diff --git a/lab1.ipynb b/lab1.ipynb index feed683..04d436f 100644 --- a/lab1.ipynb +++ b/lab1.ipynb @@ -8,17 +8,60 @@ "# Working with Text" ] }, + { + "cell_type": "markdown", + "id": "f406dce4", + "metadata": {}, + "source": [ + "The current notebook covers:\n", + "- Preparing text for large language model training\n", + "- Splitting text into word and subword tokens\n", + "- Byte pair encoding as a more advanced way of tokenizing text\n", + "- Sampling training examples with a sliding window approach\n", + "- Converting tokens into vectors that feed into a large language model" + ] + }, { "cell_type": "markdown", "id": "76d5d2c0-cba8-404e-9bf3-71a218cae3cf", "metadata": {}, "source": [ - "Packages that are being used in this notebook:" + "In this lab, we are going to use Pytorch 2.0.1. and tiktoken 0.7.0." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "4067b90c", + "metadata": {}, + "outputs": [], + "source": [ + "## only if you don't already have pytorch installed\n", + "%pip install torch==2.0.1" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "03291e46", + "metadata": {}, + "outputs": [], + "source": [ + "## only if you don't already have pytorch installed\n", + "%pip install tiktoken==0.7.0" + ] + }, + { + "cell_type": "markdown", + "id": "e71bfe2c", + "metadata": {}, + "source": [ + "Let's check and see if we have the correct versions installed." ] }, { "cell_type": "code", - "execution_count": 1, + "execution_count": 27, "id": "4d1305cf-12d5-46fe-a2c9-36fb71c5b3d3", "metadata": {}, "outputs": [ @@ -26,8 +69,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "torch version: 2.2.2\n", - "tiktoken version: 0.8.0\n" + "torch version: 2.0.1\n", + "tiktoken version: 0.7.0\n" ] } ], @@ -43,7 +86,7 @@ "id": "5a42fbfd-e3c2-43c2-bc12-f5f870a0b10a", "metadata": {}, "source": [ - "- This chapter covers data preparation and sampling to get input data \"ready\" for the LLM" + "#### This lab covers data preparation and sampling to get input data \"ready\" for the LLM" ] }, { @@ -51,7 +94,7 @@ "id": "628b2922-594d-4ff9-bd82-04f1ebdf41f5", "metadata": {}, "source": [ - "" + "" ] }, { @@ -62,20 +105,15 @@ "## 2.1 Understanding word embeddings" ] }, - { - "cell_type": "markdown", - "id": "0b6816ae-e927-43a9-b4dd-e47a9b0e1cf6", - "metadata": {}, - "source": [ - "- No code in this section" - ] - }, { "cell_type": "markdown", "id": "4f69dab7-a433-427a-9e5b-b981062d6296", "metadata": {}, "source": [ - "- There are many forms of embeddings; we focus on text embeddings in this book" + "Deep neural network models, including LLMs, cannot process raw text\n", + "directly. Since text is categorical, it isn't compatible with the mathematical\n", + "operations used to implement and train neural networks. Therefore, we need a\n", + "way to represent words as continuous-valued vectors." ] }, { @@ -83,7 +121,7 @@ "id": "ba08d16f-f237-4166-bf89-0e9fe703e7b4", "metadata": {}, "source": [ - "" + "" ] }, { @@ -100,7 +138,7 @@ "id": "d6b80160-1f10-4aad-a85e-9c79444de9e6", "metadata": {}, "source": [ - "" + "" ] }, { @@ -124,7 +162,7 @@ "id": "09872fdb-9d4e-40c4-949d-52a01a43ec4b", "metadata": {}, "source": [ - "" + "" ] }, { @@ -138,7 +176,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 28, "id": "40f9d9b1-6d32-485a-825a-a95392a86d79", "metadata": {}, "outputs": [], @@ -156,7 +194,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 29, "id": "8a769e87-470a-48b9-8bdb-12841b416198", "metadata": {}, "outputs": [ @@ -165,7 +203,7 @@ "output_type": "stream", "text": [ "Total number of character: 20479\n", - "I HAD always thought Jack Gisburn rather a cheap genius--though a good fellow enough--so it was no \n" + "I HAD always thought Jack Gisburn rather a cheap genius--though a good fellow enough--so it was no g\n" ] } ], @@ -174,7 +212,7 @@ " raw_text = f.read()\n", " \n", "print(\"Total number of character:\", len(raw_text))\n", - "print(raw_text[:99])" + "print(raw_text[:100])" ] }, { @@ -189,7 +227,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 30, "id": "737dd5b0-9dbb-4a97-9ae4-3482c8c04be7", "metadata": {}, "outputs": [ @@ -220,7 +258,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 31, "id": "ea02489d-01f9-4247-b7dd-a0d63f62ef07", "metadata": {}, "outputs": [ @@ -248,7 +286,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 32, "id": "4d8a6fb7-2e62-4a12-ad06-ccb04f25fed7", "metadata": {}, "outputs": [ @@ -276,7 +314,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 33, "id": "ed3a9467-04b4-49d9-96c5-b8042bcf8374", "metadata": {}, "outputs": [ @@ -309,12 +347,12 @@ "id": "6cbe9330-b587-4262-be9f-497a84ec0e8a", "metadata": {}, "source": [ - "" + "" ] }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 34, "id": "8c567caa-8ff5-49a8-a5cc-d365b0a78a99", "metadata": {}, "outputs": [ @@ -342,7 +380,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 35, "id": "35db7b5e-510b-4c45-995f-f5ad64a8e19c", "metadata": {}, "outputs": [ @@ -379,7 +417,7 @@ "id": "177b041d-f739-43b8-bd81-0443ae3a7f8d", "metadata": {}, "source": [ - "" + "" ] }, { @@ -392,7 +430,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 36, "id": "7fdf0533-5ab6-42a5-83fa-a3b045de6396", "metadata": {}, "outputs": [ @@ -413,7 +451,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": 37, "id": "77d00d96-881f-4691-bb03-84fec2a75a26", "metadata": {}, "outputs": [], @@ -431,7 +469,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 38, "id": "e1c5de4a-aa4e-4aec-b532-10bb364039d6", "metadata": {}, "outputs": [ @@ -513,7 +551,7 @@ "id": "67407a9f-0202-4e7c-9ed7-1b3154191ebc", "metadata": {}, "source": [ - "" + "" ] }, { @@ -526,7 +564,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": 39, "id": "f531bf46-7c25-4ef8-bff8-0d27518676d5", "metadata": {}, "outputs": [], @@ -566,7 +604,7 @@ "id": "cc21d347-ec03-4823-b3d4-9d686e495617", "metadata": {}, "source": [ - "" + "" ] }, { @@ -580,7 +618,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": 40, "id": "647364ec-7995-4654-9b4a-7607ccf5f1e4", "metadata": {}, "outputs": [ @@ -611,7 +649,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 41, "id": "01d8c8fb-432d-4a49-b332-99f23b233746", "metadata": {}, "outputs": [ @@ -621,7 +659,7 @@ "'\" It\\' s the last he painted, you know,\" Mrs. Gisburn said with pardonable pride.'" ] }, - "execution_count": 15, + "execution_count": 41, "metadata": {}, "output_type": "execute_result" } @@ -632,7 +670,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": 42, "id": "54f6aa8b-9827-412e-9035-e827296ab0fe", "metadata": {}, "outputs": [ @@ -642,7 +680,7 @@ "'\" It\\' s the last he painted, you know,\" Mrs. Gisburn said with pardonable pride.'" ] }, - "execution_count": 16, + "execution_count": 42, "metadata": {}, "output_type": "execute_result" } @@ -672,7 +710,7 @@ "id": "aa7fc96c-e1fd-44fb-b7f5-229d7c7922a4", "metadata": {}, "source": [ - "" + "" ] }, { @@ -707,7 +745,7 @@ "id": "52442951-752c-4855-9752-b121a17fef55", "metadata": {}, "source": [ - "" + "" ] }, { @@ -720,7 +758,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": 43, "id": "d5767eff-440c-4de1-9289-f789349d6b85", "metadata": {}, "outputs": [ @@ -731,8 +769,9 @@ "traceback": [ "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[0;31mKeyError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[17], line 5\u001b[0m\n\u001b[1;32m 1\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m SimpleTokenizerV1(vocab)\n\u001b[1;32m 3\u001b[0m text \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHello, do you like tea. Is this-- a test?\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m----> 5\u001b[0m \u001b[43mtokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencode\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtext\u001b[49m\u001b[43m)\u001b[49m\n", - "Cell \u001b[0;32mIn[13], line 12\u001b[0m, in \u001b[0;36mSimpleTokenizerV1.encode\u001b[0;34m(self, text)\u001b[0m\n\u001b[1;32m 7\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m re\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m([,.:;?_!\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m()\u001b[39m\u001b[38;5;130;01m\\'\u001b[39;00m\u001b[38;5;124m]|--|\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124ms)\u001b[39m\u001b[38;5;124m'\u001b[39m, text)\n\u001b[1;32m 9\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 10\u001b[0m item\u001b[38;5;241m.