-
Notifications
You must be signed in to change notification settings - Fork 0
/
FlyPhoneDB.R
619 lines (479 loc) · 27.6 KB
/
FlyPhoneDB.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
start_time <- Sys.time()
set.seed(123)
#this following code has already been published (Liu et al., 2022) and can be found at the following code
#https://github.com/liuyifang/FlyPhoneDB/blob/master/FlyPhone_parallel_batch.R
#the code has been simply reused to study cell-cell interactions in the control and tau P251LKI subsets.
#Some of the commented codes are useful to understand the code and how to change the colors and output of the dot plots.
# make it 990 MB
# 990*1024^2 ( 1038090240)
# or 1500*1024^2 (1572864000)
options(future.globals.maxSize=1572864000 )
options(stringsAsFactors = FALSE)
suppressPackageStartupMessages({
library(optparse)
library(tidyverse)
library(future.apply)
library(Seurat)
library(RColorBrewer)
library(reshape2)
library(network)
library(igraph)
})
option_list = list(
make_option(c("-i", "--matrix"), type="character", default=NULL,
help="input matrix", metavar="character"),
make_option(c("-a", "--metadata"), type="character", default=NULL,
help="input metadata", metavar="character"),
make_option(c("-p", "--lrpair"), type="character", default=NULL,
help="annotation ligand receptor", metavar="character"),
make_option(c("-s", "--corecomponents"), type="character", default=NULL,
help="annotation core components", metavar="character"),
make_option(c("-c", "--cores"), type="character", default=NULL,
help="number of cores", metavar="character"),
make_option(c("-o", "--output"), type="character", default=NULL,
help="output directory name", metavar="character")
)
opt_parser = OptionParser(option_list=option_list);
opt = parse_args(opt_parser);
print(paste0("matrix input: ", opt$matrix))
print(paste0("metadata input: ", opt$metadata))
print(paste0("L-R pairs input: ", opt$lrpair))
print(paste0("core components input: ", opt$corecomponents))
print(paste0("number of cores: ", opt$cores))
print(paste0("output directory: ", opt$output))
output_dir <- "/Users/hassanbukhari/Desktop/OneDrive - Mass General Brigham/Manuscript/Code/Flyphone DB/Control/Output/"
#output_dir <- opt$output
if (!dir.exists(output_dir)) {dir.create(output_dir)}
if (!dir.exists(paste0(output_dir, "/heatmap"))) {dir.create(paste0(output_dir, "/heatmap"), recursive = TRUE)}
if (!dir.exists(paste0(output_dir, "/dotplot"))) {dir.create(paste0(output_dir, "/dotplot"), recursive = TRUE)}
if (!dir.exists(paste0(output_dir, "/circleplot"))) {dir.create(paste0(output_dir, "/circleplot"), recursive = TRUE)}
# plan(multiprocess, workers = 8) ## => parallelize on your local computer
#plan(multiprocess, workers = as.numeric(opt$cores)) ## => parallelize on your local computer
####################################
# Input and cluster means
####################################
#scrna.combined.seurat.hassan072022 <- readRDS("/Volumes/Macintosh HD/Users/hassanbukhari/Desktop/OneDrive - Mass General Brigham/Tau P251LKI figures updated-02-27-223/New Seurat Object-2023/seurat_multi_rerun_annotations 2/scrna.combined.seurat.hassan_2022.rds")
#Controls <- subset(scrna.combined, subset= treatment =="control")
#saveRDS(Controls, paste0("/Volumes/Macintosh HD/Users/hassanbukhari/Desktop/OneDrive - Mass General Brigham/Tau P251LKI figures updated-02-27-223/Figure 3/Figure 3 Supplementary files/", "Controls.rds"))
