-
Notifications
You must be signed in to change notification settings - Fork 11
/
train.py
550 lines (478 loc) · 23.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
# Copyright (c) ByteDance, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
import argparse
import datetime
import numpy as np
import os
import time
import random
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import json
from pathlib import Path
from objective import *
from timm.scheduler import create_scheduler
from timm.utils import get_state_dict
from datasets import ImageNet, ImageNetLMDB
from augmentation import get_augmentations
from engine import train_one_epoch, eval_one_epoch, inference
import utils
import warnings
from tensorboardX import SummaryWriter
import torchvision
#from torchvision.models import resnet50
#from widen_resnet import resnet50w2, resnet50w4, resnet50w5, resnet200, resnet200w2
import widen_resnet
from lars import *
import vision_transformer as vit
from timm.utils import ModelEmaV2 as ModelEma
from functools import partial
from torchvision import transforms
warnings.filterwarnings('ignore')
def get_args_parser():
parser = argparse.ArgumentParser('Self-Supervised', add_help=False)
parser.add_argument('--dataset', type=str, default='imagenet')
parser.add_argument('--lam1', type=float, default=0.0, metavar='LR')
parser.add_argument('--lam2', type=float, default=1.0, metavar='LR')
parser.add_argument('--tau', type=float, default=1.0, metavar='LR')
parser.add_argument('--lbn_type', type=str, default='bn')
parser.add_argument('--determine', type=int, default=0)
parser.add_argument('--aug', type=str, default='multicrop')
parser.add_argument('--img_size', type=int, default=224)
parser.add_argument('--drop', type=float, default=0.0)
parser.add_argument('--clip_norm', type=float, default=0.0)
parser.add_argument('--EPS', type=float, default=1e-5, help='episillon')
parser.add_argument('--reduce_mean', type=float, default=0)
parser.add_argument('--eval_only', type=int, default=0)
parser.add_argument('--inference_only', type=int, default=0)
parser.add_argument('--img_path', type=str, default='./test.jpg')
parser.add_argument('--match_path', type=str, default='')
parser.add_argument('--threshold', type=float, default=0.0)
parser.add_argument('--quantile', type=float, default=0.5)
parser.add_argument('--quantile_end', type=float, default=0.6)
parser.add_argument('--enable_watch', type=int, default=1)
parser.add_argument('--use_momentum_encoder', type=int, default=0)
parser.add_argument('--momentum_start', default=0.996, type=float)
parser.add_argument('--momentum_end', default=1.0, type=float)
parser.add_argument('--freeze_embedding', default=0, type=int)
# self-label relevant
parser.add_argument('--mme_epochs', type=int, default=800)
parser.add_argument('--sl_warmup_epochs', type=int, default=5)
parser.add_argument('--lr_sl', type=float, default=0.05, metavar='LR')
# maybe different between cnn and vit.
parser.add_argument('--act', type=str, default='relu')
parser.add_argument('--patch-size', default=16, type=int)
parser.add_argument('--backbone', default='resnet50', type=str, metavar='BACKBONEMODEL', help='Name of model to train')
parser.add_argument('--weight-decay', type=float, default=1.5e-6, help='weight decay (default: 1e-4)')
parser.add_argument('--weight-decay-end', type=float, default=1.5e-6)
parser.add_argument('--optim', default='lars', type=str)
parser.add_argument('--lr', type=float, default=0.5, metavar='LR')
parser.add_argument('--proj_trunc_init', type=int, default=0)
parser.add_argument('--proj_norm', type=str, default='bn', choices=['bn', 'ln', 'none'])
parser.add_argument('--drop_path', type=float, default=0.0)
