amr = []
n_correct_tag_total = .0
n_parsed_tag_total = 0.
n_gold_tag_total = .0
gold_amr = []
aligned_instances = []
#print "shuffling training instances"
#random.shuffle(train_instances)
for instance in train_instances[begin:]:
if hand_alignments and instance.comment['id'] not in hand_alignments: continue
state = amr_parser.testOracleGuide(instance,start_step)
n_correct_arc,n1,n_parsed_arc, n_gold_arc,n_correct_tag,n_parsed_tag,n_gold_tag = state.evaluate()
#assert n_correct_arc == n1
if n_correct_arc != n1:
import pdb
pdb.set_trace()
n_correct_total += n_correct_arc
n_parsed_total += n_parsed_arc
n_gold_total += n_gold_arc
p = n_correct_arc/n_parsed_arc if n_parsed_arc else .0
r = n_correct_arc/n_gold_arc if n_gold_arc else .0
indicator = 'PROBLEM!' if p < 0.5 else ''
if args.verbose > 2: print >> sys.stderr, "Precision: %s Recall: %s %s\n" % (p,r,indicator)
n_correct_tag_total += n_correct_tag
n_parsed_tag_total += n_parsed_tag
n_gold_tag_total += n_gold_tag
p1 = n_correct_tag/n_parsed_tag if n_parsed_tag else .0
r1 = n_correct_tag/n_gold_tag if n_gold_tag else .0
if args.verbose > 2: print >> sys.stderr,"Tagging Precision:%s Recall:%s" % (p1,r1)
instance.comment['alignments'] += ''.join(' %s-%s|%s'%(idx-1,idx,instance.amr.get_pid(state.A.abt_node_table[idx])) for idx in state.A.abt_node_table if isinstance(idx,int))
aligned_instances.append(instance)
pseudo_gold_amr.append(GraphState.get_parsed_amr(state.A))
#gold_amr.append(instance.amr)
#assert set(state.A.tuples()) == set(instance.gold_graph.tuples())
pt = n_correct_total/n_parsed_total if n_parsed_total != .0 else .0
rt = n_correct_total/n_gold_total if n_gold_total !=.0 else .0
ft = 2*pt*rt/(pt+rt) if pt+rt != .0 else .0
write_parsed_amr(pseudo_gold_amr,aligned_instances,amr_file,'pseudo-gold',hand_alignments)
print "Total Accuracy: %s, Recall: %s, F-1: %s" % (pt,rt,ft)
tp = n_correct_tag_total/n_parsed_tag_total if n_parsed_tag_total != .0 else .0
tr = n_correct_tag_total/n_gold_tag_total if n_gold_tag_total != .0 else .0
print "Tagging Precision:%s Recall:%s" % (tp,tr)
#amr_parser.record_actions('data/action_set.txt')
elif args.mode == 'train': # training
print "Parser Config:"
print "Incorporate Coref Information: %s"%(constants.FLAG_COREF)
print "Incorporate SRL Information: %s"%(constants.FLAG_PROP)
print "Substitue the normal name entity tag with rich name entity tag: %s"%(constants.FLAG_RNE)
print "Using verbalization list: %s"%(constants.FLAG_VERB)
print "Using charniak parser trained on ontonotes: %s"%(constants.FLAG_ONTO)
print "Dependency parser used: %s"%(constants.FLAG_DEPPARSER)
train_instances = preprocess(amr_file,START_SNLP=False,INPUT_AMR=args.amrfmt,PRP_FORMAT=args.prpfmt)
if args.add: train_instances = train_instances + preprocess(args.add,START_SNLP=True,INPUT_AMR=args.amrfmt,PRP_FORMAT=args.prpfmt)
if args.dev: dev_instances = preprocess(args.dev,START_SNLP=False,INPUT_AMR=args.amrfmt,PRP_FORMAT=args.prpfmt)
if args.section != 'all':
print "Choosing corpus section: %s"%(args.section)
tcr = constants.get_corpus_range(args.section,'train')
train_instances = train_instances[tcr[0]:tcr[1]]
if args.dev:
dcr = constants.get_corpus_range(args.section,'dev')
dev_instances = dev_instances[dcr[0]:dcr[1]]
feat_template = args.feat if args.feat else None
model = Model(elog=experiment_log)
#model.output_feature_generator()
parser = Parser(model=model,oracle_type=DET_T2G_ORACLE_ABT,action_type=args.actionset,verbose=args.verbose,elog=experiment_log)
model.setup(action_type=args.actionset,instances=train_instances,parser=parser,feature_templates_file=feat_template)
print >> experiment_log, "BEGIN TRAINING!"