#Expression Matrix
#exprMat_original <- GetAssayData(Controls, assay = "RNA", slot = "counts")
#exprMat_original[1:3, 1:3]
#matrix <- as.matrix(exprMat_original)
#write.csv(matrix, file = "2023-08-03-Controls.csv")
#Metadata
#library(data.table)
#data_to_write_out <- as.data.frame(as.matrix([email protected]))
#fwrite(x = data_to_write_out, row.names = TRUE, file = "Controls_03082023_metadata.csv")
#This examples runs on control data set. To run tau P251LKI comment out control and run tau P251L KI dataset. Here the subset tau P251LKI object is called P251Ls
#P251Ls <- subset(scrna.combined, subset= treatment =="P251L")
#saveRDS(P251Ls, paste0("/Volumes/Macintosh HD/Users/hassanbukhari/Desktop/OneDrive - Mass General Brigham/Tau P251LKI figures updated-02-27-223/Figure 3/Figure 3 Supplementary files/", "P251Ls.rds"))
#Expression Matrix
#exprMat_original <- GetAssayData(P251Ls, assay = "RNA", slot = "counts")
#exprMat_original[1:3, 1:3]
#matrix <- as.matrix(exprMat_original)
#write.csv(matrix, file = "2023-08-03-P251Ls.csv")
#Metadata
#library(data.table)
#data_to_write_out <- as.data.frame(as.matrix([email protected]))
#fwrite(x = data_to_write_out, row.names = TRUE, file = "P251Ls_0308202metadata.csv")
#load previously saved expression matrix from the seurat object (or subset seurat object )
exprMat <- read.csv(file = "/Users/hassanbukhari/Desktop/OneDrive - Mass General Brigham/Tau P251LKI figures updated-02-27-223/New Seurat Object-2023/Figure 3 Code and output/2023-08-03-Controls.csv", row.names = 1, check.names = FALSE)
#load previously saved metadata from the seurat object (or subset seurat object)
cellInfo <- read.csv(file = "/Users/hassanbukhari/Desktop/OneDrive - Mass General Brigham/Tau P251LKI figures updated-02-27-223/New Seurat Object-2023/Figure 3 Code and output/Controls_03082023_metadata.csv", row.names = 1)
#cellInfo <- read.csv(opt$metadata, row.names = 1)
cellInfo$celltype <- as.character(cellInfo$seurat_clusters)
str(cellInfo)
#exprMat <- exprMat[ , row.names(cellInfo)]
# create seuratObj
seuratObj <- CreateSeuratObject(counts = exprMat)
seuratObj <- NormalizeData(seuratObj)
seuratObj <- FindVariableFeatures(seuratObj, selection.method = "vst", nfeatures = 2000)
all_genes <- rownames(seuratObj)
seuratObj <- ScaleData(seuratObj, features = all_genes)
seuratObj$celltype <- as.factor(cellInfo$celltype)
Idents(seuratObj) <- "celltype"
# clusterMetadataTable <- table([email protected][ , "celltype"]) %>% as.data.frame()
# colnames(clusterMetadataTable) <- c("celltype", "count")
# print(clusterMetadataTable$celltype)
print ("+>---------------------------------<")
print ("sweep")
exprMat <- sweep(exprMat, 2, Matrix::colSums(exprMat), FUN = "/") * 10000
LR_pairs <- read.csv(file = "/Volumes/Macintosh HD/Users/hassanbukhari/Desktop/OneDrive - Mass General Brigham/Manuscript/Code/Flyphone DB/Control/Input/Ligand_receptor_pair_high_confident_2021vs1_clean.txt", sep = "\t")
#LR_pairs <- read.csv(file = opt$lrpair, sep = "\t")
# str(LR_pairs)
# LR_pairs <- interaction_input[ , c("FBgn_secreted", "FBgn_receptor", "pathway_receptor")]
# colnames(LR_pairs) <- c("FBgn_secreted", "FBgn_receptor", "pathway_receptor")
# start real score
gene_list <- unique(c(LR_pairs$FBgn_secreted, LR_pairs$FBgn_receptor))
common_genes <- intersect(gene_list, row.names(exprMat))
LR_pairs <- subset(LR_pairs, FBgn_secreted %in% common_genes & FBgn_receptor %in% common_genes)