# multi-crop enabled only the aug is set to multicrop
parser.add_argument('--local_crops_number', type=int, default=12,)
parser.add_argument('--crops_interact_style', type=str, default='sparse')
parser.add_argument('--min1', type=float, default=0.4, metavar='LR')
parser.add_argument('--max1', type=float, default=1.0, metavar='LR')
parser.add_argument('--min2', type=float, default=0.05, metavar='LR')
parser.add_argument('--max2', type=float, default=0.4, metavar='LR')
parser.add_argument('--batch-size', default=128, type=int)
parser.add_argument('--bunch-size', default=256, type=int)
parser.add_argument('--epochs', default=850, type=int)
parser.add_argument('--dim', default=4096, type=int)
parser.add_argument('--hid_dim', default=4096, type=int)
parser.add_argument('--eval-only', default=0, type=int)
# Model parameters
parser.add_argument('--exclude-bias-weight-decay', type=int, default=1)
# Learning rate schedule parameters
parser.add_argument('--sched', default='cosine', type=str, metavar='SCHEDULER',
help='LR scheduler (default: "cosine"')
parser.add_argument('--lr_wbr', type=float, default=1.0)
parser.add_argument('--warmup-epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR, if scheduler supports')
# Dataset parameters
parser.add_argument('--data-path', default='/nothing/', type=str, help='dataset path')
parser.add_argument('--output_dir', default='', help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda', help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N', help='start epoch')
parser.add_argument('--num_workers', default=10, type=int)
parser.add_argument('--pin-mem', action='store_true', help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.add_argument('--no-pin-mem', action='store_false', dest='pin_mem', help='')
parser.set_defaults(pin_mem=True)
parser.add_argument('--use-lmdb', action='store_true')
parser.add_argument('--amp', default=1, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int, help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
class TWIST(nn.Module):
def __init__(self, args):
super(TWIST, self).__init__()
if args.backbone.startswith('resnet'):
widen_resnet.__dict__['resnet50'] = torchvision.models.resnet50
self.backbone = widen_resnet.__dict__[args.backbone]()
self.feature_dim = self.backbone.fc.weight.shape[1]
else: # vision transformer based models
if args.backbone.startswith('vit'):
self.backbone = vit.__dict__[args.backbone](
patch_size=args.patch_size,
norm_layer=(partial(nn.LayerNorm, eps=1e-6)),
drop_path_rate=args.drop_path,
freeze_embedding=args.freeze_embedding,
)
self.feature_dim = self.backbone.embed_dim
self.backbone.fc = nn.Identity()
self.backbone = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.backbone)
if args.crops_interact_style != 'class':
self.projection_heads = ProjectionHead(args, feature_dim=self.feature_dim)
else:
self.projection_heads = utils.ClassHead(args, feature_dim=2048)
def forward(self, x):
"""
Codes about multi-crop is borrowed from the codes of Dino
https://github.com/facebookresearch/dino
"""
if not isinstance(x, list):
x = [x]
# the first indices of aug with changing resolution
idx_crops = torch.cumsum(torch.unique_consecutive(
torch.tensor([inp.shape[-1] for inp in x]),
return_counts=True,
)[1], 0)
start_idx = 0
for end_idx in idx_crops:
_out = self.backbone(torch.cat(x[start_idx: end_idx]))
if start_idx == 0:
output = _out
else:
output = torch.cat((output, _out))
start_idx = end_idx
out = self.projection_heads(output)
return out
def backbone_weights(self):
return self.backbone.state_dict()
class ProjectionHead(nn.Module):
def __init__(self, args, feature_dim=2048):
