-
Notifications
You must be signed in to change notification settings - Fork 38
/
prepare_data_for_chord_classification.py
143 lines (106 loc) · 4.91 KB
/
prepare_data_for_chord_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
# Prepares data for simple chord classification.
# It computes the chromagram from the audio file and splits the labels to blocks.
import os
import numpy as np
import pandas as pd
from tfr.reassignment import chromagram
from tfr.signal import SignalFrames
from tfr.spectrogram import create_window
from time_intervals import block_labels
def prepare_chomagram_and_labels(
album,
song_title,
block_size,
hop_size,
bin_range,
bin_division):
song = 'The_Beatles/'+album+'/'+song_title
data_dir = '../data/beatles'
audio_file = data_dir + '/audio-cd/' + song + '.wav'
chord_file = data_dir + '/chordlab/' + song + '.lab.pcs.tsv'
audio_file, chord_file
# ## Load audio & Split audio to blocks
print('loading audio:', audio_file)
signal_frames = SignalFrames(audio_file, frame_size=block_size, hop_size=hop_size)
x_blocks = signal_frames.frames
x_time = signal_frames.start_times
fs = signal_frames.sample_rate
print('sampling rate:', fs, 'Hz')
print('number of samples:', signal_frames.length)
print('duration in audio:', signal_frames.duration, 'sec')
print('blocks shape:', x_blocks.shape)
print('number of blocks:', len(x_blocks))
# start times for each block
print('last block starts at:', x_times[-1], 'sec')
# ## Load chords
print('loading chords:', chord_file)
chords = pd.read_csv(chord_file, sep='\t')
print('shape:', chords.shape)
print('duration in chords:', chords['end'].iloc[-1])
pcs_cols = ['C','Db','D','Eb','E','F','Gb','G','Ab','A','Bb','B']
label_cols = ['label','root','bass'] + pcs_cols
# ##
# ## Mapping of chords to blocks
def chords_to_blocks(chords, block_center_times):
chord_ix = 0
for t in block_center_times:
yield chords.iloc[i][pcs_cols]
def time_to_samples(time):
return np.round(time * fs)
chords['start_sample'] = time_to_samples(chords['start'])
chords['end_sample'] = time_to_samples(chords['end'])
df_blocks = pd.DataFrame({'start': time_to_samples(x_times).astype(np.int64)})
df_blocks['end'] = df_blocks['start'] + block_size
label_dict = chords[label_cols].drop_duplicates().set_index('label')
df_labels = chords[['start_sample', 'end_sample', 'label']].copy()
df_labels.rename(columns={'start_sample': 'start', 'end_sample': 'end'}, inplace=True)
df_labelled_blocks = block_labels(df_blocks, df_labels)
df_block_pcs = df_labelled_blocks[['label']].join(label_dict, on='label')[['label'] + pcs_cols]
assert len(df_block_pcs) == len(df_blocks)
block_labels_file = '{}/chord-pcs/{}_{}/{}.pcs'.format(data_dir, block_size, hop_size, song)
print('block labels file:', block_labels_file)
os.makedirs(os.path.dirname(block_labels_file), exist_ok=True)
df_block_pcs.to_csv(block_labels_file, sep='\t', index=False)
# ## Chromagram features
w = create_window(block_size)
X_chromagram = chromagram(x_blocks, w, fs, to_log=True, bin_range=bin_range, bin_division=bin_division)
chromagram_file = '{}/chromagram/block={}_hop={}_bins={},{}_div={}/{}.npz'.format(
data_dir, block_size, hop_size, bin_range[0], bin_range[1], bin_division, song)
print('chomagram file:', chromagram_file)
os.makedirs(os.path.dirname(chromagram_file), exist_ok=True)
np.savez_compressed(chromagram_file, X=X_chromagram, times=x_times)
def transform_all():
# takes an hour - could be optimized...
import timeit
block_size = 4096
hop_size = 2048
bin_range = (-48, 67)
bin_division = 1
with open('../data/beatles/isophonic-songs.txt') as file:
for line in file.readlines():
band, album, song_title = line.rstrip('\n').split('/')
print(album, song_title)
prepare_chomagram_and_labels(album, song_title, block_size, hop_size, bin_range, bin_division)
def parse_args():
import argparse
parser = argparse.ArgumentParser(description='Prepare data for chord classification - chromagram and labels.')
parser.add_argument('ALBUM')
parser.add_argument('SONG_TITLE')
parser.add_argument('-b', '--block-size', type=int, default=4096, help='block size')
parser.add_argument('-p', '--hop-size', type=int, default=2048, help='hop size')
parser.add_argument('-r', '--bin-range', type=int, nargs=2, default=[-48, 67], help='chromagram bin range')
parser.add_argument('-d', '--bin-division', type=int, default=1, help='bins per semitone in chromagram')
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
prepare_chomagram_and_labels(
album=args.ALBUM,
song_title=args.SONG_TITLE,
block_size=args.block_size,
hop_size=args.hop_size,
bin_range=args.bin_range,
bin_division=args.bin_division)
# example usage:
# $ python prepare_data_for_chord_classification.py \
# "03_-_A_Hard_Day's_Night" "05_-_And_I_Love_Her" \
# -b 4096 -p 2048 -r -48 67 -d 1