diff --git a/dist/pytimetk-0.2.1.9002.tar.gz b/dist/pytimetk-0.2.1.9002.tar.gz
deleted file mode 100644
index c0b8592a..00000000
Binary files a/dist/pytimetk-0.2.1.9002.tar.gz and /dev/null differ
diff --git a/dist/pytimetk-0.2.1.9002-py3-none-any.whl b/dist/pytimetk-0.3.0-py3-none-any.whl
similarity index 99%
rename from dist/pytimetk-0.2.1.9002-py3-none-any.whl
rename to dist/pytimetk-0.3.0-py3-none-any.whl
index 4414e8e0..29ac7d81 100644
Binary files a/dist/pytimetk-0.2.1.9002-py3-none-any.whl and b/dist/pytimetk-0.3.0-py3-none-any.whl differ
diff --git a/dist/pytimetk-0.3.0.tar.gz b/dist/pytimetk-0.3.0.tar.gz
new file mode 100644
index 00000000..834ff515
Binary files /dev/null and b/dist/pytimetk-0.3.0.tar.gz differ
diff --git a/docs/_site/changelog-news.html b/docs/_site/changelog-news.html
index fa67fe3f..44e0ed75 100644
--- a/docs/_site/changelog-news.html
+++ b/docs/_site/changelog-news.html
@@ -332,7 +332,7 @@
On this page
- - pytimetk 0.2.1.9000 (Development Version)
+
- pytimetk 0.3.0
- Correlation Funnel
- Core:
@@ -381,8 +381,8 @@ Changelog for PyTimeTK
-
-pytimetk 0.2.1.9000 (Development Version)
+
+pytimetk 0.3.0
Correlation Funnel
The R package correlationfunnel
has been ported inside pytimetk
:
diff --git a/docs/_site/search.json b/docs/_site/search.json
index 15fefc60..fa7066c6 100644
--- a/docs/_site/search.json
+++ b/docs/_site/search.json
@@ -1642,7 +1642,7 @@
"href": "changelog-news.html",
"title": "Changelog for PyTimeTK",
"section": "",
- "text": "pytimetk 0.2.1.9000 (Development Version)\n\nCorrelation Funnel\nThe R package correlationfunnel has been ported inside pytimetk:\n\nbinarize()\ncorrelate()\nplot_correlation_funnel()\n\n\n\nCore:\n\nfilter_by_time() - Filtering with time-based strings\n\n\n\nFeature Engineering:\n\naugment_diffs() - Can now add differenced columns\naugment_fourier() - Can now add fourier features.\n\n\n\nFinance Module:\n\naugment_cmo(): Chande Momentum Oscillator (CMO)\n\n\n\nNew Polars Backends:\n\naugment_diffs()\naugment_fourier()\naugment_cmo()\n\n\n\nGeneral\n\nMake memory reduction optional #275\n\n\n\n\npytimetk 0.2.1\nBugfix - Issue with augment_rolling(engine='pandas') and augment_expanding(engine='pandas') with concatinating rolled/expanded calc’s to the correct group\n\n\npytimetk 0.2.0\n\nAnomaly Detection\n\nanomalize(): A new scalable function for detecting time series anomalies (outliers)\nplot_anomalies(): A scalable visualization tool for inspecting anomalies in time series data.\nplot_anomalies_decomp: A scalable visualization tool for inspecting the observed, seasonal, trend, and remainder decomposition, which are useful for telling you whether or not anomalies are being detected to your preference.\nplot_anomalies_cleaned(): A scalable visualization tool for showing the before and after transformation for the cleaned vs uncleaned anomalies.\n\n\n\nNew Functions:\n\napply_by_time(): For complex apply-style aggregations by time.\naugment_rolling_apply(): For complex rolling operations using apply-style data frame functions.\n\naugment_expanding(): For expanding calculations with single-column functions (e.g. mean).\naugment_expanding_apply(): For complex expanding operations with apply-style data frame functions.\naugment_hilbert(): Hilbert features for signal processing.\naugment_wavelet(): Wavelet transform features.\nget_frequency(): Infer a pandas-like frequency. More robust than pandas.infer_freq.\nget_seasonal_frequency(): Infer the pandas-like seasonal frequency (periodicity) for the time series.