-
Notifications
You must be signed in to change notification settings - Fork 0
/
index.html
59 lines (52 loc) · 3.15 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
<!DOCTYPE html>
<!--
Copyright 2020 Richard Copley
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
-->
<html>
<head>
<meta charset="utf-8"/>
<title>Interactives</title>
<link type="text/css" rel="stylesheet" href="/fonts/fjallaone-regular.css"/>
<link type="text/css" rel="stylesheet" href="/fonts/opensans-regular.css"/>
<link type="text/css" rel="stylesheet" href="style.css"/>
<link rel="shortcut icon" href="/favicon.ico"/>
</head>
<body>
<div class="column">
<h2><a href="uniform-polyhedra/">Uniform polyhedra</a></h2>
<p>The eighteen convex uniform polyhedra.
<p>'Uniform' here means that all the faces are regular polygons and all the vertices are congruent.
<p>The first five are the regular polyhedra, sometimes called the Platonic solids.
The other thirteen are sometimes called the Archimedean solids.
<p>More information:
<a href="https://en.wikipedia.org/wiki/Uniform_polyhedron">Uniform Polyhedron</a> on Wikipedia,
<a href="https://mathworld.wolfram.com/UniformPolyhedron.html">Uniform Polyhedron</a>,
<a href="https://mathworld.wolfram.com/PlatonicSolid.html">Platonic Solid</a>,
<a href="https://mathworld.wolfram.com/ArchimedeanSolid.html">Archimedean Solid</a> on Wolfram MathWorld.
<h2><a href="moebius-triangles/">Möbius triangles</a></h2>
<p>You can tile a sphere exactly with identical copies of a spherical triangle, but only certain triangles work.
Those triangles are called Möbius triangles, after August Ferdinand Möbius (the Möbius Strip guy).
<p>A spherical triangle consists of three points on the surface of a sphere joined by straight lines.
In spherical geometry, the 'straight lines' are arcs of great circles.
<p>More information: <a href="https://en.wikipedia.org/wiki/Schwarz_triangle">Schwarz triangle</a> on Wikipedia,
<a href="https://mathworld.wolfram.com/TriangularSymmetryGroup.html">Triangular Symmetry Group</a> on Wolfram MathWorld.
<h2><a href="dodecahedron/">Dodecahedron trajectory</a></h2>
<p>This one was inspired by a <a href="https://www.youtube.com/watch?v=G9_l8QASobI">video</a> on
the <a href="https://www.youtube.com/channel/UCoxcjq-8xIDTYp3uz647V5A">Numberphile</a> YouTube channel.
<h2><a href="aztec/">Aztec Diamond</a></h2>
<p>Construct a random domino tiling of the Aztec Diamond board, using iterated shuffling.
Inspired by a <a href="https://www.youtube.com/watch?v=Yy7Q8IWNfHM">video</a> on the Mathologer channel.
<h2>Mastodon</h2>
<a rel="me" href="https://mathstodon.xyz/@buster">@buster@mathstodon</a>
</div>
</body>
</html>