super(ProjectionHead, self).__init__()
if args.lbn_type == 'bn':
assert args.bunch_size % args.batch_size == 0
ranks = list(range(utils.get_world_size()))
print('---ALL RANKS----\n{}'.format(ranks))
procs_per_bunch = args.bunch_size // args.batch_size
assert utils.get_world_size() % procs_per_bunch == 0
n_bunch = utils.get_world_size() // procs_per_bunch
rank_groups = [ranks[i*procs_per_bunch: (i+1)*procs_per_bunch] for i in range(n_bunch)]
print('---RANK GROUPS----\n{}'.format(rank_groups))
process_groups = [torch.distributed.new_group(pids) for pids in rank_groups]
bunch_id = utils.get_rank() // procs_per_bunch
process_group = process_groups[bunch_id]
print('---CURRENT GROUP----\n{}'.format(process_group))
norm = nn.SyncBatchNorm(args.dim, affine=0, process_group=process_group)
elif args.lbn_type == 'syncbn':
norm = nn.SyncBatchNorm(args.dim, affine=0)
elif args.lbn_type == 'identity':
norm = nn.Identity()
else:
raise NotImplementedError
if args.proj_norm == 'bn':
batchnorm = nn.SyncBatchNorm
elif args.proj_norm == 'ln':
batchnorm = partial(nn.LayerNorm, eps=1e-6)
elif args.proj_norm == 'none':
batchnorm = nn.Identity
else:
raise NotImplementedError
self.projection_head = nn.Sequential(
nn.Linear(feature_dim, args.hid_dim, bias=True),
batchnorm(args.hid_dim),
nn.ReLU() if args.act == 'relu' else nn.GELU(),
nn.Dropout(p=args.drop),
nn.Linear(args.hid_dim, args.hid_dim, bias=True),
batchnorm(args.hid_dim),
nn.ReLU() if args.act == 'relu' else nn.GELU(),
)
last_linear = nn.Linear(args.hid_dim, args.dim, bias=True)
self.last_linear = last_linear
self.norm = norm
if args.backbone.startswith('vit') or args.proj_trunc_init:
print('using vit initialization')
self.apply(self._vit_init_weights)
def _vit_init_weights(self, m):
if isinstance(m, nn.Linear):
utils.trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
def reg_gnf(self, grad):
self.gn_f = grad.abs().mean().item()
def reg_gnft(self, grad):
self.gn_ft = grad.abs().mean().item()
def forward(self, x):
x = self.projection_head(x)
f = self.last_linear(x)
ft = self.norm(f)
if self.train and x.requires_grad:
f.register_hook(self.reg_gnf)
ft.register_hook(self.reg_gnft)
self.f_column_std = f.std(dim=0, unbiased=False).mean()
self.f_row_std = f.std(dim=1, unbiased=False).mean()
self.ft_column_std = ft.std(dim=0, unbiased=False).mean()
self.ft_row_std = ft.std(dim=1, unbiased=False).mean()
return ft
def main(args):
if args.epochs <=20:
args.warmup_epochs = 3
elif args.epochs <= 50:
args.warmup_epochs = 5
else:
args.warmup_epochs = 10
if args.mme_epochs > args.epochs:
args.mme_epochs = args.epochs
if args.crops_interact_style == 'self_label':
assert args.mme_epochs == args.epochs
utils.init_distributed_mode(args)
print(args)
output_dir = Path(args.output_dir)
args.global_crops_scale = (args.min1, args.max1)
args.local_crops_scale = (args.min2, args.max2)
print('global crops: {}'.format(args.global_crops_scale))
print('local crops: {}'.format(args.local_crops_scale))
cudnn.benchmark = True
device = torch.device(args.device)
num_tasks = utils.get_world_size()
global_rank = utils.get_rank()
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
if args.determine:
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
random.seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# =================== Data Preparation ===================
if args.use_lmdb:
dataset_train = ImageNetLMDB(args.data_path, 'train.lmdb', get_augmentations(args))
else:
dataset_train = ImageNet(os.path.join(args.data_path, 'train'), get_augmentations(args))
sampler_train = torch.utils.data.DistributedSampler(
dataset_train, num_replicas=num_tasks, rank=global_rank, shuffle=True
)
data_loader_train = torch.utils.data.DataLoader(