\nget_trend_frequency(): Infer the pandas-like trend for the time series.\n\n\n\nNew Finance Module\nMore coming soon.\n\naugment_ewm(): Exponentially weighted augmentation\n\n\n\nSpeed Improvements\n\nPolars Engines:\n\nsummarize_by_time(): Gains a polars engine.\n\n3X to 10X speed improvements.\n\naugment_lags() and augment_leads(): Gains a polars engine. Speed improvements increase with number of lags/leads.\n\n6.5X speed improvement with 100 lags.\n\naugment_rolling(): Gains a polars engine. 10X speed improvement.\naugment_expanding(): Gains a polars engine.\naugment_timeseries_signature(): Gains a polars engine. 3X speed improvement.\naugment_holiday_signature(): Gains a polars engine.\n\n\n\nParallel Processing and Vectorized Optimizations:\n\npad_by_time(): Complete overhaul. Uses Cartesian Product (Vectorization) to enhance the speed. 1000s of time series can now be padded in seconds.\n\nIndependent review: Time went from over 90 minutes to 13 seconds for a 500X speedup on 10M rows.\n\nfuture_frame(): Complete overhaul. Uses vectorization when possible. Grouped parallel processing. Set threads = -1 to use all cores.\n\nIndependent Review: Time went from 11 minutes to 2.5 minutes for a 4.4X speedup on 10M rows\n\nts_features: Uses concurrent futures to parallelize tasks. Set threads = -1 to use all cores.\nts_summary: Uses concurrent futures to parallelize tasks. Set threads = -1 to use all cores.\nanomalize: Uses concurrent futures to parallelize tasks. Set threads = -1 to use all cores.\naugment_rolling() and augment_rolling_apply(): Uses concurrent futures to parallelize tasks. Set threads = -1 to use all cores.\n\n\n\n\nHelpful Utilities:\n\nparallel_apply: Mimics the pandas apply() function with concurrent futures.\nprogress_apply: Adds a progress bar to pandas apply()\nglimpse(): Mimics tidyverse (tibble) glimpse function\n\n\n\nNew Data Sets:\n\nexpedia: Expedia hotel searches time series data set\n\n\n\n3 New Applied Tutorials:\n\nSales Analysis Tutorial\nFinance Analysis Tutorial\nDemand Forecasting Tutorial\nAnomaly Detection Tutorial\n\n\n\nFinal Deprecations:\n\nsummarize_by_time(): kind = \"period\". This was removed for consistency with pytimetk. “timestamp” is the default.\naugment_rolling(): use_independent_variables. This is replaced by augment_rolling_apply().\n\n\n\n\npytimetk 0.1.0 (2023-10-02)\n\nAbout the Initial release.\nThis release includes the following features:\n\nA workhorse plotting function called plot_timeseries() 💪\nThree (3) data wrangling functions that will simplify 90% of time series tasks 🙏\nFive (5) “augmentor” functions: These add hundreds of features to time series to help in predictive tasks 🧠\nTwo (2) time series feature summarizes: identify key aspects of your time series 🔍\nNine (9) pandas series and DatetimeIndex helpers (work more easily with these timestamp data structures) ⏲\nFour (4) date utility functions that fill in missing function gaps in pandas 🐼\nTwo (2) Visualization utilities to help you customize your visualizations and make them look MORE professional 📈\nTwo (2) Pandas helpers that help clean up and understand pandas data frames with time series 🎇\nTwelve (12) time series datasets that you can practice PyTimeTK time series analysis on 🔢\n\n\n\nThe PyTimeTK website comes with:\n\nTwo (2) Getting started tutorials\nFive (5) Guides covering common tasks\nComing Soon: Applied Tutorials in Sales, Finance, Demand Forecasting, Anomaly Detection, and more."