exprMat <- as.matrix(exprMat)
exprMat <- t(exprMat)
df_Ligand <- exprMat[ , unique(LR_pairs$FBgn_secreted)]
df_Receptor <- exprMat[ , unique(LR_pairs$FBgn_receptor)]
celltype_df_Ligand <- cbind(cellInfo[ , c("celltype"), drop = FALSE], df_Ligand)
celltype_df_Receptor <- cbind(cellInfo[ , c("celltype"), drop = FALSE], df_Receptor)
# celltype_df_Ligand[1:3, 1:3]
# celltype_df_Receptor[1:3, 1:3]
# average Ligand counts by each celltype
df_group_by_celltype_Ligand <- celltype_df_Ligand %>%
group_by(celltype) %>%
summarise_all(mean) %>%
as.data.frame()
# df_group_by_celltype_Ligand[1:3, 1:3]
row.names(df_group_by_celltype_Ligand) <- df_group_by_celltype_Ligand$celltype
df_group_by_celltype_Ligand$celltype <- NULL
df_group_by_celltype_Ligand <- t(df_group_by_celltype_Ligand)
# df_group_by_celltype_Ligand[1:3, 1:3]
# str(df_group_by_celltype_Ligand)
# write.csv(df_group_by_celltype_Ligand,
# file = "../Data/2021-02-15_df_group_by_celltype_Ligand.csv")
# average Receptor counts by each celltype
df_group_by_celltype_Receptor <- celltype_df_Receptor %>%
group_by(celltype) %>%
summarise_all(mean) %>%
as.data.frame()
# df_group_by_celltype_Receptor[1:3, 1:3]
row.names(df_group_by_celltype_Receptor) <- df_group_by_celltype_Receptor$celltype
df_group_by_celltype_Receptor$celltype <- NULL
df_group_by_celltype_Receptor <- t(df_group_by_celltype_Receptor)
# df_group_by_celltype_Receptor[1:3, 1:3]
# str(df_group_by_celltype_Receptor)
# write.csv(df_group_by_celltype_Receptor,
# file = "../Data/2021-02-15_df_group_by_celltype_Receptor.csv")
####################################
# Interaction score
####################################
#run interaction score on cluster, it will take days to run on a simple computer
ligand_avg <- df_group_by_celltype_Ligand[LR_pairs$FBgn_secreted, ] %>% as.data.frame()
receptor_avg <- df_group_by_celltype_Receptor[LR_pairs$FBgn_receptor, ] %>% as.data.frame()
# write.csv(ligand_avg, file = "../Data/2021-02-15_ligand_avg.csv")
# write.csv(receptor_avg, file = "../Data/2021-02-15_receptor_avg.csv")
# x <- sort(unique(cellInfo$celltype)) %>% as.data.frame()
interaction_list <- list()
LR_pairs_one <- LR_pairs # combine
for (i in sort(unique(cellInfo$celltype)) ) {
# for (i in c("aEC1", "aEC2")) {
print(">>")
print(i)
print(">>")
LR_pairs_combine <- LR_pairs # combine
for (j in sort(unique(cellInfo$celltype)) ) {
# for (j in c("aEC3", "aEC4") ) {
print(paste0(i, "++>", j))
LR_pairs_tmp <- LR_pairs
LR_pairs_tmp[[paste0(i, ">", j, "_score")]] <- log1p(ligand_avg[[i]]) * log1p(receptor_avg[[j]])
# permutation -------------------------------------------------------------
# start permutatioin
permutation_times <- 1000
y <- future_lapply(1:permutation_times, function(ii) {
# for (ii in 1:permutation_times) {
# LR_pairs_tmp[[paste0("permute", ii)]] <- local({
# print(i)
# sample Ligand
cellInfo_sample_Ligand <- cellInfo
# str(cellInfo_sample_Ligand)
cellInfo_sample_Ligand$celltype <- sample(cellInfo_sample_Ligand$celltype)
celltype_df_sample_Ligand <- cbind(cellInfo_sample_Ligand[ , c("celltype"), drop = FALSE], df_Ligand)
df_group_by_celltype_sample_Ligand <- celltype_df_sample_Ligand %>%
group_by(celltype) %>%
summarise_all(mean) %>%
as.data.frame()
# str(df_group_by_celltype_sample_Ligand)
row.names(df_group_by_celltype_sample_Ligand) <- df_group_by_celltype_sample_Ligand$celltype
df_group_by_celltype_sample_Ligand$celltype <- NULL
