-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsample.py
82 lines (65 loc) · 2.91 KB
/
sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Sample new images from a pre-trained DiT.
"""
import torch
from models.create_model import create_model
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
from torchvision.utils import save_image
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL
from download import find_model
from omegaconf import DictConfig
import hydra
from util.util import check_conflicts
@hydra.main(config_path="config", config_name="base_config.yaml")
def main(cfg: DictConfig):
# Setup PyTorch:
torch.manual_seed(cfg.general.global_seed)
torch.set_grad_enabled(False)
device = "cuda" if torch.cuda.is_available() else "cpu"
check_conflicts(cfg, eval=True)
# Load model:
latent_size = cfg.general.image_size // 8
cfg.models.param.latent_size = latent_size
model = create_model(model_config=cfg.models).to(device)
# Auto-download a pre-trained model or load a custom DiT checkpoint from train.py:
model_string_name = cfg.models.name.replace("/", "-") # e.g., DiT-XL/2 --> DiT-XL-2 (for naming folders)
ckpt_path = f'{cfg.logs.results_dir}/{model_string_name}/{cfg.eval.ckpt_path.version:03d}/checkpoints/{cfg.eval.ckpt_path.iterations:07d}.pt'
state_dict = find_model(ckpt_path)
model.load_state_dict(state_dict)
model.eval() # important!
diffusion = create_diffusion(str(cfg.eval.num_sampling_steps), noise_schedule=cfg.general.schedule_name)
vae = AutoencoderKL.from_pretrained(f"stabilityai/sd-vae-ft-{cfg.general.vae}").to(device)
# Labels to condition the model with (feel free to change):
if not cfg.data.is_uncond:
class_labels = [207, 360, 387, 974, 88, 979, 417, 279]
else:
class_labels = [0] * 8
# Create sampling noise:
n = len(class_labels)
z = torch.randn(n, 4, latent_size, latent_size, device=device)
y = torch.tensor(class_labels, device=device)
# Setup classifier-free guidance:
if not cfg.data.is_uncond:
z = torch.cat([z, z], 0)
y_null = torch.tensor([1000] * n, device=device)
y = torch.cat([y, y_null], 0)
model_kwargs = dict(y=y, cfg_scale=cfg.eval.cfg_scale)
sample_fn = model.forward_with_cfg
else:
model_kwargs = dict(y=y)
sample_fn = model.forward
# Sample images:
samples = diffusion.p_sample_loop(sample_fn, z.shape, z, clip_denoised=False, model_kwargs=model_kwargs, progress=True, device=device)
if not cfg.data.is_uncond:
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
samples = vae.decode(samples / 0.18215).sample
# Save and display images:
save_image(samples, "sample.png", nrow=4, normalize=True, value_range=(-1, 1))
if __name__ == "__main__":
main()