+ "text": "pytimetk 0.3.0\n\nCorrelation Funnel\nThe R package correlationfunnel has been ported inside pytimetk:\n\nbinarize()\ncorrelate()\nplot_correlation_funnel()\n\n\n\nCore:\n\nfilter_by_time() - Filtering with time-based strings\n\n\n\nFeature Engineering:\n\naugment_diffs() - Can now add differenced columns\naugment_fourier() - Can now add fourier features.\n\n\n\nFinance Module:\n\naugment_cmo(): Chande Momentum Oscillator (CMO)\n\n\n\nNew Polars Backends:\n\naugment_diffs()\naugment_fourier()\naugment_cmo()\n\n\n\nGeneral\n\nMake memory reduction optional #275\n\n\n\n\npytimetk 0.2.1\nBugfix - Issue with augment_rolling(engine='pandas') and augment_expanding(engine='pandas') with concatinating rolled/expanded calc’s to the correct group\n\n\npytimetk 0.2.0\n\nAnomaly Detection\n\nanomalize(): A new scalable function for detecting time series anomalies (outliers)\nplot_anomalies(): A scalable visualization tool for inspecting anomalies in time series data.\nplot_anomalies_decomp: A scalable visualization tool for inspecting the observed, seasonal, trend, and remainder decomposition, which are useful for telling you whether or not anomalies are being detected to your preference.\nplot_anomalies_cleaned(): A scalable visualization tool for showing the before and after transformation for the cleaned vs uncleaned anomalies.\n\n\n\nNew Functions:\n\napply_by_time(): For complex apply-style aggregations by time.\naugment_rolling_apply(): For complex rolling operations using apply-style data frame functions.\n\naugment_expanding(): For expanding calculations with single-column functions (e.g. mean).\naugment_expanding_apply(): For complex expanding operations with apply-style data frame functions.\naugment_hilbert(): Hilbert features for signal processing.\naugment_wavelet(): Wavelet transform features.\nget_frequency(): Infer a pandas-like frequency. More robust than pandas.infer_freq.\nget_seasonal_frequency(): Infer the pandas-like seasonal frequency (periodicity) for the time series.\nget_trend_frequency(): Infer the pandas-like trend for the time series.\n\n\n\nNew Finance Module\nMore coming soon.\n\naugment_ewm(): Exponentially weighted augmentation\n\n\n\nSpeed Improvements\n\nPolars Engines:\n\nsummarize_by_time(): Gains a polars engine.\n\n3X to 10X speed improvements.\n\naugment_lags() and augment_leads(): Gains a polars engine. Speed improvements increase with number of lags/leads.\n\n6.5X speed improvement with 100 lags.\n\naugment_rolling(): Gains a polars engine. 10X speed improvement.\naugment_expanding(): Gains a polars engine.\naugment_timeseries_signature(): Gains a polars engine. 3X speed improvement.\naugment_holiday_signature(): Gains a polars engine.\n\n\n\nParallel Processing and Vectorized Optimizations:\n\npad_by_time(): Complete overhaul. Uses Cartesian Product (Vectorization) to enhance the speed. 1000s of time series can now be padded in seconds.\n\nIndependent review: Time went from over 90 minutes to 13 seconds for a 500X speedup on 10M rows.\n\nfuture_frame(): Complete overhaul. Uses vectorization when possible. Grouped parallel processing. Set threads = -1 to use all cores.