-
Notifications
You must be signed in to change notification settings - Fork 0
/
pb027.jl
329 lines (300 loc) · 9.99 KB
/
pb027.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
##############################################################################
### From Primes.jl and IntegerMathUtils.jl
##############################################################################
function is_probably_prime(x::Integer; reps=25)
if !(x isa BigInt)
x = BigInt(x)
end
return ccall((:__gmpz_probab_prime_p, :libgmp), Cint, (Ref{BigInt}, Cint), x, reps) != 0
end
function kronecker(a::BigInt, b::Clong)
return ccall((:__gmpz_kronecker_si, :libgmp), Cint, (Ref{BigInt}, Clong), a, b)
end
function kronecker(a::Clong, b::BigInt)
return ccall((:__gmpz_si_kronecker, :libgmp), Cint, (Clong, Ref{BigInt}), a, b)
end
function kronecker(a, n)
@assert n != -n || n == 0
@assert a != -a || a == 0
t = 1
if iszero(n)
return Int(abs(a) == 1)
end
if n < 0
n = abs(n)
if a < 0
t = -t
end
end
trail = trailing_zeros(n)
if trail > 0
n >>= trail
if iseven(a)
return 0
elseif isodd(trail) && a & 7 in (3, 5)
t = -t
end
end
a = mod(a, n)
while a != 0
while iseven(a)
a = a >> 1
if n & 7 in (3, 5)
t = -t
end
end
a, n = n, a
if a & 3 == n & 3 == 3
t = -t
end
a = mod(a, n)
end
return n == 1 ? t : 0
end
const wheel = [4, 2, 4, 2, 4, 6, 2, 6]
const wheel_primes = [7, 11, 13, 17, 19, 23, 29, 31]
const wheel_indices = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7]
@inline function wheel_index(n)
d, r = divrem(n - 1, 30)
return 8d + wheel_indices[r+2]
end
@inline function wheel_prime(n)
d, r = (n - 1) >>> 3, (n - 1) & 7
return 30d + wheel_primes[r+1]
end
function _primesmask(limit::Int)
limit < 7 && throw(ArgumentError("The condition limit >= 7 must be met."))
n = wheel_index(limit)
m = wheel_prime(n)
sieve = ones(Bool, n)
@inbounds for i = 1:wheel_index(isqrt(limit))
if sieve[i]
p = wheel_prime(i)
q = p^2
j = (i - 1) & 7 + 1
while q <= m
sieve[wheel_index(q)] = false
q += wheel[j] * p
j = j & 7 + 1
end
end
end
return sieve
end
function _primesmask(lo::Int, hi::Int)
7 <= lo <= hi || throw(ArgumentError("The condition 7 <= lo <= hi must be met."))
lo == 7 && return _primesmask(hi)
wlo, whi = wheel_index(lo - 1), wheel_index(hi)
m = wheel_prime(whi)
sieve = ones(Bool, whi - wlo)
hi < 49 && return sieve
small_sieve = _primesmask(isqrt(hi))
@inbounds for i = 1:length(small_sieve) # don't use eachindex here
if small_sieve[i]
p = wheel_prime(i)
j = wheel_index(2 * div(lo - p - 1, 2p) + 1)
r = widemul(p, wheel_prime(j + 1))
r > m && continue # use widemul to avoid r <= m caused by overflow
j = j & 7 + 1
q = Int(r)
# q < 0 indicates overflow when incrementing q inside loop
while 0 <= q <= m
sieve[wheel_index(q)-wlo] = false
q += wheel[j] * p
j = j & 7 + 1
end
end
end
return sieve
end
function primesmask(lo::Int, hi::Int)
0 < lo <= hi || throw(ArgumentError("The condition 0 < lo <= hi must be met."))