best_fscore = 0.0
best_pscore = 0.0
best_rscore = 0.0
best_model = None
best_iter = 1
for iter in xrange(1,args.iterations+1):
print >> experiment_log, "shuffling training instances"
random.shuffle(train_instances)
print >> experiment_log, "Iteration:",iter
begin_updates = parser.perceptron.get_num_updates()
parser.parse_corpus_train(train_instances)
parser.perceptron.average_weight()
if args.dev:
print >> experiment_log ,"Result on develop set:"
_,parsed_amr = parser.parse_corpus_test(dev_instances)
parsed_suffix = args.section+'.'+args.model.split('.')[-1]+'.'+str(iter)+'.parsed'
write_parsed_amr(parsed_amr,dev_instances,args.dev,parsed_suffix)
if args.smatcheval:
smatch_path = "./smatch_2.0.2/smatch.py"
python_path = 'python'
options = '--pr -f'
parsed_filename = args.dev+'.'+parsed_suffix
command = '%s %s %s %s %s' % (python_path, smatch_path, options, parsed_filename, args.dev)
print 'Evaluation using command: ' + (command)
#print subprocess.check_output(command, stderr=subprocess.STDOUT, shell=True)
eval_output = subprocess.check_output(command, stderr=subprocess.STDOUT, shell=True)
print eval_output
pscore = float(eval_output.split('\n')[0].split(':')[1].rstrip())
rscore = float(eval_output.split('\n')[1].split(':')[1].rstrip())
fscore = float(eval_output.split('\n')[2].split(':')[1].rstrip())
if fscore > best_fscore:
best_model = model
best_iter = iter
best_fscore = fscore
best_pscore = pscore
best_rscore = rscore
if best_model is not None:
print >> experiment_log, "Best result on iteration %d:\n Precision: %f\n Recall: %f\n F-score: %f" % (best_iter, best_pscore, best_rscore, best_fscore)
best_model.save_model(args.model+'.m')
print >> experiment_log ,"DONE TRAINING!"
elif args.mode == 'parse': # actual parsing
test_instances = preprocess(amr_file,START_SNLP=False,INPUT_AMR=args.amrfmt,PRP_FORMAT=args.prpfmt)
if args.section != 'all':
print "Choosing corpus section: %s"%(args.section)
tcr = constants.get_corpus_range(args.section,'test')
test_instances = test_instances[tcr[0]:tcr[1]]
#random.shuffle(test_instances)
print >> experiment_log, "Loading model: ", args.model
model = Model.load_model(args.model)
parser = Parser(model=model,oracle_type=DET_T2G_ORACLE_ABT,action_type=args.actionset,verbose=args.verbose,elog=experiment_log)
print >> experiment_log ,"BEGIN PARSING"
span_graph_pairs,results = parser.parse_corpus_test(test_instances)
parsed_suffix = '%s.%s.parsed'%(args.section,args.model.split('.')[-2])
write_parsed_amr(results,test_instances,amr_file,suffix=parsed_suffix)
#write_span_graph(span_graph_pairs,test_instances,amr_file,suffix='spg.50')
################
# for eval #
################
#pickle.dump(span_graph_pairs,open('data/eval/%s_spg_pair.pkl'%(amr_file),'wb'),pickle.HIGHEST_PROTOCOL)
#pickle.dump(test_instances,open('data/eval/%s_instances.pkl'%(amr_file),'wb'),pickle.HIGHEST_PROTOCOL)
print >> experiment_log ,"DONE PARSING"
if args.smatcheval:
smatch_path = "./smatch_2.0.2/smatch.py"
python_path = 'python'
options = '--pr -f'
parsed_filename = amr_file+'.'+parsed_suffix
command = '%s %s %s %s %s' % (python_path,smatch_path,options,parsed_filename, amr_file)
print 'Evaluation using command: ' + (command)
print subprocess.check_output(command, stderr=subprocess.STDOUT, shell=True)
#plt.hist(results)
#plt.savefig('result.png')
elif args.mode == 'eval':
'''break down error analysis'''
# TODO: here use pickled file, replace it with parsed AMR and gold AMR
span_graph_pairs = pickle.load(open(args.eval[0],'rb'))
instances = pickle.load(open(args.eval[1],'rb'))
amr_parser = Parser(oracle_type=DET_T2G_ORACLE_ABT,verbose=args.verbose)
error_stat = defaultdict(lambda:defaultdict(lambda:defaultdict(list)))
for spg_pair,instance in zip(span_graph_pairs,instances):
amr_parser.errorAnalyze(spg_pair[0],spg_pair[1],instance,error_stat)
else:
arg_parser.print_help()
if __name__ == "__main__":
main()