\n\nIndependent Review: Time went from 11 minutes to 2.5 minutes for a 4.4X speedup on 10M rows\n\nts_features: Uses concurrent futures to parallelize tasks. Set threads = -1 to use all cores.\nts_summary: Uses concurrent futures to parallelize tasks. Set threads = -1 to use all cores.\nanomalize: Uses concurrent futures to parallelize tasks. Set threads = -1 to use all cores.\naugment_rolling() and augment_rolling_apply(): Uses concurrent futures to parallelize tasks. Set threads = -1 to use all cores.\n\n\n\n\nHelpful Utilities:\n\nparallel_apply: Mimics the pandas apply() function with concurrent futures.\nprogress_apply: Adds a progress bar to pandas apply()\nglimpse(): Mimics tidyverse (tibble) glimpse function\n\n\n\nNew Data Sets:\n\nexpedia: Expedia hotel searches time series data set\n\n\n\n3 New Applied Tutorials:\n\nSales Analysis Tutorial\nFinance Analysis Tutorial\nDemand Forecasting Tutorial\nAnomaly Detection Tutorial\n\n\n\nFinal Deprecations:\n\nsummarize_by_time(): kind = \"period\". This was removed for consistency with pytimetk. “timestamp” is the default.\naugment_rolling(): use_independent_variables. This is replaced by augment_rolling_apply().\n\n\n\n\npytimetk 0.1.0 (2023-10-02)\n\nAbout the Initial release.\nThis release includes the following features:\n\nA workhorse plotting function called plot_timeseries() 💪\nThree (3) data wrangling functions that will simplify 90% of time series tasks 🙏\nFive (5) “augmentor” functions: These add hundreds of features to time series to help in predictive tasks 🧠\nTwo (2) time series feature summarizes: identify key aspects of your time series 🔍\nNine (9) pandas series and DatetimeIndex helpers (work more easily with these timestamp data structures) ⏲\nFour (4) date utility functions that fill in missing function gaps in pandas 🐼\nTwo (2) Visualization utilities to help you customize your visualizations and make them look MORE professional 📈\nTwo (2) Pandas helpers that help clean up and understand pandas data frames with time series 🎇\nTwelve (12) time series datasets that you can practice PyTimeTK time series analysis on 🔢\n\n\n\nThe PyTimeTK website comes with:\n\nTwo (2) Getting started tutorials\nFive (5) Guides covering common tasks\nComing Soon: Applied Tutorials in Sales, Finance, Demand Forecasting, Anomaly Detection, and more."
},
{
"objectID": "reference/plot_timeseries.html",
diff --git a/docs/_site/sitemap.xml b/docs/_site/sitemap.xml
index 49752427..dc7f44d0 100644
--- a/docs/_site/sitemap.xml
+++ b/docs/_site/sitemap.xml
@@ -2,310 +2,310 @@
https://business-science.github.io/pytimetk/reference/ts_features.html
- 2023-12-28T16:39:16.550Z
+ 2024-01-12T19:19:40.007Z
https://business-science.github.io/pytimetk/reference/floor_date.html
- 2023-12-28T16:39:13.817Z
+ 2024-01-12T19:19:35.952Z
https://business-science.github.io/pytimetk/reference/ts_summary.html
- 2023-12-28T16:39:11.603Z
+ 2024-01-12T19:19:32.602Z
https://business-science.github.io/pytimetk/reference/timeseries_unit_frequency_table.html
- 2023-12-28T16:39:09.033Z
+ 2024-01-12T19:19:28.709Z
https://business-science.github.io/pytimetk/reference/transform_columns.html
- 2023-12-28T16:39:07.409Z
+ 2024-01-12T19:19:26.567Z
https://business-science.github.io/pytimetk/reference/plot_anomalies.html
- 2023-12-28T16:39:06.072Z
+ 2024-01-12T19:19:24.826Z