df_group_by_celltype_sample_Ligand <- t(df_group_by_celltype_sample_Ligand)
# str(df_group_by_celltype_sample_Ligand)
# sample Receptor
cellInfo_sample_Receptor <- cellInfo
cellInfo_sample_Receptor$celltype <- sample(cellInfo_sample_Receptor$celltype)
celltype_df_sample_Receptor <- cbind(cellInfo_sample_Receptor[ , c("celltype"), drop = FALSE], df_Receptor)
df_group_by_celltype_sample_Receptor <- celltype_df_sample_Receptor %>%
group_by(celltype) %>%
summarise_all(mean) %>%
as.data.frame()
# str(df_group_by_celltype_sample_Receptor)
row.names(df_group_by_celltype_sample_Receptor) <- df_group_by_celltype_sample_Receptor$celltype
df_group_by_celltype_sample_Receptor$celltype <- NULL
df_group_by_celltype_sample_Receptor <- t(df_group_by_celltype_sample_Receptor)
# df_group_by_celltype_sample_Receptor[1:2, 1:2]
# str(df_group_by_celltype_sample_Receptor)
####################################
# Interaction score
####################################
ligand_avg_tmp <- df_group_by_celltype_sample_Ligand[LR_pairs$FBgn_secreted, ] %>% as.data.frame()
receptor_avg_tmp <- df_group_by_celltype_sample_Receptor[LR_pairs$FBgn_receptor, ] %>% as.data.frame()
# LR_pairs_tmp <- LR_pairs
# score <- ligand_avg[[paste0("Ligand_cluster", i)]] * receptor_avg[[paste0("Receptor_cluster", j)]]
# colnames(LR_pairs_tmp)[ncol(LR_pairs_tmp)] <- paste0("permute", i)
tmp <- log1p(ligand_avg_tmp[[i]]) * log1p(receptor_avg_tmp[[j]])
tmp
}, future.seed = TRUE)
# }
df <- data.frame(matrix(unlist(y), nrow=length(y), byrow=TRUE))
df <- t(df)
LR_pairs_tmp <- cbind(LR_pairs_tmp, df)
LR_pairs_tmp$result <- rowSums(sapply(LR_pairs_tmp[, 13:ncol(LR_pairs_tmp)], function(x) x > LR_pairs_tmp[[paste0(i, ">", j, "_score")]]))
print ("done LR_pairs rowSums")
# head(LR_pairs_tmp[ , c("PM1_nonhemo_interaction_score", "result")])
LR_pairs_tmp[[paste0(i, ">", j, "_pvalues")]] <- LR_pairs_tmp$result / permutation_times
# write.csv(LR_pairs_tmp, file = "LR_pairs_tmp.csv")
LR_pairs_tmp <- LR_pairs_tmp[ , c(1:12, ncol(LR_pairs_tmp))]
# LR_pairs_tmp[LR_pairs_tmp$PM1_nonhemo_interaction_score]
LR_pairs_tmp[LR_pairs_tmp[[paste0(i, ">", j, "_score")]] == 0, paste0(i, ">", j, "_pvalues")] <- 1
LR_pairs_combine <- cbind(LR_pairs_combine,
LR_pairs_tmp[ , c(paste0(i, ">", j, "_score"), paste0(i, ">", j, "_pvalues"))]
)
LR_pairs_one <- cbind(LR_pairs_one,
LR_pairs_tmp[ , c(paste0(i, ">", j, "_score"), paste0(i, ">", j, "_pvalues"))]
)
}
interaction_list[[i]] <- LR_pairs_combine
}
write.csv(LR_pairs_one, file = paste0(output_dir, "/", "interaction_list.csv"))
end_time <- Sys.time()
end_time - start_time
# heatmap
avgexp <- AverageExpression(seuratObj, assay = "RNA", return.seurat = TRUE)
Pathway_core_components <- read.table(file = opt$corecomponents, sep = "\t", header = TRUE)
for(i in unique(Pathway_core_components$pathway) ){
cat("\n")
cat("## ", i, " {.tabset} \n")
df <- subset(Pathway_core_components, pathway == i)
genes <- df$fbgn
cat("\n")
p <- DoHeatmap(avgexp, features = genes, label = TRUE ,draw.lines = FALSE, raster = FALSE, angle = 90) +
scale_fill_gradientn(colors = rev(RColorBrewer::brewer.pal(n =4, name = "RdBu"))) # & NoLegend()
print(p)
cat("\n")
ggsave(p, file = paste0(output_dir, "/heatmap/heatmap_", i, ".png"), # The directory you want to save the file in
width = 8, # The width of the plot in inches
height = 12)
}
# dotplot
data_original <- LR_pairs_one
