-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata.py
196 lines (156 loc) · 8.49 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# data.py
# to standardize the datasets used in the experiments
# datasets are CIFAR10, CIFAR100 and Tiny ImageNet
# use create_val_folder() function to convert original Tiny ImageNet structure to structure PyTorch expects
import torch
import os
from torchvision import datasets, transforms, utils
from torch.utils.data import sampler
from PIL import Image
class AddTrigger(object):
def __init__(self, square_size=5, square_loc=(26,26)):
self.square_size = square_size
self.square_loc = square_loc
def __call__(self, pil_data):
square = Image.new('L', (self.square_size, self.square_size), 255)
pil_data.paste(square, self.square_loc)
return pil_data
class CIFAR10:
def __init__(self, batch_size=128, add_trigger=False):
self.batch_size = batch_size
self.img_size = 32
self.num_classes = 10
self.num_test = 10000
self.num_train = 50000
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
self.augmented = transforms.Compose([transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4),transforms.ToTensor(), normalize])
self.normalized = transforms.Compose([transforms.ToTensor(), normalize])
self.aug_trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=self.augmented)
self.aug_train_loader = torch.utils.data.DataLoader(self.aug_trainset, batch_size=batch_size, shuffle=True, num_workers=4)
self.trainset = datasets.CIFAR10(root='./data', train=True, download=True, transform=self.normalized)
self.train_loader = torch.utils.data.DataLoader(self.trainset, batch_size=batch_size, shuffle=True)
self.testset = datasets.CIFAR10(root='./data', train=False, download=True, transform=self.normalized)
self.test_loader = torch.utils.data.DataLoader(self.testset, batch_size=batch_size, shuffle=False, num_workers=4)
# add trigger to the test set samples
# for the experiments on the backdoored CNNs and SDNs
# uncomment third line to measure backdoor attack success, right now it measures standard accuracy
if add_trigger:
self.trigger_transform = transforms.Compose([AddTrigger(), transforms.ToTensor(), normalize])
self.trigger_test_set = datasets.CIFAR10(root='./data', train=False, download=True, transform=self.trigger_transform)
# self.trigger_test_set.test_labels = [5] * self.num_test
self.trigger_test_loader = torch.utils.data.DataLoader(self.trigger_test_set, batch_size=batch_size, shuffle=False, num_workers=4)
class CIFAR100:
def __init__(self, batch_size=128):
self.batch_size = batch_size
self.img_size = 32
self.num_classes = 100
self.num_test = 10000
self.num_train = 50000
normalize = transforms.Normalize(mean=[0.507, 0.487, 0.441], std=[0.267, 0.256, 0.276])
self.augmented = transforms.Compose([transforms.RandomHorizontalFlip(), transforms.RandomCrop(32, padding=4),transforms.ToTensor(), normalize])
self.normalized = transforms.Compose([transforms.ToTensor(), normalize])
self.aug_trainset = datasets.CIFAR100(root='./data', train=True, download=True, transform=self.augmented)
self.aug_train_loader = torch.utils.data.DataLoader(self.aug_trainset, batch_size=batch_size, shuffle=True, num_workers=4)
self.trainset = datasets.CIFAR100(root='./data', train=True, download=True, transform=self.normalized)
self.train_loader = torch.utils.data.DataLoader(self.trainset, batch_size=batch_size, shuffle=True, num_workers=4)
self.testset = datasets.CIFAR100(root='./data', train=False, download=True, transform=self.normalized)
self.test_loader = torch.utils.data.DataLoader(self.testset, batch_size=batch_size, shuffle=False, num_workers=4)
class ImageFolderWithPaths(datasets.ImageFolder):
def __getitem__(self, index):
original_tuple = super(ImageFolderWithPaths, self).__getitem__(index)
path = self.imgs[index][0]
tuple_with_path = (original_tuple + (path,))
return tuple_with_path
class TinyImagenet():
def __init__(self, batch_size=128):
print('Loading TinyImageNet...')
self.batch_size = batch_size
self.img_size = 64
self.num_classes = 200
self.num_test = 10000
self.num_train = 100000
train_dir = 'data/tiny-imagenet-200/train'
valid_dir = 'data/tiny-imagenet-200/val/images'
normalize = transforms.Normalize(mean=[0.4802, 0.4481, 0.3975], std=[0.2302, 0.2265, 0.2262])
self.augmented = transforms.Compose([transforms.RandomHorizontalFlip(), transforms.RandomCrop(64, padding=8), transforms.ColorJitter(0.2, 0.2, 0.2), transforms.ToTensor(), normalize])
self.normalized = transforms.Compose([transforms.ToTensor(), normalize])
self.aug_trainset = datasets.ImageFolder(train_dir, transform=self.augmented)
self.aug_train_loader = torch.utils.data.DataLoader(self.aug_trainset, batch_size=batch_size, shuffle=True, num_workers=8)
self.trainset = datasets.ImageFolder(train_dir, transform=self.normalized)
self.train_loader = torch.utils.data.DataLoader(self.trainset, batch_size=batch_size, shuffle=True, num_workers=8)
self.testset = datasets.ImageFolder(valid_dir, transform=self.normalized)
self.testset_paths = ImageFolderWithPaths(valid_dir, transform=self.normalized)
self.test_loader = torch.utils.data.DataLoader(self.testset, batch_size=batch_size, shuffle=False, num_workers=8)
def get_mean_and_std(dataset):
'''Compute the mean and std value of dataset.'''
dataloader = torch.utils.data.DataLoader(dataset, batch_size=1, num_workers=4)
mean = torch.zeros(3)
std = torch.zeros(3)
print('==> Computing mean and std..')
for inputs, targets in dataloader:
for i in range(3):
mean[i] += inputs[:,i,:,:].mean()
std[i] += inputs[:,i,:,:].std()
mean.div_(len(dataset))
std.div_(len(dataset))
return mean, std
def create_val_folder():
"""
This method is responsible for separating validation images into separate sub folders
"""
path = os.path.join('data/tiny-imagenet-200', 'val/images') # path where validation data is present now
filename = os.path.join('data/tiny-imagenet-200', 'val/val_annotations.txt') # file where image2class mapping is present
fp = open(filename, "r") # open file in read mode
data = fp.readlines() # read line by line
# Create a dictionary with image names as key and corresponding classes as values
val_img_dict = {}
for line in data:
words = line.split("\t")
val_img_dict[words[0]] = words[1]
fp.close()
# Create folder if not present, and move image into proper folder
for img, folder in val_img_dict.items():
newpath = (os.path.join(path, folder))
if not os.path.exists(newpath): # check if folder exists
os.makedirs(newpath)
if os.path.exists(os.path.join(path, img)): # Check if image exists in default directory
os.rename(os.path.join(path, img), os.path.join(newpath, img))
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def accuracy_w_preds(output, target, topk=(1,5)):
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count