https://business-science.github.io/pytimetk/reference/augment_ewm.html
- 2023-12-28T16:39:03.535Z
+ 2024-01-12T19:19:21.591Z
https://business-science.github.io/pytimetk/reference/make_future_timeseries.html
- 2023-12-28T16:39:01.916Z
+ 2024-01-12T19:19:19.562Z
https://business-science.github.io/pytimetk/reference/load_dataset.html
- 2023-12-28T16:39:00.626Z
+ 2024-01-12T19:19:17.826Z
https://business-science.github.io/pytimetk/reference/binarize.html
- 2023-12-28T16:38:59.317Z
+ 2024-01-12T19:19:16.166Z
https://business-science.github.io/pytimetk/reference/augment_hilbert.html
- 2023-12-28T16:38:57.214Z
+ 2024-01-12T19:19:13.291Z
https://business-science.github.io/pytimetk/reference/theme_timetk.html
- 2023-12-28T16:38:55.281Z
+ 2024-01-12T19:19:10.668Z
https://business-science.github.io/pytimetk/reference/make_weekday_sequence.html
- 2023-12-28T16:38:53.798Z
+ 2024-01-12T19:19:08.603Z
https://business-science.github.io/pytimetk/reference/future_frame.html
- 2023-12-28T16:38:52.543Z
+ 2024-01-12T19:19:06.925Z
https://business-science.github.io/pytimetk/reference/week_of_month.html
- 2023-12-28T16:38:50.054Z
+ 2024-01-12T19:19:03.762Z
https://business-science.github.io/pytimetk/reference/correlate.html
- 2023-12-28T16:38:48.170Z
+ 2024-01-12T19:19:01.364Z
https://business-science.github.io/pytimetk/reference/filter_by_time.html
- 2023-12-28T16:38:46.152Z
+ 2024-01-12T19:18:58.731Z
https://business-science.github.io/pytimetk/reference/summarize_by_time.html
- 2023-12-28T16:38:43.831Z
+ 2024-01-12T19:18:55.875Z
https://business-science.github.io/pytimetk/reference/drop_zero_variance.html
- 2023-12-28T16:38:40.746Z
+ 2024-01-12T19:18:52.260Z
https://business-science.github.io/pytimetk/reference/index.html
- 2023-12-28T16:38:39.117Z
+ 2024-01-12T19:18:50.371Z
https://business-science.github.io/pytimetk/reference/palette_timetk.html
- 2023-12-28T16:38:37.732Z
+ 2024-01-12T19:18:48.800Z
https://business-science.github.io/pytimetk/reference/get_date_summary.html
- 2023-12-28T16:38:36.337Z
+ 2024-01-12T19:18:47.125Z
https://business-science.github.io/pytimetk/reference/is_holiday.html
- 2023-12-28T16:38:34.693Z
+ 2024-01-12T19:18:45.336Z
https://business-science.github.io/pytimetk/reference/get_available_datasets.html
- 2023-12-28T16:38:33.214Z
+ 2024-01-12T19:18:43.638Z
https://business-science.github.io/pytimetk/reference/augment_wavelet.html
- 2023-12-28T16:38:31.619Z
+ 2024-01-12T19:18:41.768Z
https://business-science.github.io/pytimetk/reference/augment_cmo.html
- 2023-12-28T16:38:29.525Z
+ 2024-01-12T19:18:39.428Z
https://business-science.github.io/pytimetk/reference/augment_expanding.html
- 2023-12-28T16:38:26.682Z
+ 2024-01-12T19:18:36.108Z
https://business-science.github.io/pytimetk/reference/ceil_date.html
- 2023-12-28T16:38:24.739Z
+ 2024-01-12T19:18:33.822Z
https://business-science.github.io/pytimetk/reference/augment_rolling_apply.html
- 2023-12-28T16:38:22.995Z
+ 2024-01-12T19:18:31.831Z
https://business-science.github.io/pytimetk/reference/augment_rolling.html
- 2023-12-28T16:38:20.791Z
+ 2024-01-12T19:18:29.335Z
https://business-science.github.io/pytimetk/performance/01_speed_comparisons.html
- 2023-12-28T16:38:18.497Z
+ 2024-01-12T19:18:13.180Z
https://business-science.github.io/pytimetk/tutorials/01_sales_crm.html