\u001b[39mstrip() \u001b[38;5;28;01mfor\u001b[39;00m item \u001b[38;5;129;01min\u001b[39;00m preprocessed \u001b[38;5;28;01mif\u001b[39;00m item\u001b[38;5;241m.\u001b[39mstrip()\n\u001b[1;32m 11\u001b[0m ]\n\u001b[0;32m---> 12\u001b[0m ids \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstr_to_int\u001b[49m\u001b[43m[\u001b[49m\u001b[43ms\u001b[49m\u001b[43m]\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m s \u001b[38;5;129;01min\u001b[39;00m preprocessed]\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ids\n", + "Cell \u001b[0;32mIn[43], line 5\u001b[0m\n\u001b[1;32m 1\u001b[0m tokenizer \u001b[38;5;241m=\u001b[39m SimpleTokenizerV1(vocab)\n\u001b[1;32m 3\u001b[0m text \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mHello, do you like tea. Is this-- a test?\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m----> 5\u001b[0m \u001b[43mtokenizer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencode\u001b[49m\u001b[43m(\u001b[49m\u001b[43mtext\u001b[49m\u001b[43m)\u001b[49m\n", + "Cell \u001b[0;32mIn[39], line 12\u001b[0m, in \u001b[0;36mSimpleTokenizerV1.encode\u001b[0;34m(self, text)\u001b[0m\n\u001b[1;32m 7\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m re\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m([,.:;?_!\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m()\u001b[39m\u001b[38;5;130;01m\\'\u001b[39;00m\u001b[38;5;124m]|--|\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124ms)\u001b[39m\u001b[38;5;124m'\u001b[39m, text)\n\u001b[1;32m 9\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 10\u001b[0m item\u001b[38;5;241m.\u001b[39mstrip() \u001b[38;5;28;01mfor\u001b[39;00m item \u001b[38;5;129;01min\u001b[39;00m preprocessed \u001b[38;5;28;01mif\u001b[39;00m item\u001b[38;5;241m.\u001b[39mstrip()\n\u001b[1;32m 11\u001b[0m ]\n\u001b[0;32m---> 12\u001b[0m ids \u001b[38;5;241m=\u001b[39m \u001b[43m[\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstr_to_int\u001b[49m\u001b[43m[\u001b[49m\u001b[43ms\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43ms\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mpreprocessed\u001b[49m\u001b[43m]\u001b[49m\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ids\n", + "Cell \u001b[0;32mIn[39], line 12\u001b[0m, in \u001b[0;36m\u001b[0;34m(.0)\u001b[0m\n\u001b[1;32m 7\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m re\u001b[38;5;241m.\u001b[39msplit(\u001b[38;5;124mr\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m([,.:;?_!\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m()\u001b[39m\u001b[38;5;130;01m\\'\u001b[39;00m\u001b[38;5;124m]|--|\u001b[39m\u001b[38;5;124m\\\u001b[39m\u001b[38;5;124ms)\u001b[39m\u001b[38;5;124m'\u001b[39m, text)\n\u001b[1;32m 9\u001b[0m preprocessed \u001b[38;5;241m=\u001b[39m [\n\u001b[1;32m 10\u001b[0m item\u001b[38;5;241m.\u001b[39mstrip() \u001b[38;5;28;01mfor\u001b[39;00m item \u001b[38;5;129;01min\u001b[39;00m preprocessed \u001b[38;5;28;01mif\u001b[39;00m item\u001b[38;5;241m.\u001b[39mstrip()\n\u001b[1;32m 11\u001b[0m ]\n\u001b[0;32m---> 12\u001b[0m ids \u001b[38;5;241m=\u001b[39m [\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mstr_to_int\u001b[49m\u001b[43m[\u001b[49m\u001b[43ms\u001b[49m\u001b[43m]\u001b[49m \u001b[38;5;28;01mfor\u001b[39;00m s \u001b[38;5;129;01min\u001b[39;00m preprocessed]\n\u001b[1;32m 13\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m ids\n", "\u001b[0;31mKeyError\u001b[0m: 'Hello'" ] } @@ -757,7 +796,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": 44, "id": "ce9df29c-6c5b-43f1-8c1a-c7f7b79db78f", "metadata": {}, "outputs": [], @@ -770,7 +809,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": 45, "id": "57c3143b-e860-4d3b-a22a-de22b547a6a9", "metadata": {}, "outputs": [ @@ -780,7 +819,7 @@ "1132" ] }, - "execution_count": 19, + "execution_count": 45, "metadata": {}, "output_type": "execute_result" } @@ -791,7 +830,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": 46, "id": "50e51bb1-ae05-4aa8-a9ff-455b65ed1959", "metadata": {}, "outputs": [ @@ -822,7 +861,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": 47, "id": "948861c5-3f30-4712-a234-725f20d26f68", "metadata": {}, "outputs": [], @@ -860,7 +899,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 48, "id": "4133c502-18ac-4412-9f43-01caf4efa3dc", "metadata": {}, "outputs": [ @@ -885,7 +924,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 49, "id": "7ed395fe-dc1b-4ed2-b85b-457cc35aab60", "metadata": {}, "outputs": [ @@ -895,7 +934,7 @@ "[1131, 5, 355, 1126, 628, 975, 10, 1130, 55, 988, 956, 984, 722, 988, 1131, 7]" ] }, - "execution_count": 23, + "execution_count": 49, "metadata": {}, "output_type": "execute_result" } @@ -906,7 +945,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 50, "id": "059367f9-7a60-4c0d-8a00-7c4c766d0ebc", "metadata": {}, "outputs": [ @@ -916,7 +955,7 @@ "'<|unk|>, do you like tea? <|endoftext|> In the sunlit terraces of the <|unk|>.'" ] }, - "execution_count": 24, + "execution_count": 50, "metadata": {}, "output_type": "execute_result" } @@ -939,47 +978,29 @@ "metadata": {}, "source": [ "- GPT-2 used BytePair encoding (BPE) as its tokenizer\n", - "- it allows the model to break down words that aren't in its predefined vocabulary into smaller subword units or even individual characters, enabling it to handle out-of-vocabulary words\n", + "\n", + "- It allows the model to break down words that aren't in its predefined vocabulary into smaller subword units or even individual characters, enabling it to handle out-of-vocabulary words\n", + "\n", "- For instance, if GPT-2's vocabulary doesn't have the word \"unfamiliarword,\" it might tokenize it as [\"unfam\", \"iliar\", \"word\"] or some other subword breakdown, depending on its trained BPE merges\n", + "\n", "- The original BPE tokenizer can be found here: [https://github.com/openai/gpt-2/blob/master/src/encoder.py](https://github.com/openai/gpt-2/blob/master/src/encoder.py)\n", - "- In this chapter, we are using the BPE tokenizer from OpenAI's open-source [tiktoken](https://github.com/openai/tiktoken) library, which implements its core algorithms in Rust to improve computational performance\n", - "- I created a notebook in the [./bytepair_encoder](../02_bonus_bytepair-encoder) that compares these two implementations side-by-side (tiktoken was about 5x faster on the sample text)" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "id": "ede1d41f-934b-4bf4-8184-54394a257a94", - "metadata": {}, - "outputs": [], - "source": [ - "# pip install tiktoken" + "\n", + "- In this chapter, we are using the BPE tokenizer from OpenAI's open-source [tiktoken](https://github.com/openai/tiktoken) library, which implements its core algorithms in Rust to improve computational performance\n" ] }, { "cell_type": "code", - "execution_count": 26, + "execution_count": 51, "id": "48967a77-7d17-42bf-9e92-fc619d63a59e", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "tiktoken version: 0.8.0\n" - ] - } - ], + "outputs": [], "source": [ - "import importlib\n", - "import tiktoken\n", - "\n", - "print(\"tiktoken version:\", importlib.metadata.version(\"tiktoken\"))" + "import tiktoken" ] }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 52, "id": "6ad3312f-a5f7-4efc-9d7d-8ea09d7b5128", "metadata": {}, "outputs": [], @@ -989,7 +1010,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 53, "id": "5ff2cd85-7cfb-4325-b390-219938589428", "metadata": {}, "outputs": [ @@ -1014,7 +1035,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 54, "id": "d26a48bb-f82e-41a8-a955-a1c9cf9d50ab", "metadata": {}, "outputs": [ @@ -1045,7 +1066,7 @@ "id": "c082d41f-33d7-4827-97d8-993d5a84bb3c", "metadata": {}, "source": [ - "" + "" ] }, { @@ -1069,12 +1090,12 @@ "id": "39fb44f4-0c43-4a6a-9c2f-9cf31452354c", "metadata": {}, "source": [ - "" + "" ] }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 55, "id": "848d5ade-fd1f-46c3-9e31-1426e315c71b", "metadata": {}, "outputs": [ @@ -1105,7 +1126,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 56, "id": "e84424a7-646d-45b6-99e3-80d15fb761f2", "metadata": {}, "outputs": [], @@ -1115,7 +1136,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": 57, "id": "dfbff852-a92f-48c8-a46d-143a0f109f40", "metadata": {}, "outputs": [ @@ -1148,7 +1169,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 58, "id": "d97b031e-ed55-409d-95f2-aeb38c6fe366", "metadata": {}, "outputs": [ @@ -1173,7 +1194,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 59, "id": "f57bd746-dcbf-4433-8e24-ee213a8c34a1", "metadata": {}, "outputs": [ @@ -1210,26 +1231,17 @@ "id": "a1a1b47a-f646-49d1-bc70-fddf2c840796", "metadata": {}, "source": [ - "- Install and import PyTorch (see Appendix A for installation tips)" + "Importing PyTorch (see [Pytorch Tutorial](https://github.com/bucuram/llms-and-cognition-labs/blob/main/pytorch-tutorial.ipynb) for a brief introduction to Pytorch)" ] }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 60, "id": "e1770134-e7f3-4725-a679-e04c3be48cac", "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "PyTorch version: 2.2.2\n" - ] - } - ], + "outputs": [], "source": [ - "import torch\n", - "print(\"PyTorch version:\", torch.