sieve = falses(hi - lo + 1)
lo <= 2 <= hi && (sieve[3-lo] = true)
lo <= 3 <= hi && (sieve[4-lo] = true)
lo <= 5 <= hi && (sieve[6-lo] = true)
hi < 7 && return sieve
wheel_sieve = _primesmask(max(7, lo), hi)
lsi = lo - 1
lwi = wheel_index(lsi)
@inbounds for i = 1:length(wheel_sieve) # don't use eachindex here
sieve[wheel_prime(i + lwi)-lsi] = wheel_sieve[i]
end
return sieve
end
primesmask(lo::Integer, hi::Integer) = lo <= hi <= typemax(Int) ? primesmask(Int(lo), Int(hi)) :
throw(ArgumentError("Both endpoints of the interval to sieve must be <= $(typemax(Int)), got $lo and $hi."))
primesmask(limit::Int) = primesmask(1, limit)
primesmask(n::Integer) = n <= typemax(Int) ? primesmask(Int(n)) :
throw(ArgumentError("Requested number of primes must be <= $(typemax(Int)), got $n."))
function primes(lo::Int, hi::Int)
lo <= hi || throw(ArgumentError("The condition lo <= hi must be met."))
list = Int[]
lo <= 2 <= hi && push!(list, 2)
lo <= 3 <= hi && push!(list, 3)
lo <= 5 <= hi && push!(list, 5)
hi < 7 && return list
lo = max(2, lo)
sizehint!(list, 5 + floor(Int, hi / (log(hi) - 1.12) - lo / (log(lo) - 1.12 * (lo > 7)))) # http://projecteuclid.org/euclid.rmjm/1181070157
sieve = _primesmask(max(7, lo), hi)
lwi = wheel_index(lo - 1)
@inbounds for i = 1:length(sieve) # don't use eachindex here
sieve[i] && push!(list, wheel_prime(i + lwi))
end
return list
end
primes(n::Int) = primes(1, n)
function _generate_min_factors(limit)
function min_factor(n)
n < 4 && return n
for i in 3:2:isqrt(n)
n % i == 0 && return i
end
return n
end
res = Int[]
for i in 3:2:limit
m = min_factor(i)
push!(res, m == i ? 1 : m)
end
return res
end
const N_SMALL_FACTORS = 2^16
const _MIN_FACTOR = UInt8.(_generate_min_factors(N_SMALL_FACTORS))
# _min_factor(n) = the minimum factor of n for odd n, if 1<n<N_SMALL_FACTORS
function _min_factor(n::T) where {T<:Integer}
m = _MIN_FACTOR[n>>1]
return m == 1 ? n : T(m)
end
function isprime(n::Integer)
n <= typemax(Int64) && return isprime(Int64(n))
return isprime(BigInt(n))
end
function isprime(n::Int64)
iseven(n) && return n == 2
if n < N_SMALL_FACTORS
n < 2 && return false
return _min_factor(n) == n
end
for m in (3, 5, 7, 11, 13, 17, 19, 23)
n % m == 0 && return false
end
if n < 2^32
return miller_rabbin_test(_witnesses(UInt64(n)), n)
end
miller_rabbin_test(2, n) || return false
return lucas_test(widen(n))
end
const bases = UInt16[
15591, 2018, 166, 7429, 8064, 16045, 10503, 4399, 1949, 1295, 2776, 3620,
560, 3128, 5212, 2657, 2300, 2021, 4652, 1471, 9336, 4018, 2398, 20462,
10277, 8028, 2213, 6219, 620, 3763, 4852, 5012, 3185, 1333, 6227, 5298,
1074, 2391, 5113, 7061, 803, 1269, 3875, 422, 751, 580, 4729, 10239,
746, 2951, 556, 2206, 3778, 481, 1522, 3476, 481, 2487, 3266, 5633,
488, 3373, 6441, 3344, 17, 15105, 1490, 4154, 2036, 1882, 1813, 467,
3307, 14042, 6371, 658, 1005, 903, 737, 1887, 7447, 1888, 2848, 1784,
7559, 3400, 951, 13969, 4304, 177, 41, 19875, 3110, 13221, 8726, 571,
