diff --git a/README.md b/README.md index 1dc9c115..ae70b89b 100644 --- a/README.md +++ b/README.md @@ -234,6 +234,7 @@ $ ninja // - conv2d-nchw-fchw-benchmark // - matmul-benchmark ``` +OpenMP is required in matmul-benchmark, make sure `libomp` and `libompl-dev` (on Ubuntu and Debian) / `libomp-devel` (on Redhat and SUSE) have been installed. Run TVM operation optimization benchmark cases. - Install TVM ([steps](./thirdparty/README.md#tvm)). diff --git a/benchmarks/OpOptimization/MatMul/BatchMatMulBroadcast.mlir b/benchmarks/OpOptimization/MatMul/BatchMatMulBroadcast.mlir index 708e9d0d..6d6de890 100644 --- a/benchmarks/OpOptimization/MatMul/BatchMatMulBroadcast.mlir +++ b/benchmarks/OpOptimization/MatMul/BatchMatMulBroadcast.mlir @@ -1,6 +1,10 @@ // The MLIR prototype of batchmatmul-optimize in buddy-opt. #map = affine_map<(d0) -> (d0 ceildiv STEP_PLACEHOLDER)> +#tail_len_map = affine_map<(d0) -> (d0 mod STEP_PLACEHOLDER)> +#if_set = affine_set<(d0)[s0] : (s0 - d0 * STEP_PLACEHOLDER >= STEP_PLACEHOLDER)> +#b_col_idx_tail_map = affine_map<(d0) -> (d0 * STEP_PLACEHOLDER)> + func.func @batch_matmul_broadcast_STEP_PLACEHOLDER(%a : memref, %b : memref, %c : memref) { %c0 = arith.constant 0 : index %c1 = arith.constant 1 : index @@ -15,32 +19,27 @@ func.func @batch_matmul_broadcast_STEP_PLACEHOLDER(%a : memref, %b : %b_col = memref.dim %b, %c2 : memref %batch = memref.dim %a, %c0 : memref + %tail_len = affine.apply #tail_len_map(%b_col) + %mask_vec = vector.create_mask %tail_len : vector + affine.parallel (%batch_idx) = (0) to (%batch){ // Affine.parallel can be lowered to the omp dialect, which enables batch-level parallelization. affine.prefetch %a[%batch_idx, %a_row, %a_col], read, locality<3>, data : memref // Explicitly prefetch, about 5% faster on X86. affine.for %b_row_idx = 0 to %b_row { + affine.for %b_col_idx = 0 to #map(%b_col) { + %b_vec = affine.vector_load %b[%batch_idx, %b_row_idx, %b_col_idx * STEP_PLACEHOLDER] : memref, vector + %b_col_idx_tail = affine.apply #b_col_idx_tail_map(%b_col_idx) affine.for %a_row_idx = 0 to %a_row { - affine.for %b_col_idx = 0 to #map(%b_col) { - %a_ele = affine.load %a[%batch_idx, %a_row_idx, %b_row_idx] : memref - %a_vec = vector.broadcast %a_ele : f32 to vector - // Check tail. - %b_col_cur = arith.muli %b_col_idx, %step : index - %tail_len = arith.subi %b_col, %b_col_cur : index - %tail_flag = arith.cmpi sge, %tail_len, %step : index - scf.if %tail_flag { - %b_vec = affine.vector_load %b[%batch_idx, %b_row_idx, %b_col_idx * STEP_PLACEHOLDER] : memref, vector - %c_vec = affine.vector_load %c[%batch_idx, %a_row_idx, %b_col_idx * STEP_PLACEHOLDER] : memref, vector - %result_vec = vector.fma %a_vec, %b_vec, %c_vec : vector - affine.vector_store %result_vec, %c[%batch_idx, %a_row_idx, %b_col_idx * STEP_PLACEHOLDER] : memref, vector - } else { - %mask_vec = vector.create_mask %tail_len : vector - %b_col_idx_tail = arith.muli %b_col_idx, %step : index - %b_vec_tail = vector.maskedload %b[%batch_idx, %b_row_idx, %b_col_idx_tail], %mask_vec, %c0_f32_vec : memref, vector, vector into vector - %c_vec_tail = vector.maskedload %c[%batch_idx, %a_row_idx, %b_col_idx_tail], %mask_vec, %c0_f32_vec : memref, vector, vector into vector - %result_vec_tail = vector.fma %a_vec, %b_vec_tail, %c_vec_tail : vector - vector.maskedstore %c[%batch_idx, %a_row_idx, %b_col_idx_tail], %mask_vec, %result_vec_tail : memref, vector, vector - } - } + %a_ele = affine.load %a[%batch_idx, %a_row_idx, %b_row_idx] : memref + %a_vec = vector.broadcast %a_ele : f32 to vector + %c_vec = affine.vector_load %c[%batch_idx, %a_row_idx, %b_col_idx * STEP_PLACEHOLDER] : memref, vector + %result_vec = vector.fma %a_vec, %b_vec, %c_vec : vector + affine.if #if_set(%b_col_idx)[%b_col] { + affine.vector_store %result_vec, %c[%batch_idx, %a_row_idx, %b_col_idx * STEP_PLACEHOLDER] : memref, vector + } else { + vector.maskedstore %c[%batch_idx, %a_row_idx, %b_col_idx_tail], %mask_vec, %result_vec : memref, vector, vector + } } + } } } return diff --git a/benchmarks/OpOptimization/MatMul/CMakeLists.txt b/benchmarks/OpOptimization/MatMul/CMakeLists.txt index 5107a391..8787b762 100644 --- a/benchmarks/OpOptimization/MatMul/CMakeLists.txt +++ b/benchmarks/OpOptimization/MatMul/CMakeLists.txt @@ -125,6 +125,7 @@ function(build_batch_matmul_broadcast step) ${BUDDY_MLIR_BUILD_DIR}/bin/buddy-opt -batchmatmul-optimize="step-placeholder=${step}" -expand-strided-metadata + -affine-super-vectorize -lower-affine -convert-vector-to-llvm -finalize-memref-to-llvm @@ -144,12 +145,46 @@ endfunction() build_batch_matmul_broadcast(64) +# It might be better to use libomp and clang combination for MLIR omp dialect. +find_program(CLANGPP clang++) +if(CLANGPP) + set(CMAKE_CXX_COMPILER "${CLANGPP}") +endif() + +function(build_batch_matmul_broadcast_omp step) + add_custom_command(OUTPUT batch-matmul-broadcast-${step}-omp.o + COMMAND cat ${BUDDY_SOURCE_DIR}/benchmarks/OpOptimization/MatMul/BatchMatMulBroadcast.mlir | + sed 's/batch_matmul_broadcast_STEP_PLACEHOLDER/batch_matmul_broadcast_STEP_PLACEHOLDER_omp/g' | + sed 's/STEP_PLACEHOLDER/${step}/g' | + ${BUDDY_MLIR_BUILD_DIR}/bin/buddy-opt + -expand-strided-metadata + -affine-super-vectorize + -lower-affine + -convert-scf-to-openmp + -convert-vector-to-llvm + -finalize-memref-to-llvm + -convert-scf-to-cf + -convert-linalg-to-llvm + -llvm-request-c-wrappers + -convert-openmp-to-llvm + -convert-func-to-llvm + -reconcile-unrealized-casts | + ${LLVM_MLIR_BINARY_DIR}/mlir-translate --mlir-to-llvmir | + ${CMAKE_CXX_COMPILER} -c -x ir -O3 --target=${BUDDY_OPT_TRIPLE} -fopenmp -march=native -flto + -o ${BUDDY_BINARY_DIR}/../benchmarks/OpOptimization/MatMul/batch-matmul-broadcast-${step}-omp.o - + ) + add_library(BatchMatMulBroadcast${step}OMP STATIC batch-matmul-broadcast-${step}-omp.o) + set_target_properties(BatchMatMulBroadcast${step}OMP PROPERTIES LINKER_LANGUAGE CXX) +endfunction() + +build_batch_matmul_broadcast_omp(64) + add_executable(matmul-benchmark Main.cpp MatMulBenchmark.cpp ) -set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=native") +set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -march=native -fopenmp -flto") target_link_libraries(matmul-benchmark GoogleBenchmark @@ -163,4 +198,5 @@ target_link_libraries(matmul-benchmark MatMulScalar