forked from khanrc/pt.darts
-
Notifications
You must be signed in to change notification settings - Fork 1
/
augment.py
177 lines (134 loc) · 6.09 KB
/
augment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
""" Training augmented model """
import os
import torch
import torch.nn as nn
import numpy as np
from tensorboardX import SummaryWriter
from config import AugmentConfig
import utils
from models.augment_cnn import AugmentCNN
config = AugmentConfig()
device = torch.device("cuda")
# tensorboard
writer = SummaryWriter(log_dir=os.path.join(config.path, "tb"))
writer.add_text('config', config.as_markdown(), 0)
logger = utils.get_logger(os.path.join(config.path, "{}.log".format(config.name)))
config.print_params(logger.info)
def main():
logger.info("Logger is set - training start")
# set default gpu device id
torch.cuda.set_device(config.gpus[0])
# set seed
np.random.seed(config.seed)
torch.manual_seed(config.seed)
torch.cuda.manual_seed_all(config.seed)
torch.backends.cudnn.benchmark = True
# get data with meta info
input_size, input_channels, n_classes, train_data, valid_data = utils.get_data(
config.dataset, config.data_path, config.cutout_length, validation=True)
criterion = nn.CrossEntropyLoss().to(device)
use_aux = config.aux_weight > 0.
model = AugmentCNN(input_size, input_channels, config.init_channels, n_classes, config.layers,
use_aux, config.genotype)
model = nn.DataParallel(model, device_ids=config.gpus).to(device)
# model size
mb_params = utils.param_size(model)
logger.info("Model size = {:.3f} MB".format(mb_params))
# weights optimizer
optimizer = torch.optim.SGD(model.parameters(), config.lr, momentum=config.momentum,
weight_decay=config.weight_decay)
train_loader = torch.utils.data.DataLoader(train_data,
batch_size=config.batch_size,
shuffle=True,
num_workers=config.workers,
pin_memory=True)
valid_loader = torch.utils.data.DataLoader(valid_data,
batch_size=config.batch_size,
shuffle=False,
num_workers=config.workers,
pin_memory=True)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, config.epochs)
best_top1 = 0.
# training loop
for epoch in range(config.epochs):
lr_scheduler.step()
drop_prob = config.drop_path_prob * epoch / config.epochs
model.module.drop_path_prob(drop_prob)
# training
train(train_loader, model, optimizer, criterion, epoch)
# validation
cur_step = (epoch+1) * len(train_loader)
top1 = validate(valid_loader, model, criterion, epoch, cur_step)
# save
if best_top1 < top1:
best_top1 = top1
is_best = True
else:
is_best = False
utils.save_checkpoint(model, config.path, is_best)
print("")
logger.info("Final best Prec@1 = {:.4%}".format(best_top1))
def train(train_loader, model, optimizer, criterion, epoch):
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
losses = utils.AverageMeter()
cur_step = epoch*len(train_loader)
cur_lr = optimizer.param_groups[0]['lr']
logger.info("Epoch {} LR {}".format(epoch, cur_lr))
writer.add_scalar('train/lr', cur_lr, cur_step)
model.train()
for step, (X, y) in enumerate(train_loader):
X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True)
N = X.size(0)
optimizer.zero_grad()
logits, aux_logits = model(X)
loss = criterion(logits, y)
if config.aux_weight > 0.:
loss += config.aux_weight * criterion(aux_logits, y)
loss.backward()
# gradient clipping
nn.utils.clip_grad_norm_(model.parameters(), config.grad_clip)
optimizer.step()
prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5))
losses.update(loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
if step % config.print_freq == 0 or step == len(train_loader)-1:
logger.info(
"Train: [{:3d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch+1, config.epochs, step, len(train_loader)-1, losses=losses,
top1=top1, top5=top5))
writer.add_scalar('train/loss', loss.item(), cur_step)
writer.add_scalar('train/top1', prec1.item(), cur_step)
writer.add_scalar('train/top5', prec5.item(), cur_step)
cur_step += 1
logger.info("Train: [{:3d}/{}] Final Prec@1 {:.4%}".format(epoch+1, config.epochs, top1.avg))
def validate(valid_loader, model, criterion, epoch, cur_step):
top1 = utils.AverageMeter()
top5 = utils.AverageMeter()
losses = utils.AverageMeter()
model.eval()
with torch.no_grad():
for step, (X, y) in enumerate(valid_loader):
X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True)
N = X.size(0)
logits, _ = model(X)
loss = criterion(logits, y)
prec1, prec5 = utils.accuracy(logits, y, topk=(1, 5))
losses.update(loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
if step % config.print_freq == 0 or step == len(valid_loader)-1:
logger.info(
"Valid: [{:3d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch+1, config.epochs, step, len(valid_loader)-1, losses=losses,
top1=top1, top5=top5))
writer.add_scalar('val/loss', losses.avg, cur_step)
writer.add_scalar('val/top1', top1.avg, cur_step)
writer.add_scalar('val/top5', top5.avg, cur_step)
logger.info("Valid: [{:3d}/{}] Final Prec@1 {:.4%}".format(epoch+1, config.epochs, top1.avg))
return top1.avg
if __name__ == "__main__":
main()