data_original$interacting_pair <- paste(data_original$FBgn_secreted, data_original$FBgn_receptor, sep = "_")
pathways <- unique(data_original$pathway_receptor)
pathways <- pathways[-length(pathways)]
celltypes <- sort(unique(cellInfo$celltype))
for (p in pathways) {
for (c in celltypes) {
data_pathway <- subset(data_original, pathway_receptor == p)
data <- data_pathway[ , grepl(paste0(c, ">"), colnames(data_pathway)), drop = FALSE]
data$interacting_pair <- data_pathway$interacting_pair
score <- data[ , grepl("_score", colnames(data)), drop = FALSE]
colnames(score) <- str_replace(colnames(score), "_score", "")
# 下次 input 改成 pvalue
pvalue <- data[ , grepl("_pvalues", colnames(data)), drop = FALSE]
colnames(pvalue) <- str_replace(colnames(pvalue), "_pvalues", "")
selected_rows = NULL
selected_columns = NULL
intr_pairs = data$interacting_pair
all_pvalue = pvalue
all_score = score
if(is.null(selected_rows)){
selected_rows = intr_pairs
}
if(is.null(selected_columns)){
selected_columns = colnames(all_pvalue)
}
sel_pvalue = all_pvalue
sel_score = all_score
df_names = expand.grid(selected_rows, selected_columns)
pvalue = unlist(sel_pvalue)
pvalue[pvalue == 0] <- 0.0009
head(pvalue)
plot.data = cbind(df_names, pvalue)
pr = unlist(sel_score)
# pr[pr==0] = 0
# pr[pr>0.1] = 0.1
# plot.data = cbind(plot.data,log2(pr))
plot.data = cbind(plot.data, pr)
colnames(plot.data) = c("pair", "clusters", "pvalue", "score")
plot.data$id <- paste(plot.data$clusters, plot.data$pair, sep = "|")
# plot.data
# write.csv(plot.data, file = "2021-01-25_dotplot_data_Abdomen.csv")
# my_palette <- colorRampPalette(c("black", "blue", "yellow", "red"), alpha=TRUE)(n=399)
# my_palette <- wes_palette("Zissou1", 10, type = "continuous")
# my_palette <- c("#A6A6A6", "#C6DBEF", "#9ECAE1", "#6BAED6", "#4292C6", "#2171B5", "#08519C", "#08306B")
# my_palette <- c("lightgrey", "#C6DBEF", "#9ECAE1", "#6BAED6", "#4292C6", "#2171B5", "#08519C", "#08306B")
my_palette <- colorRampPalette(brewer.pal(9, "Blues"))(100)
my_palette_white <- rep("white", 100)
dotplot_data <- plot.data
# print(paste0("input$heatmap2_girafe_selected: is null"))
# dotplot_data <- subset(dotplot_data, clusters == "main segment stellate cell>main segment PC")
# The height of the plot in inches
if(sum(dotplot_data$score) == 0){
temp_plot <- ggplot(dotplot_data, aes(x=clusters, y=pair)) +
geom_point(aes(size=-log10(pvalue), color=score)) +
scale_color_gradientn("score", colors=my_palette_white) +
theme_bw() +
theme(panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
axis.text=element_text(size=14, colour = "black"),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5),
axis.text.y = element_text(size=10, colour = "black"),
axis.title=element_blank())
}else{
temp_plot <- ggplot(dotplot_data, aes(x=clusters, y=pair)) +
geom_point(aes(size=-log10(pvalue), color=score)) +
scale_color_gradientn("score", colors=my_palette) +
theme_bw() +
theme(panel.grid.minor = element_blank(),
panel.grid.major = element_blank(),
axis.text=element_text(size=14, colour = "black"),
axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5),
axis.text.y = element_text(size=10, colour = "black"),
axis.title=element_blank())
}
ggsave(temp_plot, file = paste0(output_dir, "/dotplot/dotplot_", c, "_", p, ".png"), # The directory you want to save the file in
width = 40, # The width of the plot in inches
height = 9)
}
}
####
# circle plot
####
#Simply load the previously calculated interaction list file.