BatchMatMulScalar BatchMatMulBroadcast64 + BatchMatMulBroadcast64OMP ) diff --git a/benchmarks/OpOptimization/MatMul/MatMulBenchmark.cpp b/benchmarks/OpOptimization/MatMul/MatMulBenchmark.cpp index 9a798a6f..274f691e 100644 --- a/benchmarks/OpOptimization/MatMul/MatMulBenchmark.cpp +++ b/benchmarks/OpOptimization/MatMul/MatMulBenchmark.cpp @@ -28,10 +28,10 @@ #define M 64 #define N 3136 #define K 576 -#define BATCH_M 16 +#define BATCH_M 128 #define BATCH_N 784 -#define BATCH_K 144 -#define BATCH 64 +#define BATCH_K 72 +#define BATCH 16 // Helper functions and variables. namespace { @@ -72,6 +72,9 @@ void _mlir_ciface_batch_matmul_scalar(MemRef *A, MemRef *B, void _mlir_ciface_batch_matmul_broadcast_64(MemRef *A, MemRef *B, MemRef *C); +void _mlir_ciface_batch_matmul_broadcast_64_omp(MemRef *A, + MemRef *B, + MemRef *C); } #define DEFINE_MATMUL_BENCHMARK(name, func) \ @@ -115,6 +118,8 @@ DEFINE_MATMUL_BENCHMARK(SCALAR, _mlir_ciface_matmul_scalar) DEFINE_BATCH_MATMUL_BENCHMARK(SCALAR, _mlir_ciface_batch_matmul_scalar) DEFINE_BATCH_MATMUL_BENCHMARK(BROADCAST_64, _mlir_ciface_batch_matmul_broadcast_64) +DEFINE_BATCH_MATMUL_BENCHMARK(BROADCAST_64_OMP, + _mlir_ciface_batch_matmul_broadcast_64_omp) } // namespace // Register benchmark cases. @@ -129,6 +134,7 @@ BENCHMARK(BM_MATMUL_BROADCAST_256)->Unit(benchmark::kMillisecond); BENCHMARK(BM_MATMUL_BROADCAST_256)->Unit(benchmark::kMillisecond); BENCHMARK(BM_BATCH_MATMUL_SCALAR)->Unit(benchmark::kMillisecond); BENCHMARK(BM_BATCH_MATMUL_BROADCAST_64)->Unit(benchmark::kMillisecond); +BENCHMARK(BM_BATCH_MATMUL_BROADCAST_64_OMP)->Unit(benchmark::kMillisecond); // Correctness Verification // The verification does not affect the performance. @@ -237,7 +243,6 @@ void matmul_verification() { ? PASS : FAIL) << std::endl; - std::cout << "-----------------------------------------------------------" << std::endl; } @@ -274,23 +279,35 @@ void batch_matmul_verification() { const int outputSize = BATCH * (BATCH_M) * (BATCH_N); MemRef outputScalar(sizesC, 0); MemRef outputBroadcast64(sizesC, 0); + MemRef outputBroadcast64OMP(sizesC, 0); // Perform all the matmul implementation. _mlir_ciface_batch_matmul_scalar(&inputAMemRef, &inputBMemRef, &outputScalar); _mlir_ciface_batch_matmul_broadcast_64(&inputAMemRef, &inputBMemRef, &outputBroadcast64); + _mlir_ciface_batch_matmul_broadcast_64_omp(&inputAMemRef, &inputBMemRef, + &outputBroadcast64OMP); // Get the result array. auto resultScalar = outputScalar.getData(); - auto resultBroadcast16 = outputBroadcast64.getData(); + auto resultBroadcast64 = outputBroadcast64.getData(); + auto resultBroadcast64OMP = outputBroadcast64OMP.getData(); // Print the verfication result. std::cout << "Batch Matmul Broadcast 64 case: " - << (areArraysEqual(resultScalar, resultBroadcast16, + << (areArraysEqual(resultScalar, resultBroadcast64, + outputSize / BATCH) + ? PASS + : FAIL) + << std::endl; + + std::cout << "Batch Matmul Broadcast 64 OpenMP case: " + << (areArraysEqual(resultScalar, resultBroadcast64OMP, outputSize / BATCH) ? PASS : FAIL) << std::endl; + std::cout << "-----------------------------------------------------------" << std::endl; }