7043, 6943, 1199, 352, 6435, 165, 1169, 3315, 978, 233, 3003, 2562,
2994, 10587, 10030, 2377, 1902, 5354, 4447, 1555, 263, 27027, 2283, 305,
669, 1912, 601, 6186, 429, 1930, 14873, 1784, 1661, 524, 3577, 236,
2360, 6146, 2850, 55637, 1753, 4178, 8466, 222, 2579, 2743, 2031, 2226,
2276, 374, 2132, 813, 23788, 1610, 4422, 5159, 1725, 3597, 3366, 14336,
579, 165, 1375, 10018, 12616, 9816, 1371, 536, 1867, 10864, 857, 2206,
5788, 434, 8085, 17618, 727, 3639, 1595, 4944, 2129, 2029, 8195, 8344,
6232, 9183, 8126, 1870, 3296, 7455, 8947, 25017, 541, 19115, 368, 566,
5674, 411, 522, 1027, 8215, 2050, 6544, 10049, 614, 774, 2333, 3007,
35201, 4706, 1152, 1785, 1028, 1540, 3743, 493, 4474, 2521, 26845, 8354,
864, 18915, 5465, 2447, 42, 4511, 1660, 166, 1249, 6259, 2553, 304,
272, 7286, 73, 6554, 899, 2816, 5197, 13330, 7054, 2818, 3199, 811,
922, 350, 7514, 4452, 3449, 2663, 4708, 418, 1621, 1171, 3471, 88,
11345, 412, 1559, 194
]
function _witnesses(n::UInt64)
i = xor((n >> 16), n) * 0x45d9f3b
i = xor((i >> 16), i) * 0x45d9f3b
i = xor((i >> 16), i) & 255 + 1
@inbounds return Int(bases[i])
end
function miller_rabbin_test(a, n::T) where {T<:Signed}
s = trailing_zeros(n - 1)
d = (n - 1) >>> s
x::T = powermod(a, d, n)
if x != 1
t = s
while x != n - 1
(t -= 1) <= 0 && return false
x = widemul(x, x) % n
x == 1 && return false
end
end
return true
end
function lucas_test(n::T) where {T<:Signed}
s = isqrt(n)
@assert s <= typemax(T) #to prevent overflow
s^2 == n && return false
# find Lucas test params
D::T = 5
for (s, d) in zip(Iterators.cycle((1, -1)), 5:2:n)
D = s * d
k = kronecker(D, n)
k != 1 && break
end
k == 0 && return false
# Lucas test with P=1
Q::T = (1 - D) >> 2
U::T, V::T, Qk::T = 1, 1, Q
k::T = (n + 1)
trail = trailing_zeros(k)
k >>= trail
# get digits 1 at a time since digits allocates
for b in ndigits(k, base=2)-2:-1:0
U = mod(U * V, n)
V = mod(V * V - Qk - Qk, n)
Qk = mod(Qk * Qk, n)
if isodd(k >> b) == 1
Qk = mod(Qk * Q, n)
U, V = U + V, V + U * D
# adding n makes them even
# so we can divide by 2 without causing problems
isodd(U) && (U += n)
isodd(V) && (V += n)
U = mod(U >> 1, n)
V = mod(V >> 1, n)
end
end
if U in 0
return true
end
for _ in 1:trail
V == 0 && return true
V = mod(V * V - Qk - Qk, n)
Qk = mod(Qk * Qk, n)
end
return false
end
isprime(x::BigInt, reps=25) = x > 1 && is_probably_prime(x; reps=reps)
##############################################################################
using .Iterators
function problem027(N::Integer=1000)
maxchain, maxa, maxb = 0, 0, 0
for b in reverse(primes(N))
maxchain >= b && return maxa, maxb
for a = -N+((N+1)&1):2:N
seq = chain(a, b)
if seq > maxchain
maxchain, maxa, maxb = seq, a, b
end
end
end
return maxa, maxb
end
function chain(a::Integer, b::Integer)
for n in countfrom()
y = n^2 + a * n + b
isprime(y) || return n - 1
end
end
N = parse(Int, readline())
a, b = problem027(N)
println("$a $b")