LR_pairs_one <- read.csv("/Users/hassanbukhari/Desktop/OneDrive - Mass General Brigham/Tau P251LKI figures updated-02-27-223/New Seurat Object-2023/FlyPhone DB/2023_2_Hassan_control/interaction_list.csv", row.names = 1, check.names = FALSE)
#The following line is to remove of othe clusters from the final cirle plots.
#LR_pairs_one <- LR_pairs_one[ , -grep("18", colnames(LR_pairs_one))]
#If you desire to change the name of the pathways in interaction score, they can done in the excel sheet and the col names can swaped sith the orginal sheet. It is important to keep in mind that excel can't handle more than 2000 columns as of now. So it makes sense to save interaction list as a new sheet and then change the names within the pathway column to the original sheet.
#LR_pairs_one.colnames <- read.csv("/Users/hassanbukhari/Desktop/OneDrive - Mass General Brigham/Tau P251LKI figures updated-02-27-223/New Seurat Object-2023/FlyPhone DB/All Pathways-Rerun/Controls/Just to change names/interaction_list-row colnames.csv", row.names = 1, check.names = FALSE)
#LR_pairs_one$pathway_receptor <- LR_pairs_one.colnames$pathway_receptor
pvalues <- colnames(LR_pairs_one)[grepl("_pvalues", colnames(LR_pairs_one))]
scores <- colnames(LR_pairs_one)[grepl("_score", colnames(LR_pairs_one))]
# celltypes <- c("0", "2", "4", "5", "6", "10", "11", "8", "9", "13", "16", "17", "15", "7", "3", "12")
celltypes <- sort(unique(cellInfo$celltype))
interaction_pvalues <- LR_pairs_one[ , c("FBgn_secreted", "FBgn_receptor", "pathway_receptor", pvalues)]
interaction_scores <- LR_pairs_one[ , c("FBgn_secreted", "FBgn_receptor", "pathway_receptor", scores)]
#If more pathways need to be calculared then simple expand the given sheet below
#LR_pairs <- read.csv(file = "/Volumes/Macintosh HD/Users/hassanbukhari/Desktop/OneDrive - Mass General Brigham/Manuscript/Code/Flyphone DB/Control/Input/Ligand_receptor_pair_high_confident_2021vs1_clean.txt", sep = "\t")
pathways <- c("EGFR signaling pathway", "PVR RTK signaling pathway", "FGFR signaling pathway", "HEDGEHOG signaling pathway", "HIPPO signaling pathway", "INSULIN signaling pathway", "JAK-STAT signaling pathway", "NOTCH signaling pathway", "TGF beta signaling pathway", "TNF alpha signaling pathway", "WNT signaling pathway", "Toll signaling pathway", "Torso signaling pathway", "G protein-coupled receptor signaling pathway", "neuropeptide signaling pathway", "Ephrin pathway", "axon guidance", "cell migration", "cell-cell signaling", "chemorepulsion of axon", "establishment of planar polarity","establishment of planar polarity and heterophilic cell-cell adhesion via plasma membrane cell adhesion molecules", "homophilic cell adhesion via plasma membrane adhesion molecules", "integrin-mediated signaling pathway", "internal genitalia morphogenesis", "negative regulation of canonical Wnt signaling pathway", "positive regulation of cAMP-mediated signaling", "positive regulation of guanylate cyclase activity", "receptor guanylyl cyclase signaling pathway", "regulation of synaptic plasticity", "smoothened signaling pathway", "substrate adhesion-dependent cell spreading", "synaptic target attraction", "tachykinin receptor signaling pathway", "transmembrane receptor protein tyrosine kinase signaling pathway")
for (pathway in pathways) {