dataset_train, sampler=sampler_train,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=True,
)
# prepare evaluation data loader to make unsupervised classification
if args.dim == 1000 or args.eval_only:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
val_aug = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])
if args.use_lmdb:
dataset_val = ImageNetLMDB(args.data_path, 'val.lmdb', val_aug)
else:
dataset_val = ImageNet(os.path.join(args.data_path, 'val'), val_aug)
sampler_val = torch.utils.data.DistributedSampler(
dataset_val, num_replicas=num_tasks, rank=global_rank, shuffle=False
)
data_loader_val = torch.utils.data.DataLoader(
dataset_val, sampler=sampler_val,
batch_size=args.batch_size,
num_workers=args.num_workers,
pin_memory=args.pin_mem,
drop_last=False,
)
# =================== Model ===================
model = TWIST(args)
model.to(device)
if args.use_momentum_encoder:
teacher_model = TWIST(args)
teacher_model.to(device)
else:
teacher_model = None
n_bb_parameters = sum(p.numel() for p in model.backbone.parameters() if p.requires_grad)
print('number of backbone params:{:.2f} M'.format(n_bb_parameters/1e6))
n_ph_parameters = sum(p.numel() for p in model.projection_heads.parameters() if p.requires_grad)
print('number of head params:{:.2f} M'.format(n_ph_parameters/1e6))
n_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('number of total params:{:.2f} M'.format(n_parameters/1e6))
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
if args.use_momentum_encoder:
teacher_model = torch.nn.parallel.DistributedDataParallel(teacher_model, device_ids=[args.gpu])
teacher_model_without_ddp = teacher_model.module
teacher_model_without_ddp.load_state_dict(model_without_ddp.state_dict())
for p in teacher_model.parameters():
p.requires_grad = False
momentum_schedule = utils.cosine_scheduler(args.momentum_start, args.momentum_end, args.mme_epochs, len(data_loader_train))
else:
momentum_schedule = None
# =================== Optimizer ===================
linear_scaled_lr = args.lr * args.batch_size * utils.get_world_size() / 256.0
args.lr = linear_scaled_lr
linear_scaled_lr_sl = args.lr_sl * args.batch_size * utils.get_world_size() / 256.0
args.lr_sl = linear_scaled_lr_sl
param_weights = []
param_biases = []
for name, param in model.named_parameters():
if not param.requires_grad:
print('{} is not optimized'.format(name))
continue
skip = ['pos_embed', 'cls_token', 'dist_token']
if len(param.shape) == 1 or name.endswith(".bias") or sum([sk in name for sk in skip]):
print('{} has been excluded for weight decay'.format(name))
param_biases.append(param)
else:
param_weights.append(param)
if args.optim == 'sgd':
bias_weight_decay = 0.0 if args.exclude_bias_weight_decay else args.weight_decay
parameters = [{'params': param_weights, 'weight_decay': args.weight_decay},
{'params': param_biases, 'weight_decay': bias_weight_decay}]
optimizer = torch.optim.SGD(parameters, lr=0, momentum=0.9, weight_decay=args.weight_decay)
elif args.optim in ['lars', 'lars_oss']:
bias_weight_decay = 0.0 if args.exclude_bias_weight_decay else args.weight_decay
parameters = [{'params': param_weights, 'weight_decay': args.weight_decay, 'lars_exclude': False},
{'params': param_biases, 'weight_decay': bias_weight_decay, 'lars_exclude': True}]
optimizer = LARS_OPENSELF(parameters, lr=0, weight_decay=args.weight_decay, momentum=0.9)
elif args.optim == 'admw':
bias_weight_decay = 0.0 if args.exclude_bias_weight_decay else args.weight_decay
parameters = [{'params': param_weights, 'weight_decay': args.weight_decay},
{'params': param_biases, 'weight_decay': bias_weight_decay}]
optimizer = torch.optim.AdamW(parameters)