- 2023-12-28T16:38:09.789Z
+ 2024-01-12T19:18:03.165Z
https://business-science.github.io/pytimetk/tutorials/05_clustering.html
- 2023-12-28T16:38:02.426Z
+ 2024-01-12T19:17:54.755Z
https://business-science.github.io/pytimetk/tutorials/04_anomaly_detection.html
- 2023-12-28T16:38:00.758Z
+ 2024-01-12T19:17:52.916Z
https://business-science.github.io/pytimetk/guides/04_wrangling.html
- 2023-12-28T16:37:58.794Z
+ 2024-01-12T19:17:50.749Z
https://business-science.github.io/pytimetk/guides/01_visualization.html
- 2023-12-28T16:37:53.677Z
+ 2024-01-12T19:17:44.837Z
https://business-science.github.io/pytimetk/guides/02_timetk_concepts.html
- 2023-12-28T16:37:51.572Z
+ 2024-01-12T19:17:42.360Z
https://business-science.github.io/pytimetk/getting-started/02_quick_start.html
- 2023-12-28T16:37:46.913Z
+ 2024-01-12T19:17:37.171Z
https://business-science.github.io/pytimetk/index.html
- 2023-12-28T16:37:45.074Z
+ 2024-01-12T19:17:35.150Z
https://business-science.github.io/pytimetk/contributing.html
- 2023-12-28T16:37:43.749Z
+ 2024-01-12T19:17:33.714Z
https://business-science.github.io/pytimetk/getting-started/01_installation.html
- 2023-12-28T16:37:45.845Z
+ 2024-01-12T19:17:35.968Z
https://business-science.github.io/pytimetk/guides/03_pandas_frequency.html
- 2023-12-28T16:37:47.836Z
+ 2024-01-12T19:17:38.187Z
https://business-science.github.io/pytimetk/guides/06_anomalize.html
- 2023-12-28T16:37:52.557Z
+ 2024-01-12T19:17:43.493Z
https://business-science.github.io/pytimetk/guides/05_augmenting.html
- 2023-12-28T16:37:56.888Z
+ 2024-01-12T19:17:48.544Z
https://business-science.github.io/pytimetk/tutorials/06_correlationfunnel.html
- 2023-12-28T16:38:01.713Z
+ 2024-01-12T19:17:53.984Z
https://business-science.github.io/pytimetk/tutorials/03_demand_forecasting.html
- 2023-12-28T16:38:05.661Z
+ 2024-01-12T19:17:58.399Z
https://business-science.github.io/pytimetk/tutorials/02_finance.html
- 2023-12-28T16:38:17.409Z
+ 2024-01-12T19:18:11.900Z
https://business-science.github.io/pytimetk/changelog-news.html
- 2023-12-28T16:38:19.379Z
+ 2024-01-12T19:18:27.671Z
https://business-science.github.io/pytimetk/reference/plot_timeseries.html
- 2023-12-28T16:38:22.040Z
+ 2024-01-12T19:18:30.737Z
https://business-science.github.io/pytimetk/reference/augment_diffs.html
- 2023-12-28T16:38:24.027Z
+ 2024-01-12T19:18:32.983Z
https://business-science.github.io/pytimetk/reference/time_scale_template.html
- 2023-12-28T16:38:25.480Z
+ 2024-01-12T19:18:34.663Z
https://business-science.github.io/pytimetk/reference/pad_by_time.html
- 2023-12-28T16:38:28.089Z
+ 2024-01-12T19:18:37.706Z
https://business-science.github.io/pytimetk/reference/plot_anomalies_cleaned.html
- 2023-12-28T16:38:30.501Z
+ 2024-01-12T19:18:40.520Z
https://business-science.github.io/pytimetk/reference/plot_anomaly_decomp.html
- 2023-12-28T16:38:32.543Z
+ 2024-01-12T19:18:42.839Z
https://business-science.github.io/pytimetk/reference/get_seasonal_frequency.html
- 2023-12-28T16:38:33.966Z
+ 2024-01-12T19:18:44.512Z
https://business-science.github.io/pytimetk/reference/plot_correlation_funnel.html
- 2023-12-28T16:38:35.618Z
+ 2024-01-12T19:18:46.327Z
https://business-science.github.io/pytimetk/reference/glimpse.html
- 2023-12-28T16:38:37.053Z
+ 2024-01-12T19:18:47.956Z