print(pathway)
interaction_pathway_pvalues <- subset(interaction_pvalues, pathway_receptor == pathway)
interaction_pathway_scores <- subset(interaction_scores, pathway_receptor == pathway)
interaction_pathway_pvalues$pathway_receptor <- NULL
interaction_pathway_long_pvalues <- melt(interaction_pathway_pvalues, id.vars = c("FBgn_secreted", "FBgn_receptor"))
interaction_pathway_long_pvalues$variable <- str_replace(interaction_pathway_long_pvalues$variable, "_pvalues", "")
colnames(interaction_pathway_long_pvalues)[4] <- "pvalue"
row.names(interaction_pathway_long_pvalues) <- paste(interaction_pathway_long_pvalues$FBgn_secreted, interaction_pathway_long_pvalues$FBgn_receptor, interaction_pathway_long_pvalues$variable, sep="_")
interaction_pathway_scores$pathway_receptor <- NULL
interaction_pathway_long_scores <- melt(interaction_pathway_scores, id.vars = c("FBgn_secreted", "FBgn_receptor"))
interaction_pathway_long_scores$variable <- str_replace(interaction_pathway_long_scores$variable, "_score", "")
colnames(interaction_pathway_long_scores)[4] <- "score"
row.names(interaction_pathway_long_scores) <- paste(interaction_pathway_long_scores$FBgn_secreted, interaction_pathway_long_scores$FBgn_receptor, interaction_pathway_long_scores$variable, sep="_")
all.equal(row.names(interaction_pathway_long_pvalues), row.names(interaction_pathway_long_scores))
interaction_pathway_long_pvalues$FBgn_secreted <- NULL
interaction_pathway_long_pvalues$FBgn_receptor <- NULL
interaction_pathway_long_pvalues$variable <- NULL
interaction_pathway_long <- cbind(interaction_pathway_long_scores, interaction_pathway_long_pvalues)
# interaction_pathway_filter <- subset(interaction_pathway_long, score >= 0.05 & pvalue <= 0.05)
interaction_pathway_filter <- subset(interaction_pathway_long, pvalue < 0.05)
data <- interaction_pathway_filter
# interaction_TSC1 <- LR_pairs_one[ , c("FBgn_secreted", "FBgn_receptor", "pathway_receptor","0_TSC1>0_TSC1_pvalues", "0_TSC1>1_TSC1_pvalues", "0_TSC1>2_TSC1_pvalues", "1_TSC1>0_TSC1_pvalues", "1_TSC1>1_TSC1_pvalues", "1_TSC1>2_TSC1_pvalues", "2_TSC1>0_TSC1_pvalues", "2_TSC1>1_TSC1_pvalues", "2_TSC1>2_TSC1_pvalues")]
# interaction_TSC1_pathway <- subset(interaction_TSC1, pathway_receptor == "PVR RTK signaling pathway")
#
# interaction_TSC1_pathway$pathway_receptor <- NULL
# interaction_TSC1_pathway_long <- melt(interaction_TSC1_pathway, id.vars = c("FBgn_secreted", "FBgn_receptor"))
# interaction_TSC1_pathway_filter <- subset(interaction_TSC1_pathway_long, value < 0.1)
# data <- interaction_TSC1_pathway_filter
# cell_col<-structure(c("#E5E5AF", "#FF66A1", "#BC85A9", "#E76172", "#CCD7D7",
# "#FFA667", "#BC5DBB", "#76EA8E", "#90559F", "#5F9858",
# "#B494D0", "#D5C766", "#959592", "#7CCFF9", "#AF876D",
# "#F9CCDF", "#939DD1", "#4B5FF5", "#6BAFAE"), names= celltypes)
# qual_col_pals = brewer.pal.info[brewer.pal.info$category == 'qual',]
# col_vector = unlist(mapply(brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals)))
col_vector <- grDevices::colors()[grep('gr(a|e)y', grDevices::colors(), invert = T)]
myColors <- sample(col_vector, length(celltypes))
# myColors <- brewer.pal(length(celltypes), "Set1")
#cell_col <- structure(myColors, names = celltypes)
#Colors of the circle plots can be changed in the following.