# weight decay scheduler, used for vision transformer proposed by dino.
wd_schedule = utils.cosine_scheduler(
args.weight_decay,
args.weight_decay_end,
args.epochs,
len(data_loader_train),
)
qt_schedule = utils.cosine_scheduler(
args.quantile,
args.quantile_end,
args.epochs if args.crops_interact_style=='self_label' else (args.epochs-args.mme_epochs),
len(data_loader_train),
)
# =================== Loss Function ===================
criterion = EntLoss(args, args.lam1, args.lam2, pqueue=None)
loss_scaler = torch.cuda.amp.GradScaler() if args.amp else None
if utils.is_main_process(): # Tensorboard configuration
local_runs = os.path.join(args.output_dir, 'runs_{}'.format( args.output_dir.replace('/','').replace('.','') ))
writer = SummaryWriter(logdir=local_runs)
# =================== Traning ===================
if args.resume: # Resume traning from checkpoint
checkpoint = torch.load(args.resume, map_location='cpu')
try:
model_without_ddp.load_state_dict(checkpoint['model'])
except:
ckpt = checkpoint['model']
unexpected = {"projection_heads.cls_heads.0.0.weight": "projection_heads.last_linear.weight",
"projection_heads.cls_heads.0.0.bias": "projection_heads.last_linear.bias",
"projection_heads.cls_heads.0.1.running_mean": "projection_heads.norm.running_mean",
"projection_heads.cls_heads.0.1.running_var": "projection_heads.norm.running_var",
"projection_heads.cls_heads.0.1.num_batches_tracked": "projection_heads.norm.num_batches_tracked"
}
for k, v in unexpected.items():
ckpt[v] = ckpt[k]
del ckpt[k]
model_without_ddp.load_state_dict(ckpt)
if 'optimizer' in checkpoint and 'epoch' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer'])
args.start_epoch = checkpoint['epoch'] + 1
if 'scaler' in checkpoint:
loss_scaler.load_state_dict(checkpoint['scaler'])
if 'teacher' in checkpoint:
teacher_model_without_ddp.load_state_dict(checkpoint['teacher'])
if args.eval_only:
eval_stats = eval_one_epoch(args,
model, data_loader_val, device,
logfn=os.path.join(output_dir, 'detail_log.txt')
)
np.save(os.path.join(args.output_dir, 'match.npy'), eval_stats['match'])
np.save(os.path.join(args.output_dir, 'mapped_preds.npy'), eval_stats['mapped_preds'])
print({k: v for k,v in eval_stats.items() if k not in ['match', 'mapped_preds']})
return
if args.inference_only:
inference(args, model, args.img_path, device, np.load(args.match_path))
return
print(f"Start training for {args.epochs} epochs")
start_time = time.time()
max_accuracy = 0.0
for epoch in range(args.start_epoch, args.epochs):
if epoch == args.mme_epochs:
print("Switching to Harder Multi Crop")
args.global_crops_scale = (0.14, 1.0)
args.local_crops_scale = (0.05, 0.14)
args.aug = 'multicrop'
data_loader_train.dataset.aug = get_augmentations(args)
data_loader_train.sampler.set_epoch(epoch)
# train for one epoch
train_stats = train_one_epoch(args,
model, criterion, data_loader_train,
optimizer, device, epoch,
set_training_mode=True,
scaler=loss_scaler,
logfn=os.path.join(output_dir, 'detail_log.txt'),
wd_schedule=wd_schedule,
qt_schedule=qt_schedule,
teacher_model=teacher_model,
momentum_schedule=momentum_schedule,
)
if args.crops_interact_style == 'label':
torch.save(args.pseudo_labels, 'pseudo_labels.pth')
break
# only dim=1000 evaluate unsupervised classification
if args.dim == 1000:
eval_stats = eval_one_epoch(args, model, data_loader_val, device,
logfn=os.path.join(output_dir, 'detail_log.txt'))
print(eval_stats)
# saving checkpoint
checkpoint_path = os.path.join(output_dir, 'checkpoint.pth')
save_dict = {
'model': model_without_ddp.state_dict(),
'backbone': model_without_ddp.backbone_weights(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'args': args,
}
if args.use_momentum_encoder:
save_dict.update({
'teacher': teacher_model_without_ddp.state_dict(),
'teacher_backbone': teacher_model_without_ddp.backbone_weights(),
})
if loss_scaler: # save state dict of loss scaler if using mix precision.
save_dict.update({'scaler': loss_scaler.state_dict()})
utils.save_on_master(save_dict, checkpoint_path)
if (epoch + 1) == args.mme_epochs:
utils.save_on_master(save_dict, os.path.join(output_dir,'mme_ckpt.pth'))
# logging train stats
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()}, 'epoch': epoch, 'n_parameters': n_parameters}
if args.output_dir and utils.is_main_process():
with (output_dir / "log.txt").open("a") as f:
if epoch == 0: # write the arguments parameters
f.write(json.dumps(args.__dict__) + "\n")
f.write(json.dumps(log_stats) + "\n")
for k, v in train_stats.items():
writer.add_scalar(k, v, epoch)
total_time = time.time() - start_time
print('Training time {}'.format(str(datetime.timedelta(seconds=int(total_time)))))
if __name__ == '__main__':
parser = argparse.ArgumentParser('TWIST', parents=[get_args_parser()])
args = parser.parse_args()
if args.output_dir:
Path(args.output_dir).mkdir(parents=True, exist_ok=True)
main(args)