https://business-science.github.io/pytimetk/reference/get_pandas_frequency.html
- 2023-12-28T16:38:38.239Z
+ 2024-01-12T19:18:49.370Z
https://business-science.github.io/pytimetk/reference/apply_by_time.html
- 2023-12-28T16:38:40.296Z
+ 2024-01-12T19:18:51.765Z
https://business-science.github.io/pytimetk/reference/plot_anomalies_decomp.html
- 2023-12-28T16:38:41.761Z
+ 2024-01-12T19:18:53.378Z
https://business-science.github.io/pytimetk/reference/parallel_apply.html
- 2023-12-28T16:38:44.791Z
+ 2024-01-12T19:18:57.016Z
https://business-science.github.io/pytimetk/reference/augment_expanding_apply.html
- 2023-12-28T16:38:47.142Z
+ 2024-01-12T19:19:00.032Z
https://business-science.github.io/pytimetk/reference/augment_fourier.html
- 2023-12-28T16:38:49.295Z
+ 2024-01-12T19:19:02.806Z
https://business-science.github.io/pytimetk/reference/get_trend_frequency.html
- 2023-12-28T16:38:50.824Z
+ 2024-01-12T19:19:04.773Z
https://business-science.github.io/pytimetk/reference/get_frequency.html
- 2023-12-28T16:38:53.027Z
+ 2024-01-12T19:19:07.539Z
https://business-science.github.io/pytimetk/reference/flatten_multiindex_column_names.html
- 2023-12-28T16:38:54.508Z
+ 2024-01-12T19:19:09.598Z
https://business-science.github.io/pytimetk/reference/progress_apply.html
- 2023-12-28T16:38:56.019Z
+ 2024-01-12T19:19:11.657Z
https://business-science.github.io/pytimetk/reference/augment_leads.html
- 2023-12-28T16:38:58.448Z
+ 2024-01-12T19:19:14.998Z
https://business-science.github.io/pytimetk/reference/get_frequency_summary.html
- 2023-12-28T16:39:00.087Z
+ 2024-01-12T19:19:17.131Z
https://business-science.github.io/pytimetk/reference/get_diff_summary.html
- 2023-12-28T16:39:01.137Z
+ 2024-01-12T19:19:18.524Z
https://business-science.github.io/pytimetk/reference/make_weekend_sequence.html
- 2023-12-28T16:39:02.666Z
+ 2024-01-12T19:19:20.508Z
https://business-science.github.io/pytimetk/reference/get_holiday_signature.html
- 2023-12-28T16:39:04.878Z
+ 2024-01-12T19:19:23.323Z
https://business-science.github.io/pytimetk/reference/augment_timeseries_signature.html
- 2023-12-28T16:39:06.940Z
+ 2024-01-12T19:19:25.967Z
https://business-science.github.io/pytimetk/reference/get_timeseries_signature.html
- 2023-12-28T16:39:08.256Z
+ 2024-01-12T19:19:27.665Z
https://business-science.github.io/pytimetk/reference/augment_lags.html
- 2023-12-28T16:39:10.262Z
+ 2024-01-12T19:19:30.431Z
https://business-science.github.io/pytimetk/reference/augment_holiday_signature.html
- 2023-12-28T16:39:13.081Z
+ 2024-01-12T19:19:34.892Z
https://business-science.github.io/pytimetk/reference/anomalize.html
- 2023-12-28T16:39:15.625Z
+ 2024-01-12T19:19:38.599Z
diff --git a/docs/changelog-news.qmd b/docs/changelog-news.qmd
index 028e4ad8..18ed011b 100644
--- a/docs/changelog-news.qmd
+++ b/docs/changelog-news.qmd
@@ -6,7 +6,7 @@ toc-depth: 3
number-sections: false
---
-# pytimetk 0.2.1.9000 (Development Version)
+# pytimetk 0.3.0
### Correlation Funnel
diff --git a/pyproject.toml b/pyproject.toml
index c200ed45..adfcba52 100644
--- a/pyproject.toml
+++ b/pyproject.toml
@@ -1,6 +1,6 @@
[tool.poetry]
name = "pytimetk"
-version = "0.2.1.9002"
+version = "0.3.0"
description = "The time series toolkit for Python."
authors = [
"Business Science ",