#pick col names from https://encycolorpedia.com/named
cell_col<-structure(c("#E5E5AF", "#FF66A1", "#BC85A9", "#E76172", "#48a8a8",
"#FFA667", "#BC5DBB", "#76EA8E", "#90559F", "#5F9858",
"#B494D0", "#D5C766", "#959592", "#7CCFF9", "#AF876D",
"#F9CCDF", "#939DD1", "#1e7042", "#6BAFAE", "#7cb9e8", "#e32636", "#4B5FF5", "#8a0303", "#ff7e00", "#804040", "#b32134", "#c97576", "#cd9575", "#8db600"), names= celltypes)
view( cell_col)
col <- cell_col
label=FALSE
edge.curved=0.5
shape='circle'
layout=in_circle()
vertex.size=20
margin=0.2
vertex.label.cex=0.8
vertex.label.color='black'
arrow.width=3
edge.label.color='black'
edge.label.cex=1
edge.max.width=4
# net <- data %>% group_by(variable) %>% dplyr::summarize(n=n())
net <- data %>% group_by(variable) %>% summarize(mean_score = mean(score))
net <- net %>%
separate(variable, c("sender", "receiver"), ">")
# net$sender <- str_replace(net$sender, "_EGFP", "")
# net$receiver <- str_replace(net$receiver, "_pvalues", "")
empty_celltype <- setdiff(celltypes, unique(c(net$sender, net$receiver)))
for(ct in empty_celltype) {
# print(ct)
line <- c(ct, ct, 0)
# print(line)
net <- rbind(net, line)
}
colnames(net) <- c("sender", "receiver", "n")
net$n <- as.numeric(net$n)
# net$sender <- str_replace(net$sender, "_TSC1", "")
# net$receiver <- str_replace(net$receiver, "_TSC1_pvalues", "")
net<-as.data.frame(net,stringsAsFactors=FALSE)
g<-graph.data.frame(net,directed=TRUE)
x <- get.adjacency(g, attr="n", sparse=FALSE)
x <- x[celltypes, celltypes]
# x[is.na(x)] <- 0
# print(x)
g <- graph_from_adjacency_matrix(x, mode = "directed", weighted = T)
edge.start <- ends(g, es=E(g), names=FALSE)
coords<-layout_(g,layout)
if(nrow(coords)!=1){
coords_scale=scale(coords)
}else{
coords_scale<-coords
}
loop.angle<-ifelse(coords_scale[V(g),1]>0,-atan(coords_scale[V(g),2]/coords_scale[V(g),1]),pi-atan(coords_scale[V(g),2]/coords_scale[V(g),1]))
V(g)$size<-vertex.size
V(g)$color<-col[V(g)]
V(g)$label.color<-vertex.label.color
V(g)$label.cex<-vertex.label.cex
if(label){
E(g)$label<-E(g)$n
}
if(max(E(g)$weight)==min(E(g)$weight)){
E(g)$width<-0.1
}else{
# E(g)$width<-0.1 + edge.max.width/(max(E(g)$weight)-min(E(g)$weight))*(E(g)$weight-min(E(g)$weight))
E(g)$width <- 0.1 + E(g)$weight/max(E(g)$weight)*edge.max.width
}
E(g)$arrow.width<-arrow.width
E(g)$label.color<-edge.label.color
# E(g)$label.cex<-edge.label.cex
E(g)$color<-V(g)$color[edge.start[,1]]
if(sum(edge.start[,2]==edge.start[,1])!=0){
E(g)$loop.angle[which(edge.start[,2]==edge.start[,1])]<-loop.angle[edge.start[which(edge.start[,2]==edge.start[,1]),1]]
}
png(file=paste0(output_dir, "/circleplot/circleplot_", pathway, ".png"),
width = 7,
height = 7,
units = "in",
res = 300,
)
plot(g,edge.curved=0.2,vertex.shape=shape,
layout=coords_scale,margin=margin,edge.arrow.size=0.5, vertex.frame.color="white"
, label=FALSE)
dev.off()
# png(file=paste0(output_dir, "/dotplot/dotplot_", pathway, ".png"), res=300, width = 1000, height = 1000)
# plot(g,edge.curved=0.2,vertex.shape=shape,
# layout=coords_scale,margin=margin,edge.arrow.size=0.5, vertex.frame.color="white"
# , label=FALSE)
# dev.off()
}