__version__)" + "import torch" ] }, { @@ -1239,7 +1251,7 @@ "source": [ "- We use a sliding window approach, changing the position by +1:\n", "\n", - "" + "" ] }, { @@ -1252,7 +1264,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 61, "id": "74b41073-4c9f-46e2-a1bd-d38e4122b375", "metadata": {}, "outputs": [], @@ -1284,7 +1296,7 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 62, "id": "5eb30ebe-97b3-43c5-9ff1-a97d621b3c4e", "metadata": {}, "outputs": [], @@ -1321,7 +1333,7 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 63, "id": "df31d96c-6bfd-4564-a956-6192242d7579", "metadata": {}, "outputs": [], @@ -1332,7 +1344,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 79, "id": "9226d00c-ad9a-4949-a6e4-9afccfc7214f", "metadata": {}, "outputs": [ @@ -1356,7 +1368,7 @@ }, { "cell_type": "code", - "execution_count": 40, + "execution_count": 65, "id": "10deb4bc-4de1-4d20-921e-4b1c7a0e1a6d", "metadata": {}, "outputs": [ @@ -1386,7 +1398,7 @@ "id": "9cb467e0-bdcd-4dda-b9b0-a738c5d33ac3", "metadata": {}, "source": [ - "" + "" ] }, { @@ -1400,7 +1412,7 @@ }, { "cell_type": "code", - "execution_count": 41, + "execution_count": 66, "id": "1916e7a6-f03d-4f09-91a6-d0bdbac5a58c", "metadata": {}, "outputs": [ @@ -1462,7 +1474,7 @@ "id": "e85089aa-8671-4e5f-a2b3-ef252004ee4c", "metadata": {}, "source": [ - "" + "" ] }, { @@ -1475,7 +1487,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 67, "id": "15a6304c-9474-4470-b85d-3991a49fa653", "metadata": {}, "outputs": [], @@ -1493,7 +1505,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 68, "id": "93cb2cee-9aa6-4bb8-8977-c65661d16eda", "metadata": {}, "outputs": [], @@ -1515,7 +1527,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 69, "id": "a686eb61-e737-4351-8f1c-222913d47468", "metadata": {}, "outputs": [ @@ -1542,7 +1554,8 @@ "id": "26fcf4f5-0801-4eb4-bb90-acce87935ac7", "metadata": {}, "source": [ - "- For those who are familiar with one-hot encoding, the embedding layer approach above is essentially just a more efficient way of implementing one-hot encoding followed by matrix multiplication in a fully-connected layer, which is described in the supplementary code in [./embedding_vs_matmul](../03_bonus_embedding-vs-matmul)\n", + "- For those who are familiar with one-hot encoding, the embedding layer approach above is essentially just a more efficient way of implementing one-hot encoding followed by matrix multiplication in a fully-connected layer\n", + "\n", "- Because the embedding layer is just a more efficient implementation that is equivalent to the one-hot encoding and matrix-multiplication approach it can be seen as a neural network layer that can be optimized via backpropagation" ] }, @@ -1556,7 +1569,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 70, "id": "e43600ba-f287-4746-8ddf-d0f71a9023ca", "metadata": {}, "outputs": [ @@ -1583,7 +1596,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 71, "id": "50280ead-0363-44c8-8c35-bb885d92c8b7", "metadata": {}, "outputs": [ @@ -1615,15 +1628,7 @@ "id": "f33c2741-bf1b-4c60-b7fd-61409d556646", "metadata": {}, "source": [ - "" - ] - }, - { - "cell_type": "markdown", - "id": "08218d9f-aa1a-4afb-a105-72ff96a54e73", - "metadata": {}, - "source": [ - "- **You may be interested in the bonus content comparing embedding layers with regular linear layers: [../03_bonus_embedding-vs-matmul](../03_bonus_embedding-vs-matmul)**" + "" ] }, { @@ -1647,7 +1652,7 @@ "id": "9e0b14a2-f3f3-490e-b513-f262dbcf94fa", "metadata": {}, "source": [ - "" + "" ] }, { @@ -1663,7 +1668,7 @@ "id": "48de37db-d54d-45c4-ab3e-88c0783ad2e4", "metadata": {}, "source": [ - "" + "" ] }, { @@ -1677,7 +1682,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 72, "id": "0b9e344d-03a6-4f2c-b723-67b6a20c5041", "metadata": {}, "outputs": [], @@ -1699,7 +1704,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 73, "id": "ad56a263-3d2e-4d91-98bf-d0b68d3c7fc3", "metadata": {}, "outputs": [], @@ -1715,7 +1720,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 74, "id": "84416b60-3707-4370-bcbc-da0b62f2b64d", "metadata": {}, "outputs": [ @@ -1745,7 +1750,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 75, "id": "7766ec38-30d0-4128-8c31-f49f063c43d1", "metadata": {}, "outputs": [ @@ -1772,7 +1777,7 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 76, "id": "cc048e20-7ac8-417e-81f5-8fe6f9a4fe07", "metadata": {}, "outputs": [], @@ -1783,7 +1788,7 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 77, "id": "c369a1e7-d566-4b53-b398-d6adafb44105", "metadata": {}, "outputs": [ @@ -1810,7 +1815,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 78, "id": "b22fab89-526e-43c8-9035-5b7018e34288", "metadata": {}, "outputs": [ @@ -1841,7 +1846,7 @@ "id": "d1bb0f7e-460d-44db-b366-096adcd84fff", "metadata": {}, "source": [ - "" + "" ] }, { @@ -1849,35 +1854,43 @@ "id": "3bb15086-7c69-4bcc-b3a0-5ef47a369825", "metadata": {}, "source": [ - "# EXERCISES" + "## Assignment" ] }, { - "cell_type": "code", - "execution_count": null, - "id": "fea50faa-d2b4-4abb-80e4-067fc631a69f", + "cell_type": "markdown", + "id": "a0b8e47b", "metadata": {}, - "outputs": [], - "source": [] + "source": [ + "To be uploaded here: https://forms.gle/iT1EebtnMA6cZjfr6\n", + "\n", + "**Deadline**: October 31th, 2024" + ] }, { - "attachments": { - "9c654054-8276-401e-84e2-4bb3f4b87c51.png": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAGeCAYAAADMnM/vAAAKrGlDQ1BJQ0MgUHJvZmlsZQAASImVlwdQk9kWx+/3pYeElhABKaE3QToBpITQAihIBxshCRBKiCFBRWzI4gqsKCoiqAi6KqLgWgBZK6LYFgELWDfIoqCsiwVRUHkfMAR337z35p2ZM/eXk3P/99w7986cDwCyMkckSoWVAUgTSsShfl706JhYOq4fEAANKAIIOHK4GSJmSEgQQGx6/Lt9fIDkIXbXckLr3///r6bC42dwAYBCEI7nZXDTED6N+CuuSCwBALUfiRuskIgmuAVhqhgpEOHuCU6c4sEJjp9kNJjMCQ9lIUwFAE/icMSJAJDoSJyeyU1EdEieCFsLeQIhwiKE3dPS0nkIn0DYFMlBYqQJfUb8dzqJf9OMl2tyOIlyntrLpOG9BRmiVM6q//M4/relpUqn1zBGnJQk9g9FRlXkzLpT0gPlLIxfEDzNAt5k/iQnSf0jppmbwYqdZh7HO1A+N3VB0DQnCHzZch0JO3ya+Rk+YdMsTg+Vr5UgZjGnmSOeWVeaEiGPJ/HZcv2spPCoac4URC6Y5oyUsMCZHJY8LpaGyuvnC/28Ztb1le89LeO7/QrY8rmSpHB/+d45M/XzhcwZzYxoeW08vrfPTE6EPF8k8ZKvJUoNkefzU/3k8YzMMPlcCXIhZ+aGyM8wmRMQMs2ABdJBKuJiQAdByC9vACT8lZKJjbDSRavEgsQkCZ2JvDA+nS3kWs2h21rb2gMw8V6nrsN72uQ7hGg3Z2IbiQC4CcfHx8/NxAJHATitBwBRNhMz6QRAEbn317dxpeLMqdjkW8IAIlACVKABdIABMAWWwBY4AlfgCXxAAAgG4SAGLAVckATSkMpXgGywAeSBArAV7ARloAIcAEfAcXASNIBz4DK4Bm6BdnAfPAYy0AdegyHwEYxBEISDyBAF0oB0ISPIArKFGJA75AMFQaFQDBQHJUJCSAplQxuhAqgYKoMqoWroF+gsdBm6AXVAD6EeaAB6B43CKJgEU2Ft2BieCzNgJhwIh8NL4ER4OZwF58Jb4FK4Cj4G18OX4VvwfVgGv4aHUQClgKKh9FCWKAaKhQpGxaISUGLUWlQ+qgRVhapFNaFaUXdRMtQg6jMai6ag6WhLtCvaHx2B5qKXo9eiC9Fl6CPoenQL+i66Bz2E/oYhY7QwFhgXDBsTjUnErMDkYUowhzBnMFcx9zF9mI9YLJaGNcE6Yf2xMdhk7GpsIXYvtg57CduB7cUO43A4DZwFzg0XjOPgJLg83G7cMdxFXCeuD/cJr4DXxdviffGxeCE+B1+CP4q/gO/Ev8SPEZQJRgQXQjCBR1hFKCIcJDQR7hD6CGNEFaIJ0Y0YTkwmbiCWEmuJV4lPiO8VFBT0FZwVFioIFNYrlCqcULiu0KPwmaRKMiexSItJUtIW0mHSJdJD0nsymWxM9iTHkiXkLeRq8hXyM/InRYqilSJbkae4TrFcsV6xU/GNEkHJSImptFQpS6lE6ZTSHaVBZYKysTJLmaO8Vrlc+axyl/KwCkXFRiVYJU2lUOWoyg2VflWcqrGqjypPNVf1gOoV1V4KimJAYVG4lI2Ug5SrlD4qlmpCZVOTqQXU49Q26pCaqpq9WqTaSrVytfNqMhqKZkxj01JpRbSTtAe00Vnas5iz+LM2z6qd1TlrRH22uqc6Xz1fvU79vvqoBl3DRyNFY5tGg8ZTTbSmueZCzRWa+zSvag7Ops52nc2dnT/75OxHWrCWuVao1mqtA1q3tYa1dbT9tEXau7WvaA/q0HQ8dZJ1duhc0BnQpei66wp0d+he1H1FV6Mz6an0UnoLfUhPS89fT6pXqdemN6Zvoh+hn6Nfp//UgGjAMEgw2GHQbDBkqGs43zDbsMbwkRHBiGGUZLTLqNVoxNjEOMp4k3GDcb+JugnbJMukxuSJKdnUw3S5aZXpPTOsGcMsxWyvWbs5bO5gnmRebn7HArZwtBBY7LXomIOZ4zxHOKdqTpclyZJpmWlZY9ljRbMKssqxarB6M9dwbuzcbXNb536zdrBOtT5o/dhG1SbAJsemyeadrbkt17bc9p4d2c7Xbp1do91bewt7vv0++24HisN8h00OzQ5fHZ0cxY61jgNOhk5xTnucuhhURgijkHHdGePs5bzO+ZzzZxdHF4nLSZe/XC1dU1yPuvbPM5nHn3dwXq+bvhvHrdJN5k53j3Pf7y7z0PPgeFR5PPc08OR5HvJ8yTRjJjOPMd94WXuJvc54jbBcWGtYl7xR3n7e+d5tPqo+ET5lPs989X0TfWt8h/wc/Fb7XfLH+Af6b/PvYmuzuexq9lCAU8CagJZAUmBYYFng8yDzIHFQ03x4fsD87fOfLDBaIFzQEAyC2cHbg5+GmIQsD/l1IXZhyMLyhS9CbUKzQ1vDKGHLwo6GfQz3Ci8KfxxhGiGNaI5UilwcWR05EuUdVRwli54bvSb6VoxmjCCmMRYXGxl7KHZ4kc+inYv6Fjsszlv8YInJkpVLbizVXJq69PwypWWcZafiMHFRcUfjvnCCOVWc4Xh2/J74IS6Lu4v7mufJ28Eb4Lvxi/kvE9wSihP6E90StycOJHkklSQNCliCMsHbZP/kiuSRlOCUwynjqVGpdWn4tLi0s0JVYYqwJV0nfWV6h8hClCeSLXdZvnP5kDhQfCgDyliS0SihIo3Rbamp9AdpT6Z7ZnnmpxWRK06tVFkpXHl7lfmqzateZvlm/bwavZq7ujlbL3tDds8a5prKtdDa+LXN6wzW5a7rW++3/sgG4oaUDb/lWOcU53zYGLWxKVc7d31u7w9+P9TkKeaJ87o2uW6q+BH9o+DHts12m3dv/pbPy79ZYF1QUvClkFt48yebn0p/Gt+SsKWtyLFo31bsVuHWB9s8th0pVinOKu7dPn97/Q76jvwdH3Yu23mjxL6kYhdxl3SXrDSotHG34e6tu7+UJZXdL/cqr9ujtWfznpG9vL2d+zz31VZoVxRUjO4X7O+u9KusrzKuKjmAPZB54MXByIOtPzN+rj6keajg0NfDwsOyI6FHWqqdqquPah0tqoFrpDUDxxYfaz/ufbyx1rK2so5WV3ACnJCeePVL3C8PTgaebD7FOFV72uj0njOUM/n1UP2q+qGGpAZZY0xjx9mAs81Nrk1nfrX69fA5vXPl59XOF10gXsi9MH4x6+LwJdGlwcuJl3ublzU/vhJ95V7Lwpa2q4FXr1/zvXalldl68brb9XM3XG6cvcm42XDL8Vb9bYfbZ35z+O1Mm2Nb/R2nO43tzu1NHfM6LnR6dF6+63332j32vVv3F9zveBDxoLtrcZesm9fd/zD14dtHmY/GHq9/gnmS/1T5ackzrWdVv5v9XidzlJ3v8e65/Tzs+eNebu/rPzL++NKX+4L8ouSl7svqftv+cwO+A+2vFr3qey16PTaY96fKn3vemL45/ZfnX7eHoof63orfjr8rfK/x/vAH+w/NwyHDzz6mfRwbyf+k8enIZ8bn1tGo0ZdjK77gvpR+Nfva9C3w25PxtPFxEUfMmWwFUIjDCQkAvDsMADkGAEo70j8smuqnJw2a+gaYJPCfeKrnnjRHAGqRYaItYl0C4ATixusRbcQnWqJwTwDb2cl9uved7NMnDIt8sey3nqBO3bpo8A+b6uG/q/ufI5hQtQf/HP8FRLEGw2jWimcAAACKZVhJZk1NACoAAAAIAAQBGgAFAAAAAQAAAD4BGwAFAAAAAQAAAEYBKAADAAAAAQACAACHaQAEAAAAAQAAAE4AAAAAAAAAkAAAAAEAAACQAAAAAQADkoYABwAAABIAAAB4oAIABAAAAAEAAAOEoAMABAAAAAEAAAGeAAAAAEFTQ0lJAAAAU2NyZWVuc2hvdEXlOCIAAAAJcEhZcwAAFiUAABYlAUlSJPAAAAHWaVRYdFhNTDpjb20uYWRvYmUueG1wAAAAAAA8eDp4bXBtZXRhIHhtbG5zOng9ImFkb2JlOm5zOm1ldGEvIiB4OnhtcHRrPSJYTVAgQ29yZSA2LjAuMCI+CiAgIDxyZGY6UkRGIHhtbG5zOnJkZj0iaHR0cDovL3d3dy53My5vcmcvMTk5OS8wMi8yMi1yZGYtc3ludGF4LW5zIyI+CiAgICAgIDxyZGY6RGVzY3JpcHRpb24gcmRmOmFib3V0PSIiCiAgICAgICAgICAgIHhtbG5zOmV4aWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20vZXhpZi8xLjAvIj4KICAgICAgICAgPGV4aWY6UGl4ZWxZRGltZW5zaW9uPjQxNDwvZXhpZjpQaXhlbFlEaW1lbnNpb24+CiAgICAgICAgIDxleGlmOlBpeGVsWERpbWVuc2lvbj45MDA8L2V4aWY6UGl4ZWxYRGltZW5zaW9uPgogICAgICAgICA8ZXhpZjpVc2VyQ29tbWVudD5TY3JlZW5zaG90PC9leGlmOlVzZXJDb21tZW50PgogICAgICA8L3JkZjpEZXNjcmlwdGlvbj4KICAgPC9yZGY6UkRGPgo8L3g6eG1wbWV0YT4KL3wkDgAAABxpRE9UAAAAAgAAAAAAAADPAAAAKAAAAM8AAADPAADUgWmVKuIAAEAASURBVHgB7J0HnBVF1sULEDEHUFQwYMKAWdec9RNMu2ta85oFdc0Zw5pzFtQ1Y8665ow55xwZEypgRgkK1Hf/973bNCODrKQ3zKn59XS/6qpbt051V9fpe6u6WbaQFISAEBACQkAICAEhIASEgBAQAkKgySHQTISwybW5KiwEhIAQEAJCQAgIASEgBISAEHAERAh1IQgBISAEhIAQEAJCQAgIASEgBJooAiKETbThVW0hIASEgBAQAkJACAgBISAEhIAIoa4BISAEhIAQEAJCQAgIASEgBIRAE0VAhLCJNryqLQSEgBAQAkJACAgBISAEhIAQECHUNSAEhIAQEAJCQAgIASEgBISAEGiiCIgQNtGGV7WFgBAQAkJACAgBISAEhIAQEAIihLoGhIAQEAJCQAgIASEgBISAEBACTRQBEcIm2vCqthAQAkJACAgBISAEhIAQEAJCQIRQ14AQEAJCQAgIASEgBISAEBACQqCJIiBC2EQbXtUWAkJACAgBISAEhIAQEAJCQAiIEOoaEAJCQAgIASEgBISAEBACQkAINFEERAibaMOr2kJACAgBISAEhIAQEAJCQAgIARFCXQNCQAgIASEgBISAEBACQkAICIEmioAIYRNteFVbCAgBISAEhIAQEAJCQAgIASEgQqhrQAgIASEgBISAEBACQkAICAEh0EQRECFsog2vagsBISAEhIAQEAJCQAgIASEgBEQIdQ0IASEgBISAEBACQkAICAEhIASaKAIihE204VVtISAEhIAQEAJCQAgIASEgBISACKGuASEgBISAEBACQkAICAEhIASEQBNFQISwiTa8qi0EhIAQEAJCQAgIASEgBISAEBAh1DUgBISAEBACQkAICAEhIASEgBBoogiIEDbRhle1hYAQEAJCQAgIASEgBISAEBACIoS6BoSAEBACQkAICAEhIASEgBAQAk0UARHCJtrwqrYQEAJCQAgIASEgBISAEBACQkCEUNeAEGiiCIzII9KIETkNG/ZbyrZPzSpANGtWPbCf2aIJLVq0SC2nmCKVz1XOjP5/towuZRRZFlf97efteMSIEal58+ajF9JAbOQtTqNkqZwivnpQP3393/XTx29Px496Osf5+vuxkmu6Dhk61HCtADv11FNXQB6N/g3Ks7zkro9lfX0a+l1f7vDhw9MXX3yRZptttjRVq1a/r+/v8LU6DBlSXBtTTdXKdKm0YX3ZDemgeCEgBISAEBACQqB2EBAhrJ22kCZCYKIhAKEYNmxYuvrqq9N555+XZpxhxvT999+nKYz0tbIB/s8Df04tp2yZWrZsmQYPGpw22GCDdNihh6aZZpppFBIXhC6IAHtCkBX/UfoH+YBcRuB3EELyFPlJ8AdELMoMWTCUIErZiGazIJrleDsO3aIs9qFDyBqBXqYn9QtiG/kiTXkfurAvywt8SItO199wQzr99NMdg+WXXz6dccYZaZppphlZ73p19vItbnRlj1KWlQte5fJGp1/Ehb6//PJL2mOPPdLzzz+fFlpooXTVVVd5G0c635vsEVWMKvKbpd122zW9/PLLrle3bt3SzjvvOkq7jpJfP4SAEBACQkAICIGaRkCEsKabR8oJgQmDAIRgmJGe0087LR1xxBFeCKQoSIaTKUsDwWpuRGPzzTdPF110UZppxhlHEq2SauQjBHEJwhFJysSmfG6oWcsG/vRTmtGIJmTUZfi/EjmskiSiy3L4TYBoQYaibIghv0Mn0nCuXK4TRuSyWSifC1JVn7ySJtKRixqHXDsxCi6jEFIKqIaTTz65wPsvf/lLuuOOO9Lss89eyPE6UI6lL+pTzRtlxz5ksieOEHmoA3EtrE0hc+gbBNnzVxKnBx98MG3y97+71ZKoo48+Oh111FFOkEmHnB9//DFNO+20qRXWQwvgsthii6b33vvA0qV00EEHp1NPOfV3Ons5VXw9o/4JASEgBISAEBACNYmACGFNNouUEgITHgEshOeff37qfvjhacopp3RS8Ouvvxp5MPJkf24tNBJAOgghaWeeeWZXjMF+OQQRCRJQ3/IXJCvOQ5ggpDeYxeyFF15Ihx12WGrfvr2TGNKExa5IXy2vXA7lx28IWZAo8pRleNlV8hfyCt2RWyItkRe5ThVt73kqhXm2kFG/Tpwsx/GbtEG0kXmaEfBDzdLK8VprrZWuu+661LZtW/9N3qhP5AsZ5fg4jnPsy3GhA/Hg4iHqUW//1FNPpfXXXz8NGjTIkjUzi+Xp6YADDkhhIX322Wfdarjvvvu6BRFZpF133XXSc2ZVBKODDj4onXryqY4jetTHizwKQkAICAEhIASEQO0iIEJYu20jzYTABEOAQTvh888/Tx98gKWneXr88cfTueeemwYOHOjntt1227Tddtv58SyzzJI6derkJJG0ZQKCLCcBRgYKQmDHhIgvpyGedA8++FDaeuut0iKLLOLEaM455yzkRr6yvIgr75FFcH2o01iUC0kKGaTnmFDE+a+KzLD0xbmCbFXLKuKrLqbxuz4h9niTe5q5i2KRhWSvueaa6Zprrknt5pij0NvrUdUFNYIkEh/niCcgk0B8lBv6lfORxuMjnbVfpIPc9erVy0nfMsssk44//viC9HNtbLnlluYyPChda8R10UUXRVQaPHhwWnXVVdJrr71m5aZ0xJHd0wnHn+jn+Bd1r69vkUAHQkAICAEhIASEQE0hIEJYU80hZYTAREaAET28wsjCPXffnbp12yP1/bKvzQdrno7o3j0dfnj31GrqqQqlIDK//fabD/p9oRmbY4gl0S1+dm64WbkIkAGsjuwhHWElY0/6t99+O+2www7pjTfeSCutuFK6steVyQmh5XXXRMtHqE96iMOKCenAitXCZFFOkNRID+EhDYufoDNlsoALcyKDPCGHc+TFtZI5g7+aCyt1oG7hIkl6LxM5lh8ZuNHigkkZyIhyKYe0kOrpp5/edXN8TAZYMH8QayhhzSohxGU0wlDTFxdP5JIPHdAvQhC5qAO/Kc+ZmclHN+pCk4Zu5AcjAnGkRxc2yiCOLX5PYXX/8quv3FJ40003pY4dO6bbbrstdejQwdOTbvXVV3fLLjIPNgvhiSee5HJpE3AJ7MrzRUmrIASEgBAQAkJACNQeAiKEtdcm0kgITBwEYA0VNogJKf33zv+mrl27pf4D+vvAv/thh6fDuh+epppqauMbI9LX/fqlW2+9Nb3//vupf//+qU2bNmnZZZdNG264oS+Mcsstt6Q333zTiQXEZM8990xYFi+44IL0lREMimIu2kYbb+SLqdx+++1ORGaddda0xRZb2AqXU6VOi3VKW221VWWhFdMJchFWOkhLXV1dohx0+MnmHkKmFlhggbT22msXFsxvvvkmPffcc+mll15KH330kVu0ZphhhrTgggumf26/fWpvlkgIFfP3nnzySSNQLdJcc8+V5p133vTII4+kr7/+Os0z99ypi7lSsvALsu699163ps5h1rwuXbqYy+S6TrI+NvnXXHutL8jDgjvt2rVLb7/1Vvqib1/HZ4UVVkibbbZZmtHmXhKCEFL+/637f+mKK69wV1lI5SeffJJuvvnm9PHHH6cffvghzTXXXGndddZJa1ndILMQsQhBCFkIyK26hgXN+Y9//CNRJiT88ssvT3369PF6d+3a1UkuBBw31d9+/S1NP8P0Xpd77rknDRk8xMh1C28H8GSxG9xbIY8zGLHdZNNNvT5zGy7bbLON53v11VddnYMOPDCtsuqqBXa0OYsQrWO6+yqqobT2QkAICAEhIASEQG0iYAMLBSEgBJoaAva9CSNatlnF2YaPyLfecktu13b2bLQjT9G8RT7qiCPzkEGD/dwndXXZ3EezrYgJ78j2mQHbmvlvs3jl7777LpvrYTYimM0i5WlsgZJspC+bpczTkr5z587ZXFGzWaxcBrLK20YbbZS//fZbbw2zfpmK6IiCOX/22WfZrIrZrFpehtm4XK5ZofKuu+6ajQhmI1bZ5sBlI26FHshHJ/J179492yIpLs/m8rkO6GXEJRu5zMgiLXELL7xwPvXUU7MRRf9dqXezvPjii2eb9+gyHn3kkdx21rZeB+oOPpEfGdT92GOPzbZ4jtflpJNOMnybeXojTNncMl3Oiy++mI18joIf+Y1g5ssuu8zTOBZ+NPKfWUCzEUAvk3KpO+leeeWVbFY6L8sse46dWXazLQzkdaUuXTp3yY88/LD/pj1pEyPJ+ZJLLslGoEepR7SRWQbzhx9+6GVGHFjbPEjHiLqhh70oyEbIRyqqIyEgBISAEBACQqBmEeBNuYIQEAJNEQF4Vmm767935vZztHNCOLWRieOPOTYP/uWXPNxI1vnnne9kCRJgVqJsVjwnEPyGEDz22GPZ3CTz9ttt78QAUgDBWmyxxex3hSAu1LFjfuaZZ/KBBxzohALCQ36zKGWzYGWIpVm1slm3vDXKBAiid6fpF2QQ8gShM4uYlwfR/KJKruaff34nJegJgYEQUQ46LbXUUvndd991+QcddNAopGeqqaYq5JM+9IPoQa4giyHnlFNOcfL5zNNPZ7PkFfHIoHzyRn5I4l133eVlmoWwSLvKKqtks5w6md5kk00K+cstt5zXi3Ipr521iVkNC3JsltJR8LHFfoq2WHnllV1mjx49PG/owW+z6joZj3rsvffe2SycBclHzxtvvDHffPNNeYMNupg+lXab0cihWXCdTCOnX79+eY011hiljsi0bxgWZBesIcKhqyusf0JACAgBISAEhEBNIiBCWJPNIqWEwERAwK1vVg6kEAvhrbfm2cxCyGDe5qEVFsIfvv8+r2JEI6yC9lkCJ397dOtWkAJbKMUH/+ZymTsuuGARH8QKogSJguxhqbLVLL0czkMu+vbtW5CHIIKQwDgGjUsvvdTlksfcMJ3YYZmEZNpct/yTWf4gIOaumE888cRs7qvZPrhuZZ1RkB771l5+/fXX3eoIoaSuyDOXznzeeedlcyF1whtkDgIKiXv4oYfdYgjx4Zx9e891gwiHZXG6aafNZ555Zja3TLeWutXMLGbkAR/qjtU0MDE3VydXD5uVztxmXa6t4poff+zxbAu3ZCyI6MeGlbCMBXjEb1sp1HUgHbpglV1vvc6eL+oB4cRihzWR8invvvvuy+ZSW1gDaaM7LC8Y3nvv3RY/nemUsi024+m8PLtm7NuFeemll3Z9kY8V1NxQ8wMPPFB9AVAhw7vusquTZnRVEAJCQAgIASEgBGoXARHC2m0baSYEJigCQSgohGMIIYSCQT4k5sgjj3QSA1mDQAR5sjlkTp5s7mBBCnbccUfX1eb15UMOPriID0IC6QsrF+6TxxxzjKeBnECM6urqPD96xEZE+fjqq68uLGFYz5YxUoKONpfNiQdEhg2XRogibpMQKeRD7CgrCCFyca+kTui46qqr5i+//NJ12GGHHQvdbGVNJ78QtK233trjyYPrKjIgkO3bzenx8803X37iiSc8/nsrH9fYcKHcasst3UIHUQ0cbR5i/mbAACePWCCJhxDi1nrOOeeMYkW11T9dN+pXDvymfdbvsr7XDzm0D9bRqBv1xgqLRRQXVH5D8iDLtAlEFj3Je/tttzuWt956S552WnMPNkK49DJLGbl+w4ulzhBCXEKjbXfccadsi/Fk2t4+T+LxnLMVSkUIy42lYyEgBISAEBACNYqACGGNNozUEgITA4Ey4brzzjsLwgCBOu6449xS9aLNl2OOHaSBgX5LO8d8syBZxK255ppOFJCHBQ6rURAS9sxdw+JHwELIXDqskJCTFVdcMddVCWG5zmEhRCbEh/l2uC4iD8JKXnTAZdVWwXS55IcM2gfg3XUTPUlPWvRkPiBEkYCLKnFskFvyUdYhhxxS6I5bJ2VDCA82ohty/vnPf2ZbUTM/bS6j4ZJqq6Tmhx56yPUopycPhJg6YiWlPOIghJ9+8knu2bNnYcHkHGSXLepIHATUFppxvYs2M10J4HmazXUkD2mpM8fUG4IZZLN169aOF+dOOOEErxOEkPmCke+///2vtdNv9nLgZiOEU5uMZnnRTgvn19943bGhPAghrqnkoQyIJhhBCCHZgREEOtqcfApCQAgIASEgBIRAbSIgQlib7SKthMAERaAgFdVS+G2rd/oCKRC1cHOE2LCACu6EDPTZdt55Z7cm4iaIqyaWu0cfeTTbipROAK644oqC9EAaIJJYECFcBNJBNjmHPFtt08kSOtQP9fW0bybmffbZJ2ONg9gE+bCPvGdbpdMXjIGsQRQhRrhKQuRiMRzcWe37eU5uDj2k4jKKfrigxmI2++23X0F+11l7HcyUbill7qPXx/SmPujWu3fvwt0TnfgNOYI0IScws4+/575mkYMIQ6KQg86UiTUQXUkLgWMhG9qC+Xw33HBDvvLKK90N1fEJjGJfBQwiGsQuCDB1xoLayaycgTV7cKNNkQeesegPcwCxEkPisBCSH5fRxRdfzMo3N1sL5LHvEvpczKgb5JLAYj3MBY2ytthicxFCR0b/hIAQEAJCQAjUNgIihLXdPtJOCExQBIJksIcMYG1jriCEirmCzHvDtRDrUgz0DzzwwMzqlp7XtGMPySPgrrneeusVhCoIG6QD4og1i7Rl10kWennnnXd8Jc4+ffp4mcjCAge5inLQo86sbBBL3ETtsxYFUZ1v3vl8jtyFF15YEEX0YNEWrF7MEYT42acnPC8ysWZRJ7a//vWv7r5JuRXLYYW0MY+PAA5YDoME7WAWOwIuo7hhIgPs7r/vfteZhWtY0IZ4CNpuu+3m5A/LZZkQUieItVtgDXdIHYvnoF/Um30Zby/Y/pXPs8Iq8wO9PlZP9FxppZXcGoolMsrk/MYbb5ztcxUuBgthEEJIacVCOMwtrhVCWKkX8xwhiug7wNxcke1lmTzwQhcWFWKhGsqmvK22kstotJX2QkAICAEhIARqGQERwlpuHekmBCYQAkEmEB/HEBHIDYN5COG///1vJ0JYfvhEQZAK5qex2uRL9qmEx8wihrXv2muvdaJ39tlnO0mDLFTIYGVRFH5DInD7hFiw0Avy2HBp3HTTTX2O3i5mfYRwmFKuF7o5KTRieKcRO8iNfR8vs3gNq2tCZiiHT0HYx+5dDr/ZmBfIwim7776714c4LJ3MEfz00099oRfi0IHPXbAKJ+ViVYM8cg6XUXSAEO6///4F0XWXUYsPQkhaMMPqBwbMnwsLJvFnnXWW1/vMM8+oyDD51AU8cDvF3ZQy0YX5eeiNJZPPQECyWLAFPWKj3cCFEBjhjooegT3kE73DKolszvFZiZDTxwi4fRvS47EKs6gM5ygviCL649aLHsyLZNEcXGCRR3mHGlFGF1xG99133yKelWjlMupNpH9CQAgIASEgBGoaARHCmm4eKScEJhwCZesbx7gosvgIg3wG+xAjXEYZ1PONQaxXkIM4D5Fw0mBEBmsii5vw7b4gCvYBdycjkDDiWpkFCjKHtQurmLs4VolXyITE2Yfh3To4Ss2NpFzhrqgVUkPZ4WYJyaEsyBWreVIWG/GQnCBIEY/lC7LF4i1xDkKK5REccPUkLTrxOQsCLqC4nsYnNGIRnd6P9vbPQkQ5cT7Kh+Tx6Q0shhAt/w6h6cV55l1SJi6YfEcRGZSJTpwH26hjfIsQXbCc+t7kxR69sc6CMXlxPeXbhlaok8uQs1DHhYo5lOTBMjsN80OtTKyU/zUCip7Ms4wFaMo68UkMsItFZSiLz0sQeHGAJZT0bJtvvpkIoSOjf0JACAgBISAEahsBEcLabh9pJwQmDAJVMoFwiAEBl1Gsf5AHyMExVQsh5yEu5557bmbVTc5DDNlDriA2zHnDDZR4LGOcu9u+vUc+FmyJOD7F8N577/l8OuYiEj+FESHSYyXD/RBLU1iw2BMgpc8++6xbqrAosrANBIr8WNruuecet1C+9dZbeaUVV/JzyGTVVFbdRG/IC/qSHtdHCC9p2JhD6BZCK+vwww+vxJtsVihFh1gkJuoBgSP+iccfr7rZVlbp7GjfWkRepIM4la17EGL04DxkE5dW5KAP1rV55p6n+OYhadqYq+7GZr187rnnHIfAgz1btJ39cB3BGjyZO0kgTZ252fKZCMrdzfT++eefi3y4jLKCLDqDzf333+95IHcQPVyFHWfDG4LKHEGsirinRj1xpaUcSDPuxMSzaVEZbwL9EwJCQAgIASFQ8wg0Q0N7m6sgBIRAE0OAW98sQ7wU8pqbZS6ZlSnZPD+Ps0VS0jzzzJOMSPh5I0XJXC09jbl1JiMKyT7KnmyVzTT7bLOl9z/4IBFvVqr027BhabXVVktmHUzmypmQbaTBZS2wwAKej7hXXn4lffX1V55ukUUWSfZR92TWLS8v0oeeZllMZgVMtnhMMmuky7N5e8k+JeHyjEC53kYK0/PPP5+MLKVOnTolI4PJiE8yi1kivc1ZTB2sXtS1ru6T1LxF82TEJ5klLxmR8fjPPvvMZZnFNC255JJ+bMTK0td5uUac0yILL5yeePLJZO6hychkMkKbbIGV1M7K+MBkI5OyjCQWOIOfffvP5XF+iSWWSOhNsDl46f33309GuJItNpPatGnjMm1l1GSkzfEu2ou2q7aLZ67+e+7ZZ9PTzzyTzJKXzK3Ty7E5m+mxxx5P7777TjILbDJyOEqbgpV9CiQZmU9Lm75trM5gbsQ8mXtoMgLvZdNuNgczzWrnX33ttWSk0UulzbgGjLSnj6zefb/8smgbMEVnBSEgBISAEBACQqB2ERAhrN22kWZCYIIhYCYdJxRBtpx8xcDd9nEeUgXxixDkkT1EMfJzHhkx+A/iEuk4H2ljH7LZh6wgn6T3AFk1fTwt5VlkyGYfpJG0ITf2nr/6b5S4qkw/VT4uZQi55XyhL8mIJ419FD7ZXDknvHPNOVe69tpr0mqrr14VPZJwBy6cCNkhD1mESBNlRrrYR3ykNyUcm8iHjHIa4uv/Dlmx5zzH0caRHln1A+mQ6fSuir3/rpYTecvl1peh30JACAgBISAEhEDtISBCWHttIo2EgBCocQSC/EAIsRCa66db83pd2SutvsbqY0WwaryKUk8ICAEhIASEgBBoIgiIEDaRhlY1hYAQGL8IYDF7xtwzgxC2m6N9uuqqXmmttdcqrH1RYhDI+K29EBACQkAICAEhIARqBQERwlppCekhBIRAo0EgXC579+6dbNEadxllDqGthJrWXHNNn48HCSTgQqkgBISAEBACQkAICIFaRUCEsFZbRnoJASFQswiExY9FVK659tpkK2wmW5k12Xf6fOGVmAsZ6WJfsxWSYkJACAgBISAEhECTRUCEsMk2vSouBITAuCAAycNSGBurdEIEY1EVZId1UIRwXJBWXiEgBISAEBACQmBCIiBCOCHRlWwhIAQmawQgeh7YV11DgxA6GSzFT9ZAqHJCQAgIASEgBIRAo0VAhLDRNp0UFwI1joCRIehSWMlqXNsmq15hvbT2GmFbuLs2WUBUcSEgBISAEBACTQwBEcIm1uCqrhCYWAgURMMKjO8aTqyyVc4fIxDWzdES9qplc5Q2tLjRpv3jopRCCAgBISAEhIAQqGEERAhruHGkmhBozAhAAnGjDNfJqnOlSEUNNaoTPvSpfly+PuEbI2msoXpIFSEgBISAEBACQuDPIyBC+OexU04hIATGAoH4RMNYJFWSiYxAfcLHbyeJpfmQqFSOm8gqqjghIASEgBAQAkJgAiMgQjiBAZZ4IdBUEQiyEWSivvWpqeJSi/WONoo9OkLkaTO1Wy22mHQSAkJACAgBITD+EBAhHH9YSpIQEAJlBMzaNPDnnz1myJAhacopp0zTTzddat6iRTmVjicxAkECBw8alH627ynSTpDA6Wgr+4xGhEgXv7UXAkJACAgBISAEJg8ERAgnj3ZULYTA/4zA7xZ6wV2wKqVsFRoxfHhB4uq7f0ISCOX0VRG+u+KKK9Jpp52WIIQrr7xyOvvss1Pbtm39XCELGVUXxcg7Orn1LVae3/L5ypjV/PVXyaxPYvy3FRLpvJxq+aPUoVov16ukX1ke5ROaU3ZJ/3Ka8rH5XVbSxd7yls9HferLogx087SVH/z34HmMtIUc9oRR6mK/h1sbtjAi3lC6oUOHphNOOCFdeeWVTgjXX3/9dOqpp6Zpp53W5UU+E1D5PZoy/IT+CQEhIASEgBAQAo0OARHCRtdkUlgIjB8EIBMQB7YgFkguBv92XJ9IxHn2hCAeTkSMLDSrWpRC9sknn5yOPvpol7/KKqukG2+8Mc0x++wVYlTKjyxkRNlGsQpyyjnKCQIbOhEfwfPxo0qc+B3WLY4juBz0rKYrx0N2SBlYRBr2hNAt9hEXZZXjPUP1H/GEkFc+DtlOusGuWhY6EKhDyA1M/YT9c63q1SPOlfehX8QFfiGX/S9myd11t93SzTff7OVtu+226cILLkjTmpUwdCQ/aQlRl/qy/aT+CQEhIASEgBAQAo0KARHCRtVcUlYIjB8EggwgrTiuEqIY7NcnAvHb05PPtnKcCUJcQQo5Pv3009Phhx/uZay11lrp6quvTrMbIYx8QU5IG0SMY0L8pjwCeerHRbwnsH/ltMRF3YJMRbmRLvLFfnTnR1dupIt87KMsj6tiyTFpy+fq61JOX6Sz/EGuI6689zz8Ix3y7dD1NEsg+SDPuOYGiSavp60Sdv9dCEkJC+Eee+yRrrrqKo/dfvvt03nnnZdmmGGGUqrKYejhbWFle4j971IrQggIASEgBISAEKh1BEQIa72FpJ8QmAAIxKA+iEF9ghPnKTqOy2kjDkKHFaucP0geaXAR7d69uxOONdZYI1133XWpXbt2RY1CTll2EKYom31Y+zh2IlIlNvwm1I8LuZCg4ZCjqo71ywl3zzJxirp4WghXmURBrAhVAhTlOBmrlvO7Mix/pCtjQ1zUK/Qv561/zO/IU7884oljoy7oV44ryycNIdLxG0K41557pcsuv8x12nrrrdOFF17ocz7L7rXkDPIZ8l2Y/gkBISAEhIAQEAKNFgERwkbbdFJcCIw7ApCCob/+mn6zDRLRcoopUquppnLBw377zc8x8Gf+2VStWrnV6RdbeARiA5GYytJyHkLx/fffp5lnnjlNM800nh4hJ510Ujr6qKN8zt5qq62Wrr/++jTHHHOkXynT5JMXUjbV1FOnYcOGeTwkaQrTg3MQmZ9++im1srKRSzy6EE/56EG+QSyIYm6PWLRYFIX0pOMcuiGL9Jxr2bJlwkWT8n+1DZmk5zxyBw8e7OnJT/rIT334bSfTYJsTCQ4zzjijY0DaCFEWv0MeewLlUD4BDNCPcokHB8hXuTzSUiYyXV/L8+OPP3qemWaayWWFPGRGGo5Df+Zv/vDDD44N7UV9wY14sCVuSitnn333TVfaHEIChPAiI4S4jMY1gr5gzGIzrcDRNnQPUusZ9U8ICAEhIASEgBBodAiIEDa6JpPCQmD8IQCpwY3z5ZdfNkLSPC273LJpxx13dHJy3/33p/vvuy/9ZqRlnnnmSbvuuqsTPlxABw4c6KaiVVdb1YnRM888kwYMGJDmnXfetN1226W//OUvTlbOMJfR7kcc4cQIC+E111yTZp11VptLeEN67LHHvSK4kCL70UcfTciBZCy22GJGHGdPTzzxZKqrq0uQnxVXXDExt61169YFEXznnXecZH711Vfp22+/9TI7Lbpo2nCjjTz9J598kv7zn/+k7777zonQ5ptvntZdZx0nuj169Ejvv/9+at++fdp77729buBw8cUXOwGDgHbr2jVdZPnBCb3WsbzIevLJJ32/0EILJdwrl1tuOc9TJkeQOIgYlra6Pn2ccEOKqQPnLrvssvTSSy+lNm3apN1s/t7888+fvuzbN11y6aXp888/97psYfquaa62YHD33Xen119/3XGmnA4dOrg+a665ZuHaecftt6e777nHcV1yySXT3/76V5f31ltvedvQtp06dUqvWD17mXtoH9NraiPjxJXxJ925557r51577bV0yy23uA60O/pyPWy66aZpiSWWKKyv4++qlCQhIASEgBAQAkJgoiJgAxMFISAEmigCZtXLRmiykR3fdthhh2zkJ5s1KJ933rnZrEd4CObVV189GynJRnDyggsu6HHkmWWWWfL0009f+Z2aZbNKZSNuuW/fvtksS/nMM8/IZpFy2UZc8hdffJHfe++9vPDCC3scsrt27ZqNTOZ99tknG9HJzZo3y9OazFnbzurHtnqK7Zvn1rO0ztded102gprNwpUffvjhvMIKKxRykMVGeUZU8kMPPZSNKOZNNtkkmzNlNutnPuyww7x+r7zySp63w7web8QvGzHzK+C4Y4/1OPRYaaWVPD91pK7Ibjtr22xWSD8mDfXt0qWL19esjlZls/FZiL1ZLvOJJ57oMsm/9NJLu0wjfNnmVLocswDmW2+91ev01FNP5bnmmsvjKfe+++5zzNZbr3M24uZ6hC7sjRTms846y+tEmbaIT6HrxhtvnG3l0Ix8ym7fbs788EMP51dffTUvs8wyjjXxbKQxS6MfI5drYuBPP+XPPvssb775Zo4p6TjHRr233WYbvx68wvonBISAEBACQkAINFoEeFOtIASEQBNDIAiLWbuyWfQKEmELi2RzmczmTpjPOOOMgkxA5szaliGQZgUsiAHkAEJlLo8FwSDuESNrlHGSkSHIA+Rp3XXXdXLTrVu3Ij+k59133/W0O+y4o/l1pty8RXPfpmg5RZ5+xhmcDBJvZkvX9aefB+Z+/ftlswIWciCl9qmEbK6PTmoob9FFF80D+vd3QtbCfkNo1ltvvQwZM+tghfwYUST+kksudnIDeSQvdTj77LNynZFg+0yG/yYd56hvkKwgSWZFK66g4UZYA18izZpYyLTPOOQXXnghP/jgg5lj5LHttdde2dxHXS9+I3cjqx/l77///p4myl977bW9bpEOUvj00097+eaiW+gKtgsvtFBRxrLLLpshwjvvvHNRd+pJ24FfyGMPIfzRyL8tMlPIM+uoE0yzHjo55TdEHnKuIASEgBAQAkJACDReBEQIG2/bSXMhMG4IjBiRbT5a3mWXXZwMQA4gC2EhvPDCC3zgDxEJQkh6c5N0QkE8lqb777/fLVzmyunkoUKmznZSdOaZZxYWQqyMF110kZMpJyJmleK8zZlzMrS3WQjNL9O3VlO1yj0vvDC/9vpref0NNyji1/2/dfMPpsPd996TZ6Y8I3RTmxXTVsTM33zzTbbPJoxiSbM5i/mJJ57ItpCN1xHr5gOm74Ybbui6Qn7QZYMNNjAS+0g2V1X/DQmEyEGAzcXV4yC25hrq6ezzGU6kKB8crrjiioyFkBBkkD0bpBtrHeWwnXrKKfm4444rSCU6UAbE2FxnK2TN0h1zzDHZXGKdkJJmCit/v/32c2skmEc7oBdpwfH0004r8qMXxJW6HnzwwdkW98m9e/fO5prqeiCTepubbsYyad+JrOrYPG9j1j/aumfPngWh3GyzzfI7b7/t9SH9bbfd5tfKuF2Eyi0EhIAQEAJCQAhMagRECCd1C6h8ITCJEICs4AIKIQyyYnPZfJBvi5PkCy74PSEkPUTE0xsZOtZcLLFsQZwgfCEH8oH8IISQD5sr6GQEokI6yIgtauLpkPGvvfcuiF/nLp3zTwMHZlshNB9r5AmXUfItvczSTkhsnp2lRY65khoxtLl17qKKqyuWwdDjgAMOyDa3sNDNFr3JWLggSuSNdLhp7mPlY/0jDhdN3F5xm7SFY4p055xzjtf3448/dvJIvUjfs2ePkZYy05lA/Qm4jR5//PFuKSUtBA3XUfIGFhBL+0RHnnPOOV0erro2n9EtieGiCn4PPPCAy8Qyh3sv8pADkbcFX1wGcSHX5m3m18xF9GfDEmJ69113ucsracDgrjvvcnlDzSKMvKiPzXP0trnpppsKQk/6pZdaKh900EH5GbNIco1EHV2I/gkBISAEhIAQEAKNEgERwkbZbFJaCIwbAjGQD5fRIBBBCHEZhaBMM83UThKwENaZ+yIEDhdF0rNh8UMWcnDHDILCvDkCe+b0kTbIBnvmw9liNp4Gl0MI4U477eRpSAtpw1KJ1et4I4TEIXv55Zd3gudz5arWuY4dO+YPPvjAZfGPOX2UwbbFFls4UYO48htrGsQGeeiAWyVxzJ+DDBKPJQ75kMtPP/3U5w0Sz3b99dd5OV9++aW7wKITG+SZELhWf3jZxDGfkTl8pKU89uhjK64W+mAlDL2Zv0j51157bWHxpJ5OfE04JPPAAw90OciizpD1U8z6CNFFV+pkn/1wHcKt8/LLL3fLJufnmXsedyHFxRU3YTAnL+21y867OIlkDuEmm/zdyyFP6Ac5ve22W50U0nYKQkAICAEhIASEQONFQISw8badNBcC44QALo5Y9nY1CyGDfTasRFiasP7Y6pi+qAwkgQVQIEecY0EY0kJEcNWE8EDeunTu4nHEYyEkMA8xFpWBgE1n8+aCWPz97393t0TSQVhYVCb0gJzYipYef845ZxekcvHFF3fyiTtrkCqseyxUE4u6YBWDuCCLuXAQFohUEEGscZzH0smcOyyAUR/iIYaPP/641wtLHKSNssChV69eHs/iOJRTiW+WbUVOJ3DUhUB9wCU2sItFZMgT9aR84kPfqJOtxup645oamDF3k7mCyIT87f2vvT0febbccksn62eddWYhm3owVzHIIHrhUks85eEW++gjjxDtxBtC7vUxfLbdpmIh5BxzLo866ihvd9qSvGDI4kF19pJAQQgIASEgBISAEGjcCIgQNu72k/ZCYJwQwOLHQjJBSHBnhIjhZsliM8Rj0YL8fGKDf4hIrBAKKTj//PO9fAghi50E0Tn66KOdiJx66qlO5pCz6qqrOlEM8oVbJIQRSxgEdM8993SigdwddqhYCIknTcgNQnjDDde7JQ+SBmGyTyY4UWJVUV891AlcxQ0TQsR8OFxUkR2ymNf3xhtv+PxI4n2zfMwTxOJJ6Nevn7u6OlGysiBqBCyE1KcSXynHFPBz8Q/iFgF8wMTJVFU3XEFZ3RRSWJBVOzf33HN7+eRnHmMQVoicfSfQ68kCP1gFo3zmFlIGq7pSP8rBisciMhGQx8qssYAM5A7STzxEH1IZ+vFigOsAMmif5nB93nzzzbzvvvtW5k6anhDUIM5RhvZCQAgIASEgBIRA40NAhLDxtZk0FgLjDQFIBNafIEpY8Q4/7PDcrWu34pMTkA6sWOVVRoPUhaskhKJs6WLOHJa5E+2zBxAP0uNSimvnxqXVQSE5rLoJadt5550LsrbTTiMXt+HTCeiAjCBr9l29YgEYSIx9X9AXttlqq62cwIZ+kBgID9ulNu8w5HAel1jI6JFHHOGyg1zhVhkWvjojwbHKKOeDEEKUVllllYJAnX/+eUWe0TUO5T9i1rggXMhinh4usffcfXdmbiM6sRqqfROxkIVlMRaP4Tyf2bDvEfrnM8COOPa434L3abaoDGUQz4I/bjml/lWLJeSO1UYrdbXFbGaZ1Ukki9LE/EXOQQh/MhKN3OUsPW3A/EUw4xqhDPRinqOCEBACQkAICAEh0LgRECFs3O0n7YXAn0YAkgLxwa0wSAREokJaKnPwKsShmZOfPn365ME2d80thGZRI124jGJNWr/L+k5EkMHCI8jnG3l8/w85LDrDQi18B4+FYMjPhnsoljisXFEehASSiX5YIUmHXFYBZTVRLJsQ2fjcBfk47/lNNyxuRxjRY64dAV1YITPcP7F6PvbYYx7PiplYzcgL2aGeMS8Ol9pYPRUdrmA1UZNFPcJCSLlYMf8oYL2E0FIOsnAHNWFugcP9kjispsRTBhvn+UYhpI/zo9SzKgdLIS6sBCyykQ5CGPGhG/MFL7igp+MT6dhTBzaO2bAO06YXX3yxl1me9xj6Y03++uuvK3pGAdoLASEgBISAEBACjQ4BEcJG12RSWAiMHwQgWwQG9XwcHuIDkWKDvOFSSRyLk0D2sFZhUeSj7xAU0l1yySVufYI48VkCCBXfAsSiBKFhVc5pLI70WAhxtWQBEyxSyMZ6iOshnzBgRVC+zYdcvlWI9QyXURZGwb2SeKxylIVsyA6kcJGFF6mUa+dJw7f3+AA9bp9hGSM9+XazzzqQhm8W4v5KPO6x/Ia4Ui5lEm///CPyuHBSL8gnc/A4Rz06d+5c4IDrJcHz+dHv/2GNxMJGnSFrdWZ9hKCB6b/sO4Totdpqq+cPP/zQiXBIIB9WSz4LEbiTtu2sbX2uHwSbtmRDPqSylZ1fd511nbgih3II6AcO4M/iQKRDFp/jwB13ZptPyW8WF4IQQpZZUIhyqT/naCPakvmMQZxduP4JASEgBISAEBACjRKBZmhtb4YVhIAQaGIIxK1vFp9kJCHZN+/SF198nlq3bpOMICQjgql///7JCEkyQpbmm28+j7Pv5SWzvCUjF8nIUjKrWzISlYzgJJurl4yYFPFm+Uu2UmUyq1MyouJyjVQkW6wlmZUtGenzc8ggGDn1/OammeaZZx4/Z+QrsaHvdNNNl2y1zWQWK0+PHubKmj7+6KP0408/ebmzzTZbat++vadFR8puZqntExbJXByTuZsmc3dMtpKnnzPSmB57/HHX31wyU6dOnexziPZNCyuPurz99tuuJ78XWGCB1KZNm2SrsCYjyMnIpMtA1zlmn93NbOT9XaCbtXh0ffjhh1KHDvMmI93JyLPH24ftXbe55po7rbrqKskIqOuAHOoAvmZhTGBPm7SeuXWaa+65HKOZZpqpSEsaI8qex4ibYwXe6B56cWzW12SfzkjmUpumatUqLbb44o4p1wHnbcVT07GDy0EmbUh7gaV90zHNa+dms/o6ts1GU9/fAaAIISAEhIAQEAJCoFYRECGs1ZaRXkJgIiAA2YAosEF+gmhBCoJEOJGw3xAqzpOOOMhAOTj5snj3PbT0IZc0ISvSx29k1Zfj5VlCiFrzKvEjXzktaUIG5/yYg2o8h+gT9fHfVXn16xnlkYZAPuRFXo7Z0JM9gTxl/YivX54nLP0jfeiHbMeriiH5XQ/kI7ueDiUxlUNLhyZRZpHf4so6Rr6oc1lP8lImm59HFzuONN4u6FWtd6RHZmBBXjM7epooS3shIASEgBAQAkKgcSEgQti42kvaCoHxhkCQiNgjOI5HGeRXSQrngwSNcp54IwX1iR3pQx7HBH4TnPxwUJLNT0L9PNVIJytxnr2TEQhL5Qf/fyevvl7l8uOYbCELfSBARajqF4SK+NCPPdvo6l3kr39AnmpckClIWLkOIT+yFnWo6sJ5QjmPR1TP+3H1X31Z5XMcF7JMh/gdbVOU62dG/iM+0hBbPh6ZSkdCQAgIASEgBIRAY0FAhLCxtJT0FAJCQAgIASEgBISAEBACQkAIjGcERAjHM6ASJwSEgBAQAkJACAgBISAEhIAQaCwIiBA2lpaSnkJACAgBISAEhIAQEAJCQAgIgfGMgAjheAZU4oSAEBACQkAICAEhIASEgBAQAo0FARHCxtJS0lMICAEhIASEgBAQAkJACAgBITCeERAhHM+ASpwQEAJCQAgIASEgBISAEBACQqCxICBC2FhaSnoKASEgBCYxAvHJCT5SUf58xiRWS8ULASEgBISAEBAC44CACOE4gKesQkAICIEmhQDfUbQtPlYf3znUtwib1FWgygoBISAEhMBkhoAI4WTWoKqOEBACQmBCITBi+PDCMtiiRYsJVYzkCgEhIASEgBAQAhMRARHCiQi2ihICQkAINGYEBvTvn+659960zDLLpEUXXTRBCnEfTc38f2OumnQXAkJACAgBIdBkERAhbLJNr4oLASEgBMYegWHDhqXzzz8/HXPMMWnhhRdOF154YVpyySVT8+bNjQ+KEI49kkopBISAEBACQqC2EBAhrK32kDZCQAgIgZpEYLi5i1577bXpoIMOSgMGDEgrrbRS6tWrV1pwwQVrUl8pJQSEgBAQAkJACIwdAiKEY4eTUgkBISAEmjwCgwYNStdcc3U6+OBD0sCBA9Pf/va3dPbZZ6cOHTpUFpsxhFh9VBbDJn+pCAAhIASEgBBoRAiIEDaixpKqQkAICIFJiQCriv7888/piiuuSCeccEL69ttv02abbZZOOfnkNO988zkRLH+aQnMLJ2VrqWwhIASEgBAQAmOHgAjh2OGkVEJACAgBIVBFYOjQoT6H8IgjjkhDhgxJ//jHFumMM85M7du3T7iWstgMxJD5hQpCQAgIASEgBIRAbSMgQljb7SPthIAQEAI1g0BY/9j/8ssv6ayzzkqnnHJKYsGZXXfd1Recadu2beEyKtfRmmk6KSIEhIAQEAJCoEEERAgbhEYnhIAQEAJCoIxAEEKIHu6j/fr1S6eddlrq2bOnWwW7du2ajjrqqDTTTDPJOlgGTsdCQAgIASEgBGoYARHCGm4cqSYEhIAQqCUEIIGEsPzx+6effkrHHXdc6tGjh5/r1q1bOvbYY50UeoT+CQEhIASEgBAQAjWNgAhhTTePlBMCQkAI1D4CP/74Yzr00EPTpZde6mSx++Hd03777+ekMKyJ7DWvsPbbUhoKASEgBIRA00NAhLDptblqLASEgBAYrwhA9D777LN0yCGHpFtvvTXNOOOM7jq6yy67pOmnn77ySQojhATSsuiMghAQAkJACAgBIVAbCIgQ1kY7SAshIASEQKNFANdRtj59+qTuhx+ebjFS2KZNm3T88ccnSGHLli0LUki6cDlttBWW4kJACAgBISAEJiMERAgno8ZUVYSAEBACkwwBI3rG9NJ3332Xtttuu/TAAw/4wjIXXnhh2uGf/0wtp5zSSSH6iRBOslZSwUJACAgBISAEfoeACOHvIFGEEBACQkAI/BkEsP7hEvrWm2+mAw86KD366KNpzjnntG8UnpH+9re/pVatWv0ZscojBISAEBACQkAITEAERAgnILgSLQSEgBBoCghABAns+Rh9NlL42uuv+7cJX3nlldSxY0f/ZuGGG27YFOBQHYWAEBACQkAINCoERAgbVXNJWSEgBIRA40AAcvj++++n7bffPkEKZ7TFZa6/8ca01lprpSnNfZRAGpaaGVElkh6pf0JACAgBISAEhMBERUCEcKLCrcKEgBAQAk0Lgaeffjrtu+++6dVXX03zzDNPuvrqq9MKK6yQpphiChhhwrYYn6YAGc0vbFrXh2orBISAEBACkx4BEcJJ3wbSQAgIASEw2SIwdOjQ9PDDD6dD7ZMU77z7blpm6aXT+fYR+xVXXHEUIhjuppMtEKqYEBACQkAICIEaRUCEsEYbRmoJASEgBBo7ApA8wq+//poeeuihdOABB6aPPv4oLbHEEumSSy5JyyyzTGrO9wmr3yjEYlgcN/bKS38hIASEgBAQAo0EARHCRtJQUlMICAEh0BgRCFKI7jfffHPab7/9Ur9+/dJiiy2WbrQ5hSw4Q2AxGgUhIASEgBAQAkJg4iMgQjjxMVeJQkAICIEmgYCTQbP6NYPs2X6IuY9ef/31qXv37ql///6pc+fO6dRTT3VyCCCaP9gkLgtVUggIASEgBGoMARHCGmsQqSMEhIAQmCwRqLqD/vLLL+nKK69Mh9icwmHDhvn3CU877bTUwRacKS8ww+qjZfdRyKUI42R5ZahSQkAICAEhMIkRECGcxA2g4oWAEBACTQ0BPl5/ySUXpz333Ms/PbHRRhul//znP2mOOeZII4YPT81btPD40RHA4ZznW4dGEOVm2tSuHNVXCAgBISAEJgQCIoQTAlXJFAJCQAgIgQYRgMxhHTz33HPT0UcfnQYPHpx22GGHdNRRR6UOHTqkFriY2kIzEMcgfWEhZE+ALEZcgwXphBAQAkJACAgBIfCHCIgQ/iFESiAEhIAQEALjEwGIHuG7775zUnjSSSelVq1apV122cVJYdu2bQuyFwSQ9JDAIInZZPjcRE4oCAEhIASEgBAQAn8aARHCPw2dMgoBISAEhMA4IWDWvkFmHWQ+Yc+ePVPLli3TgQce6KRwmmmmcVIYBJA5hRwHCRydO+k46aLMQkAICAEhIASaKAIihE204VVtISAEhMCkQiCsfmHxg+gdcMAB6eKLL058yP4IW4X0ACOGM888c2EVHDhwYJp66qmdNMpddFK1nMoVAkJACAiByREBEcLJsVVVJyEgBIRAI0Pgiy++SLiO8sH6Kaec0ucW7rHHHmnaaadNH7z/fvqPkcVu3bqlhRde2D9hwRxDBSEgBISAEBACQmDcERAhHHcMJUEICAEhIATGEQGshJ999lk6/vjj0+WXX+5E8Oyzz06rr756Ouyww9K9996b7rrrrrTOOuv4QjNyGR1HwJVdCAgBISAEhEAVARFCXQpCQAgIASEwyRAorxTK8Zd9+6bdu+6eHnjgQV9opnXr1gnrIWH9LuunW269JTG/MOYWTjLFVbAQEAJCQAgIgckEARHCyaQhVQ0hIASEQGNBoEwCf6ezkcL3zEW0a9eu6cknnrSP1Y/8ID2upB9//HFq377977IpQggIASEgBISAEPhzCIgQ/jnclEsICAEhIATGFQG+KVhvLiCWv2eeecbnC77zzjujlICb6A033Jg222zT1Jx89fKOklg/hIAQEAJCQAgIgbFCQIRwrGBSIiEgBISAEBjfCNS3FLLC6FNPPZU22WST9Msvv/hnJ0hTDttvv306//zz04wzzii30TIwOhYCQkAICAEh8CcRECH8k8ApmxAQAkJACIwfBIL0/fDDD/6h+htvvDH1tbmEZVIYi8issMIK6eabb05zzjnn+ClcUoSAEBACQkAINHEERAib+AWg6gsBISAEagmBn3/+OX344YfpzTffSPfcc2968skn07fffpuGDRvmFsF27dqlXr16pbXXXttXG60l3aWLEBACQkAICIHGiIAIYWNsNeksBISAEJhMEQhrIQRwyJAh6csvv0x33HFHeuihh1Lv3r291ifYpykOOvjg1KJFC5HCyfQ6ULWEgBAQAkJg4iEgQjjxsFZJQkAICAEhMAYEggz6J+dtwRh+4yrKQjPff/99evSRR9LDDz+c5pxrrrTffvul6aeffgzSdEoICAEhIASEgBAYGwRECMcGJaURAkJACAiBCY5ANuIXS8jEnEH2BVG040GDBqUBAwakWWaZxT9eP8GVUgFCQAgIASEgBCZzBEQIJ/MGVvWEgBAQAo0FAYhfWAWDEKJ7xA0fPtxdRIMgNm/evLFUTXoKASEgBISAEKhZBEQIa7ZppJgQEAJCoGkhgIWwWT2SF+QPN1Ksh2Ex9P1o0jctxFRbISAEhIAQEALjjoAIYQMY+sCjgXOKFgJCQAgIgYmLAMSQDasg+yCGaOHWRM5XVfLfY6ue5TMBReqCgFbnLv4ZK2Toh1CO2f6MnEKpGjoo42MVq2hWwq+GVG10qozuhQiVGIFl3BZQ8mN7CdIYr6W4J3xvFYl7lTpNTvcH9VEQAo0RARHCBlqNzmrkEKGBRIoWAkJACAiBiYpADCyjUH7HgJLFZxgs41rKCqQNhfoyRkkHyTGCE+6p/xO5rAqqLz/0GqWcRvoj6hZ14jfhz+DUSCGYIGrH9RbCY2Gl+O24248RhndjJIRxvVCfuGaCAPPb61S996LO2gsBITDxEBAhnHhYqyQhIASEgBD4EwjEYBiiFoNJxEBC/FzVQhXp/pdBc8hjPz4H2k5KjZyGLn9EUv8ELJM0y+9wr7bBJFVqcii8SooKAlX9HddpQbwbEXn6ne7WTnH9BBHm9/i8/yaHS0F1EAITEwERwomJtsoSAkJACAiBP4VADBzJHEQwBpHsiwE05yuJ+D/GEINSEpWPg8xBQMclhAUE3dC5GMyPi9BJnHeUdjBdsA96O4BIdFI/AABAAElEQVTVOOI1ias2yYv3665q2QbTCI5vaW5t+VqPNLW+j/qgO9b7ch3iHHUY23u31usr/YRAY0NAhLCxtZj0FQJCQAg0NQSqg2OsbRF+/fXX1KpVKx9YxgCTOKwM/G7IZZTBZ31i5nEmePDgwanllFO6TAasyK+fNsof497KGG75kYHsKUyfoabb1FNPPcZsjeUkxCXIy2+//ZZatmzZIN6NpU61oGcQIzDluuP6YQ++nGteJd3xoqEWdB4bHagHgfsz6sL9Cfnjvphiiin8HPeH34t6seB46Z8QmJgIiBBOTLRVlhAQAkJACPwpBBhUQva++uqr1KtXr9Tn44/TEksumbbddlsfTN54443pzTfeTB0X6ph23333NOOMM46xnBh4sofcPPfc8+nKKy5Prdu0ST/++KOTt/322y916NBhjHIaOllXV5euvPLKNKD/gDTNtNOkjTfaOK2x5hoNJW808bRD796903//+9/U0gbys88xR9p+++3T7LPP3mjqUIuKxvX4/fffp6uuuip98cUXaeBPA9Nqq6+Wttpqq4Jwx31Qi3VoSKeff/453XDDDenVV19Ns802W9p6663TAgvMn+655+503733pyntxUu3bt3SQgst1JAIxQsBITChEbBOSGE0CFin67E2UPD9iBx/2Y/sDR0Hla2anzxsRZ6qjOrpUXYhf5TIenIiTexHl1ZxQkAICIGmhMBbb72V559/fvdUXGGFFfLXX3+dP//ss9ypU6ds1pS8zDLL5I8//niMkNBH069G39qvX7+8xRZbWP7mLsOeu9msFvmcc87JQ4YMycOGDbO+vtK3e54x9O1R8EsvvZSnnXbabCTWZZ599tl56NChRZmRrrHtweK0007LU045pdfLBvH5lVdeGedqlNtjnIU1QgFR/759++aVV17ZseV63mWXXbJZrr1Gcb3GvqFqxvn6+4bS/5l4vycsY5TB/dFQsJc4eaONNvI6tWvXLj/xxGM2ThqWDzn0YI8za2G+6aabClmFzIYEKl4ICIHxjoAshA0xbntrbL4afta6uYQLR//+/c2dwVw47A/XhlnsTbJ7vNv5fv37pV8tDQFXiLZt2/oed4+GgrVm4Y5kHWAaPGhQ+sHeTHOMC8VMM82UpppqKnerYPQzJlkNlaH48Y8A7fbTTz/5RpvYwCi1bt3a22z8lyaJQkAIBALce++++27aZJNN0gcffJCMELqlCle0zuutl9577/207HLLpjvuuCO1b98+sv1uH30ve7YXXnghbbzxxum7777z3/TrdN0bbrhh+s9//uNWDe51enOeB3+0+AUyX3vttbTuuuumH374wcs///zz0x577OH9OOcJjbFPx5rao0ePdPDBB7tldYEFFkjXX399MiLudRrXf2DTGHEZ13qTH2y/+vLLtKVZBJ955hnHYccdd0wXXnihu1py3QU+sR9TuZ7GEozv8UO5bI4jNNRuX1qdsNrfd999dl+2S1jzuXe7d++eTjvt9NTKnqHXmwXx73//e6V+CBzD2CnK014ICIHxiIDdzAqjQ4C3Xbbxpor3Xo8/+WRedLFOudPii+VOtt93n31yHm5nbPvis8+zDVD8DfViiy2WN91002wDi9FJHSUuLImUw/Htt92eV1xxRZfz17/+NX/00UejpNeP2kCAt/w9e/bMSy21lLfVbrvtlr/55pvaUE5aCIHJEYFqH0lf+eabb+b55puPUWhefnmzEJr1wQaceYnFl3Brw9JLL+1Ww4Zg8D69Ks++75Z/+eWXfOyxx2ab21RYZbDqIR9rhg1if+/1Yfn/KGA1m2H66V0m8oxYFlnQIUL5OOJqeY9l6OSTT85YdagX1tqXXnyxllVuFLrFdYk1bZVVVnFswdcIoVupi+vErp2wzo2pYkV6S1Q+HlOesT1XyCtdx2PKi9Vzgw02sDqlPPfcc+Znnnk6//rrkHzIIQf7fWYv2PNdd901JhE6JwSEwARGgLcxCqNDoPq8hqjZ4gD50d697bWlvWgzFw4GCubTb72sZTRC+PFHH+eVVlzJH/ycW2655TKd+v8S6OCvu+66bPNe/EGL+9N7773nIuh8iw74fxGqtBMEAQghA0hcphgUrd9l/fyZuawpCAEhMGERoJ+kX1x00UW9H8a1jr627xdfeJxZKPKyyy5rffKYX6YVL+NMXZurZYPV9QvXTltIxt1F6csZkHOvc88TIJBjE+ivX3755TzzzDMXz4Xzzju3QizHchA9NuVMijRg98ADD+SddtrJX4Tuueee2ay1402Vpvqsi3rzMvm4447LZrHOvBjm5SNuy36+eu1E2rEBnbT/S/qxkUmakFmWH3H1ZXCPbrrpJnY/NbOXLLPnJ5983PIPz4cddojfY9xzt956q2cr35v15ei3EBACEw4BEcLRYVsletZjFdMEH3vi8QoZtAFHM+vUdtxxpzximA0OjBDW9anLzGVh8MCAhEGKuZfSY45OeiWu1EnTidIJ2gIEPueEgQiE0FyjvNNVB9kwjJPiDA/nE0880QeNtDdzI5jHpCAEhMAEQqDUX8YcQvrbVVddtTKH8PPPvc+k74QQQhAbDFVZ0a/a4ih5lllmcYLJnL/DDjssr7766taXW3+emvkLPn/hU81XDIDtd0OBNFgIecFHH4Gsnj17NJS80cXbFAqz8Pzqlqqh1h/+2VBg+WcFTE757JrhmnRMbA+u4MxLkLhWA6/YN1j96rXK+UjLfryFqq7IC91iP7oyvvyyb95ww/Vt7JTyXHO1z08//ZTlG2b32qF+j0EIzc17dFkVJwSEwERCQIRwDEDzNpguFFrYG0JoRJCNBzwTvZ3wYSH88KO88kojJ4Hj7vHNgAHeEY9BvJ+PTpR9EELkh4VwgnTmY1JK5/4QAR7UJ5xwghNCBqW8yf1fLcJ/WIgSCAEhMFoEcBnFTRGyhos9C8J88sknhYXwL+ah8emnn442b0TG4Bh30cMOPcz7dMjknHPOmZ979tl8zL+PcYIYVsI7br+jGPhG3pA1uj1psBDa3OJC9kUXXfiHz4TRyarFOH9ulUjBuOoI6aEtBg0aNNZW2HEts9byx3XFvnyMnvHbDkYe/0EFQo7NYc1s4zvE2AW5tBvTJmjH34cRuW/fL8zaaYvKVAlhuIwefnjl3rO1EjL3GKGo6+8FKUYICIEJiIAWlbEn/h8FRgZPPfVUWmONNWzIwK+UNtt0s3TzTTf7sQ1G0ub/2Dy9/Morfp7J9ffec0+ajWW4R1QWLSBX8xaVCeFmYfIFauaee+5i8rx1pOmWW25Je+21V2LZaSOEvkxzp0UX9cnVdg14Wb5ETXWydcRxIo6//fbbNM000yR70+3p4x/n2Yxs+qI1AwYM8EVQ7M14EU9a6+SLBRNIz3ePjBR7XOSPfaRvwcQA+4FsAuetU/dFdTg2d6tkD4tk83GK7yh5wkriyuRxSxcyyGtEy2WwRwYhFnTwciyuWfUc8Z7XE5lfL+dMF+rCIhHgbQM9zhb153zIoTxk8ZtjFg+a3ZbGLuuDTOJZ5Ge66aZLZ511Vjr6qKN8ISGzECZz60m0p8syOfaATGA8my0uxAJEFe3Rs1oXS0Mo19Usz57OnojpF1um+1vTvY0tVjPd9NNXdPUc1bY2fdCpuS1gRKCuLO2NbixqFAH5v9mCG/1NlzlseXjaM/IETvX3kVd7IVBLCMR1+s7bb6e//u1vqU+fPukvf/lLuuvOO/0+7NK5c3rHFpyxOYTp7rvv9ut9dPojh8Cepf1Z3MJIJRG+HH6PHj3T+++9l7qs3yX9aItH0S+Q5oEHH0zT271YyWv9eeUW9t+j+2eWTNePBW8o8uyzz0r/+te/vG9DJuWz0cdx/xqJTeRhQTF+k29J+6wGi7a4AMvDs+H11163xcd+sG8bTpFmbj2zp6HPr99nUsYbb7yRzLrp6tkLzrRgx45pkUUW8XKjv4s+Fl1ef/31ZN4OvogazxBzzfXPSYS+Uc8PP/ww1dlnNX779Tfrc6ZNS9szr6HPfNAXvvzSS+mngQO9v6OfpF6UB+6PPfaYLQb0Xnr//fd9ER+bg+/PMMri/PPPP19gYnNH/dME6EM/B07oT+DYyHwaaP0gfT594fLLL+9tFmk8YfUf6Xvb5zNYIIx+nbalnVkkbFIG2v3FF1+sLEZk19hss82ell5qqUq/bZhR9whgSIg4+nvibJVdX5SG9qd+BNpnvvnmTSuttLLjH88J0kd+0sXveDZxTdgcQMeX68xeePv3OUl37733pldfeTV9+tmnaYH550/bbrddmmuuuRAzSuCa2mefvW2Mc6tdT7P52GaVVVZNR9kz9JRTTvH2tSkzafPNN/d8tE3oN4og/RACQmDCIWA3tUJ9BCpmQbcAWqfob6weNwuhPVTofd39Z7tttzdfCcto28cf9ckrmVXQelV7A9Y8r7XWWrm/vbX+6Ycf84477Jj/sfkWebttts0333xz7tHjfF90hjfb2223nS9YgAsib9bs21p5hhlm8DLCZRTVevW6MltH6Zt9vyfjMnX11VcXcVirbrvttmzf4/KysVgdf/zx/ubc9cf9xObA8Mb60EMPzbaSl7tB4eq477775oceesjfztq3t/LutkDKP/7xj7zNNtsUb+x+snhbDcyXZTcSlI14+Nty5DGPhPRYTB988MG8g9UXXXfYYYds3x3Kp556qr0Z3NjL23XXXT0NFjbqi24eqhj/aG8xDzzwQC+H8pk7QRqW3EbWFibXvlWU7QHl8fagc70ojyXjbaU7l4u14IwzzvB5nrh+gTX6XXvtNXngwIGVMu3/xRdf7LqiP+mNwLm7WJfOXfJmm21mbi1P+9wNW+3N86+55pp57bXXzjaoy1tu+Y/iegBHrBQE3HwPOeSQ3LlzZy8XrA868KD84gsv5qEsHV6qs2fgn8XhfvWFTbzvecEFefeuXfM666zjrm+2yqHLo05gQTojo8W1cPXVV2UbGGewpcxdd9nV51jR3jao8Pr81a4HdAfTc8891+uJLHvoFiroQAjUOgJcs2xuIZzPLITW39pLOrfOc38ssUR1URlb7Cnux9HVCRkE+qDLLruscPW3F1v56l5X+TQAe7Hmc4NH9vnN8nMvPJ+HmZvbcJv7NMw8Q6q91+iKcD25/2JRGXS96KKLPN7+Ff0f9yB62AtH77vtA/YZa8lU5kLHIhxYOvFUiXu1rq7O73PSIHOtNdcq5pojhxD1w2pjLxjdk4H5zjaY9/4aN8RqwuquUhP6Zfor6swiH0x9oG8hhEyOKYd+hDTowXxOnkkNBRb8WWThhV0uevDJCnQw0p7XW289rwdlUh/77qNbm8CIOj/yyCP+TLRVKD3/PraYG5Yo9Cl0smMCi7DhnQOGuCBOZ+6/lBGyivRVRe2beJlPZqATnxhhcbCYK1pNMkl2eJuAixGi3ML02mOvPfPPZj0tQrW+Xh87pj04Zs/1cuSRR2YWViI/mGJJZx8YL7744v6cfeedd4r61scmZFMmYwQwAlPGNjxDnzUrOmORsgWc+6+hhfBiURl0sRcC/mylDJ6lxCEf123iaPf6+hR114EQEAITDAHeBik0gEC5c3r00Ue9Uw1CuMvOuxWE8JO6T/PSNm/FXhkbKbSV72w+Yf9+/c1t9JvsD7LqXBRWrOMB6jKsE6SDXmmllTIdM505JI+HGJ13EEJ7E5vtg7+Vjt3iIX0Mdg466KBiVTzmvdhbuSpZNR2MtDKg4LtX8fDvbfozeOIhUalD5SFBWTwUzTrpxGtjvhVU1Y3VUumcedjTYROPLgx0ICaXXHKxDzKI50HMQgM8NJBJGejEb47jYcQDxRfLsY4ffMsdPxgwf4f8bMzLhAwyoKisUNbc5UGIeHAjBxcv0lIvSDGLG5A2cI66sufhZW8kM8SXAMklL7pBps4777wiH3HXXHON19XeMhcP1aiL17OKEwScOYT9bGOBGcfK61CZg0QZkMwvbJ5T/TqjBxizsEVXI4IM2igjymGPPBa2wKUKjFjQiHjqDCG35bwLfBmk2Rv1/Nxzz3mdKLu8TW3XHy8LINOjBGsLBSFQywhEXxEuo9wDECJe5DAQjm8T0hfRZzQU4h7kngsSyRy/RRdeJNdBgLgVbLvAXs6w8ih9AWXtt/9+ebCRJghhJQn/Gwh2P/EdwpibSH77dEBx/4cO9KP33H2PrZa6vJdDWWy84GIOIvc7Wyxmw8s5Xoohj/ua/s+sNKMMoklP+MwwAYu4/8kDGQhCFZoHrnV1dd5nR315uUSfQ4g0HPNM4QUaJAqZPD94OdhQoC1IE3qcYiuU8vKQ9qIs4pHDdsABB4xcQMUE8oKNRdo4RzpIqn9jsvTsCAIBeTQviEIm6SHEpnyhWrkePL+oQ9T3xhtvcKyLxBP7oKrn5/acoJ68YGZMscNOO/p1N4o61bRRH9ockrbeep2LZzXXdODGPuoZcTwnabeQgXw/LuNlz6b999+/aCPGK48/9nh1jm2l3aL9ILG8mBldgBDy4pS0EELcsmk3yCZxPON4MU35vtk5BSEgBCYuAiKEY8CbDotAB4W1iI60sjXLW2+1jRPC4b8Nz5998ln+ywrLOxnkvC90YG/5vrfVwtrN0c47PDo9NgjfrLPO6nLooCEW9n0q7xx9ldGShdC+Y1Ua7Df3hzUPVwbzWPogBPFARfaS9oau/BuSQ3oe6gww4oFAmVjVOnToUOjBwIg3kxDDIDTzzjtvNjcef4tOvcjPhkWSldD22nOvQodYaS5W1Yv6Ulce0uQnjkUWrrnm6sqDx7CNwYsDbf/MxcUf0qQ1Fx4fVDEwYkARMrbccksfBGJRDeIH2WMhHwYUUU8e9jvvvHOxAiwyqbu/Nbay/v3vf7tM5IKFkzxLQ34wgFg5zvabhyvEl7owCCMP8omDEEIGeWkQZWPZw2J50kkn+QMQHBigxTUV9Y3fEP8gngyAsPixtH481DnmoUp6liGn7Rms8hHuaC/qx0CCtuFNeuiChdS+Geb1I99sbWf36xkdfAAQymgvBGocAV4E4UkAobjuumvdssY9wYsjBpT0odyH9fuV+tXiun/k4UeKvob7+QAb+LJIGOSL/NxHECjOxb0GQakQwpEko75sfqMTFij6C+5LtnPPPcflIpvy2fNJi/bt5vR7NdLxUo6+IkggaeM+Jc+ll15avDiiz2KBK+ItUaV/sT3Bvq3ofUj0A+x5YXTfvfcV8iB3yEZfXoDRP6AHdb7qqqsq8lxa5R9pyRMWQqyqC8y/wB8SQp4llI9snkUdO3b036Fb1H0/Iwi0JfoQfjZrFKQudOKl6sMPP+znvc4Vtfw31l76QnQPeRAY2jGwrCZ3vHjhGTqBIy8IJnVAT57ZTgitHuYPm3fedZc8yDCJawAdA5/Ql2dDWHej7rxcZJXSY445Jh999NFO4qK+YMQxeXihgrzAyMupXkPI51kS+HM/2Lc1PW/ICJlg3ZCFEK8irODXXnut37v8JvBs5541t++MVZ4Q16P/0D8hIAQmGgIihH8AdXS8vR/tXXSCdIRdd+9qPZdltucWLqMr2kAcd1HOYQWjk6WTDtIFceD4RXtIP/HEEwWpoDM98ogjvUPmARwWQr5nePrpp+cZqwSRB10QRx5wWIyckNgDlof8BRf09M4YYsbgBT3ibeprNjDxh4TpwAMfOXTI119/3SgPUFw2sLoF+YKQ4a7Km0TksSEHyx1vv9kTh4Xyrjvv8rf0QdBIx0Mf6yKDHh7k8VDBckmIB5AfVx9AWD/BD1yQjXsRb9ajTuCI9fQNcxstP9DPOON01x3yQz7SH2jkEJLLIM7JlumEDl3NohYYggfpeXhS5vrrr+/WV9w80R1yTzwbxA+SDkaQUuKQx0MXvdGT32ykxVo5wEgqZI+3+D4wqdYzrit7+vkDkLQ8nG+68SbXGRKPy2yUgX51dXU+GMP1E505F3sIKGT4nHPO8YFNtCG64KrMIAsLMfiBTXwTrTzI8EbRPyFQowhEf1EeMMYx++JatuM/CngJYF33+9XuCTwfIJTlgCs/boTRR+DOD2kqE5Fy+vrH9JH039En4KIeeiKD+xJ3y7iPISVY/+ibI53XqVof+gzy4aHRccEFC7m4r+MeWs5DOjxOeDZQfvQjHNP/Rx0iz3BLT59Gf0IfQX+DpYoQfVWkJS8WwiBfC5ouDOwbChCtINbIRycvx16y8XINK9FNN96Yn3n6GX+GhBzKoyyIHvqgOxjx+Y7Qn7SkA7MycUQ+G4Qcl3/SlEOfPn38mRTpmL5RlllOOzGP0TMIoV8X5nHUdY9uTgjRg7Yo14Vj4mhTsOEFIu0CaePFCNcF59mQyxiDtvDrwdqZtD169CjkhuzYUyZjiriGytcRYxWeRVdccYW/YOQ5Gx5J5BslgH+9NkAnQrmsaINy3Chy9EMICIEJhoAI4VhAS+f0+OOP+wOm8iBrlrfffnvrySyz9Wmf1NXlZXAZtQcW55lnBkHANQfLUHSmWKQIfEiZlfDiYYT7J50jnTWDDh7IDCQWMkIVeXHHqLNy0IXBDJYrCCEyIGyURWfMSqVByphH8Pbbb/tbOeSQFlIa7j1Y1MpECXdKSMsONv+Pjn+KKVo4SQlXLGSw8eBhrkfFgtXMHzC4bDGAiLIhHeEiBT4QXMonP2Q2gnf8VqcI/GYAEGVByDbZZJPKb8OFeOp9+OGH+4fh0ZPBAm8mseLipspDkbk7WDvBlcFCWMw4B5a4ePKtJ+SFXjwocUcjvS3e4PIY7PgAyQYx1AcXLwaKWP6CkLuF0Nobl1nkh0zyMqDs/dhjlUtlROVh7nWuVphjdBz0y6D8uWE4dMhQf5NqE+19DqLrVh2g1RmOPDD/+c9/ehmBESSWQReWY4gkFlDIfOU8HzbeyfVFH/BCJoOweCCXsY9j7YVArSLAPRNbXMPle+qP9CYtL3tWMDfNuPfps7/99hvLOnLAzb3GCxq8HiLdzjvvXHG3Nkui39RjKAyS5HOs7P4lf8yJZg7W7bffnr1vqfY/9Ju4y9MvRd1CNHUs149nCy+P6Je4x+mf6f/K+egHjjziCCez3PP0x9EvFXWwAkIurn700d5nmFzc0MN6GGlCvi1S5dMRKgSkmdcjnimhc3nPi9GQjS7ojT4bWL8FaYkXZVEOecvHWFp5uRj13dbm4zPfsUhn7cnzjzYEZ8qI5xC/mbtZpPWj7N+8gwwhk/S0RzVRNcWk20Hc3NXX3EUZU+xmbTFo8KCqeiNffDhGVndcaMP1mfoyX5yXBkGuyvcIzy9eToYnD+m5fupfd2X8edZXniWV641jPu2CtY9rkXLKZTSEXMisvyd9xMW1Hro3JEvxQkAIjH8ERAjHgCmdVGy9e/euuNNUH8Jb2kIkMSCA8NBB+qIyRgggYnSUDNB9YO55mufLL7/cO85v7eGFVYnOmI2FVOgAcYEivT80rdOl4+WYSfK4fcSEd+RCLuPNNYuixEOVj7siA7k8JBiUnHnmGcVggDfSMXigTPSgDNKzIAxvFC+55JLMXDPieGhSDkQHAojLJ/GQsEp8M5+Lx4OmT58+BRHhgQwhAz+sdGFNJC/uKwR/CNj54rgax5vGcLVi4OAPbit/KVssgjk54EL5QchwQeJBwuACayUP+bZt2+b777/fyxhi1jFIKHKoKySzztqMuXTIQif23Q/vPsqDDYtpRY/mLo8HKZjRDiyWE4QcQkgdIZJ77713gWe0n602m3td1Sv/wtvaan290tV/joMd1xl+++z1L3MznqP6trdyDaAf9cKKyJv87bfbvtCZOmFpCBnggEtuYOPXjxHoqHvUNTBDhcgb+6pa2gmByQIBruvYqBD3MO7mEBruB+6Nk21e25AhtuiTdeoj7MUNewLzu+l34r5p07pN/tDuQz89mnvZM1X/YSGM+d/kx82Ssq8wi0r0Y/SrnKN/L+b2VfUtyyofQ8ggOfQvbPTD/vLLZMfAHFkb2otCXDrpi3lpFM8F3Mx5UUiIe/6ee+7xfov+ApnhVl8uN46pA54IQbogtmMihJANXEaRS13Z6J+fNcsdshoK0Wa8uIznFH07L+54RpQDXhgxFYO+Eu+RKIuXXzwzkUd54MczKM7jTeHuon/QnuXyJtQxOoaF0PUzCyEuo4P92hxZarQbe+bUx7VA+/FiuYxrpI1rg+cXLxxJSxmRh/ORtrxnkTTSRfvxkuNOc/GM8UikHamdjoSAEGiMCIgQjqHVvKOrPiReN1fBeFjaos95SyMhw8wiZz2oW5V4qESHyaIfPJAhCTGHEAJz8cWX+ECi31df53VtFcnojLH20YHjjhSEi0EKx8ik3LXXWjvXGYkhHd8U6m4WsiAkuG1ACOnQY6BDPogpb8JxJ4kOHXdL5gUSeFMdLpaUsf9+++fBRlqYe4IrD3GRD32OP+54Tx84cI7BSLgL8ZbZCbCVjVsQhIrwqcUzCAl8jjNyVjx8qviCdTxYyu5cDGiiHFxNmT8Xciq62cqA5hpFXuYVMdBCPyyEt992u8fjLsnKa0GScEllABAWwsDYlj/39KEbgyQsqpxnYEd9eGuOhZC8QYghhAx6CAw8WJxmYbsewIy89jmJPNU0U+ePjfBBCJFPiDqz/8DaZOUVV3IyO41hx0R+3LI8v8ng+uHj2JS/Q9WCS/0XttX7uNYIIZe5ixDpaKfLLrvU3aZwV+bNMS5UXBeUG3k4VhACkxMCDV3TvLihz+T+5R5ikYsnHn/C7gXICfdmhRCSnz4Slzm/lyxtyxZT5IvMU2DEsMo93BBe3Ff0i5CTkffhZe79EGSQeEjp6eYWT1mxucwx3I+kg2xGf0YfEc8Q8uJaS18cC41RP/oEngfUl74dj5e499nzggs5nIdwRX82uvrxDDrzzDO9jyE9zz6seA0FPEeCVAcW9J+8RGwoUMcIpOMbjpSFjvSFd911lz8L0Z20PDu9vzXCyOIleMrwm/KYOlFnz86oL/rQZyOPDe8RyiiXGWVPij3jBiyErp8Rwp1shWwI4ej0gyzzMjrajhevzD/Fggpho17s2Xh2xIZVMZ5PlMMq3IFl/XJY7Czks+cFNOUWodRWRZwOhIAQaHQIiBA20GT2eC7O0EH2+7pfntYeRJBB+5Zbns+Iwt1332UD6zfzsccdM0rnyuqVkBAWlWlddTea0gboPXv0dALZ32Th5hmdLG/geMj6ojJVCxwuMrgQuQuplcfbWBZzIUA6cO90QmIPQOZ+BCG86aab/IFJJ4+FkIE/li3K4u0qJJO3e5QHOcBdxM/ZeYgjgUHQ3//+N3+Y+kPJZPGA4q0yAynSx4OdVTWjbB664UbEw+ZGmxcCdrzx5EEVeRgMEOLB43ODLJ3/tj0PL96mIyPKZ1CDhYx4d3+yuqAHODHwivpAkIhHDwgkspjPiUUs3IN4e8wE9mPtrTxpKYNBGoModIjtTVvgJuZbUCYLs+BKCmHFZTUIIVjxEKeezDGk7ZF1lJFQBi+UwfzSRx55pJAd9aesX01HdI0BjH3j0gnr7bZqaqWMyrwQ5i7ygMcNFZ3BE9fj+Oiw42eCWXQhLKyUzRtkiD4BPBgQYzVlAFAeBES9PaH+CYHGjoDdWwSs6oS4vunHwhOD+wiywgrFzLV+4fnn8ksvvmAWr5fy8y88530LLv1xr9P/L2GEaUD/AS5zTP+wms06y8gFxNawObzcl9y3lMu9Sf9Av18/hK7Ex31dTsNLoMJqZnKoQ12J9FCfmH5A30t/FCSIMllBFUsZgX6LRcZCJz4FwDOgoVCfEP6RhZC+0b5RV+kHTVf7tmp+8sknGxJfxAcG7OnjizYwGTxjITeBTYW0VOZ6M+8c7GOaAgT4ySdGlscLz3ju8eLyCrPYUqdaCQUhtHqyavkuu+2aBw8dUtS1rCfPMXCJtsPyiucLCw0xXmDjectGHBvk/9/mYRTXIXmZlsGLzpinSxmBrX8aAl0sHc9Vrp0g19FGZZ10LASEQONEQISwgXYrXPvsYUSnhzVwR7PMQCoYFLB1mGfuvORSi5k1rPJNqCAXrJhF+Pa7b/NcRmSCCF1pDx545gD7JIV/3sE6WfIw4KAjxic/3HogIhA2rI2kQQauGixIAwEIQkInDdkJUobrUJAQCCFz4njbG9+BIj1vTJmnx5s+fiObgQqragZJwO0EdybKZoOcQiZGWeDF4nk4EMCozgYk7rJp8TxomX9DvBNCPt1QlYV7VOTxg+o/0hIgPc/YfEAGGqEfODAvhgd9LJjCubCOko+3luWV1sAQ91fcRcNySV2x4DGYIB4Z6IXeLOmODrQFOKA3D0ofiFi7gxELt0DGw3JIXsg9GPPWGsxxAea7icwzLFt5ac8gYOgb9cVNlzxRV1YZRW8WBkA+8ejAm28GRsxfdb1NJ1aSjcFbyGNAwXcMA290pa69e/f2N+nxzUgGQZ4H3Kl3FX90UxACjR2B8qA16sI1foTNrQtXTfoDBrkQhEUWXigvMN+8eeGOC5iFf0EjMfPZvqPPtyJd3ItY5njx9kf3C1Y8BuhxX5MfOWzE+T1scfRT3Nchr7gvQ+nR7Enjc62tD0AOOvEiKO5j6hhEgecLFiO8JCgbrwv6AF5uEbxPrc5Xp99GbmA3mqKdPPGSKV7+gR19W0OB/ogXd1HfZcxSyZzzMQWwiI068Xzzl3qGFzhiFWNuIml4AdfJpkLwbEYnVqqmzC5dunha+n68SHiugFu8eEUO/TX1D+xjPybdJug5qw+6F6uMGiHcdffdnBCOUm4VH1xlwTWuz/I1Vj8u8GcKCuniN8exEF75+RTllT87AZZ44igIASEw+SEgQjiaNoWWVKjJyEE7yZ41ktJmppn9gdqCCd/Vh3rs6Vj5XAAPHQjlV19/laebwebzWaeOhe8Km0OIYFxGWdiE9GyHHlJxGeWhxVtdOvL4DiEWviAzPPAgCVi8eOPHA5+0fCCWhzud+RVGOsOyhosQcy3QhzknpC1vlO1kx/aHG+HjjXE8hHFP5DzpmZuBHIgSC7dAnqgzD3n0Qz75yBPn2GPhIr6urq74bhEyma/jAw47V//tfQxEGADEIgEQ3EttqXXKgaRBdiifwUv5TTdl3XHHHY516E46tyhaucQxh5IHLgFiR/3AlbfIBOqIHAKkESsnbUfeGESWZXMMaWTOKAsTkAaZcU3EHstllBvyY085zOmIVWojT5THb2SCw91GOiHBxFE2pL4+IWSAxAq1XDeRjrQcxzVz9dX2Ae5qCD3it/ZCYHJDgH6FjXuwfF/Evcr9wUu+Fs3tXrP+mj2/OWbv95H1E3EfMYccgtFQoB/BjbLycm6kRRA5rLiMR0Lcj8jkuUG/Prb3Iunqz1Es94WQTPoPZPN9OvS54YbrnThSZ/pQVkCm/4Xc8rIRfSBrEKox6UE/jJsrzxnk8xwYk8soxI2XeIE18xl5uTemUO6HSUeZPAMoLzbqRYBM00cjn7mK6I4XBJiSFgKMlQvPDsrl5VuQZV4gBjGmjEkd0L0+IQwLYVm3aB+snbQbG3VlDw6OkV2vHMfvOK78rl6TloY8WFP79OkzsgjTgzLYmBfPM5J8XCdcdwpCQAhMfgiIEDbQptYV+pnoeI3huWvf3Xfelf9vnbVz21lb28BiWiNA0xiJm94eigu6pQ/ffAK5+/XvlxddrFOexQgVb4p5oFkP6xZCBhQMCiBbWG8YrPDAnn+++T0O9yLe/hHOO+9cK6+tx2OlgtyRBxKDDH/bawQK2bgK8VBELquN4R6FbB6QDBhwLWIFUwZF5OXtLsSIhxCDg3gIQCp4EDCgwQJG4BxWOD5xABnr1rVb4a5I2bz1nWP2ObxsBj133H6H50M2AxB0AgdcVtApgmNs+csBctqjx/leDvMP/SFkaXig++c4zPUVkhWLI1A+IUgcZBJ3LfTHSoeVjPmHuJ0y2CDgToNO4MCb4nJgcIBeWGMpjwFNyMJyyRtc5hWSF+sluDAoop60EYSYDfm41b7ysi3LHisTVnUNrCnrOXNV+7/O6+VprV3IR3m85efFAS8JKAcXMdxGwR25bNQJTBxDq0BgiUsZ83x40JOX9gYHrhlIJG/Fizaop08ZBx0LgcaMQNwX1IHrnYW9glCERYn7gm0m68fbzDRDbm371jPOYP3kdB43sx3Tx7c0K1zk5T7i5diYAkSFe7Q8UKdf722LX+GNwX0Z8uhbsMzhhYGebH9EUEhL3xOEgP6hv72YYiEc+iDi6aMgmgT6PsqhTOYX4m2CdwL9PxZGBvzxciv609HVD71YVAZrHGWMjcsoC5KFntttu+3Ivmd0BVhcud3imL6ebzaGHLxV0IXPJgTZoT8k8Bwo5hVafSGh9Im4WHbpXLEcQgrpI4v+0/rBKMuFTIp/pkN9QliZQ1hZVbVQiT7bNlYsj7mk4MLzHMLLs5uNBXWYIwkhxlK8l82H5fMcB1ka5sZynk9ogYNbXOO6q8oHD+TFdcr1xHz3wIl9HBe66UAICIFGiUAztLaORKEeAtleutmAoV5sSvagTrZISvr000/Sl199lczvPrWfs31qPXObZG6ZafoZZrBu2SBt1iz9NmxYeunFF9NgS4MkIzDJCFOyOWPp7XffST98/30yq1Cyh3OyB2Yy61cyQullGClINphP9gBP9gYzvf766yY3Jet+U/v27ZM9zJJ14Mk642QDi/9n7zwA/SqK/b9JqP4RgQChSkILSHsUpQmEjlSflCAEQUgITXpAQAggPhGQbkHABIWAiArSkRC6NJ8UUUHNBRGf9NBr2P/3M+fMufv75Xdrbu793bCb/O45Z8/u7Mzsnt2dndlZgy1NWJDpYpDTGAT9MN988wVpxAwGhGgfWfi74P/ruefCK6++GrTaFzRhCSuvvLKlJQ35+GmADRqAg0yBDPZ6665rNPGOON6RT8Ja0Eqx0QydWrEMH0//OMw515xGkwTDIOEy/OXPfw6vv/EGRQQJZ0FCa8Uni+SPYMO34jYaLdr/GIYMGRI22mijoEmb0dvS0hLkGEU4/7+w9dbbBAmnyqalfPKXYerUqUHeVIMmAUabBNGw/PLLG72eBl7LwYDlg1faj1eV72nACbqkIRW8v4nvc4RlllkmSEgLOow+fPTR9LDgQgsGaXSDBuagvTpBDmvsB18WXGCBsOKKw8NSSy8l+kqoBYn2YDirjA/UVsD5wQcfED/nDnJKE7TKbzRQNvjRfrSXMmgFP2hiY/mhi3jaA8F5AD802Qv/EA/+T3iSHhjUuSYNxgfPYxnLvOTLIXNgduIA3wStWos7YfSYMUGLZvYtDppjUNBEOAwfvpLe8nEWfZ9/A+kYoOl3OPecc8Pvfne7pZtb3/a3TzstaLIdtD9ccWVI+i8tEAWZeVs/xtvPf/7zQcJLkOWGfacyuwwy47Q+DRy11y9o0S5o0c6hWb9WPaQ3Si8rlCDBLGj7gI0Z9EGyaFD/8FjYa6+vqW/6KGhvYJAG0HIyjmgfofWd9O8ynQ8SKIPOYwzyKmp9vvbfBQkK1qc7H9JiuWcMhA5tI7DxTwJhuOrKK4OOXqpPas+MSRLIwmOPagxT2G+/fcPFl1xi9135Q382er/9wlWiEX5pYSvoKI8g79CCd7HxSouuRg9w4b/2vgdpctUHrxi0ncJ4Qj4ttgbGywceeKCqj7bo7QqOPZEWfu28885WT8D7uvj1A/F73nnmnQE8dQpvH3rwIY1dIWgBMchKxtoU9ZT28dwTR4BWHyt4tjFcV8Yw5hS8d35IIAza427ptdAQpJm1MZB8OWQOZA7MRhxQp5BDFzmgTrVawe1oFbeLoHslOSt6rKByhRau/DwQpwiL830XvEvTkh/a03yen7w9ESiPMpzHhpcAe5ybbPHs77xcp4k09e88TYfXkgee32nuMJ8S2AZ9+NBJXngZ5PN7p5urazU7U3aaxmAJB6/v9F2+zxz4pHCA72fKlCmmIdfwbRoP9k2hISPQX+gr00/9i37YENCLqRe0K98RHpwr83OZ0LEP3C0rlLTqC61PFDy8+XJ4tybW9vNzWf27xqICRy/+Hi3XgQceCKi2+1Z7W/yhHLR8aIWgCa0gnpHRAAELuGZGqr6agEbRvYny7lg5M8MKZeWVVrb8eDfGKRa0eh9UlFT7F/zRKDkvOjIZxcwfyxCnkzMO24NfW1rrE+Wy3YByoZd9hPfee29kzzXPaGOxfCBQ3xKszPIDXmDeikn/ZZdNNN6QfhNpa6k/Sy9eWr3ZU9/+qdEQCs+x4hfjQoWnaHNc0W6yZcTMg9Um0dai6bM2VkeT16vz/v777o93yrM2e0/RZpPH3zl8yrSD6QUbnmH5Q33mkDmQOTD7cYBVnxy6wIG0o7RsdZ1uF0D1WdJGnT7IzEBbG3GNEG+Ut1G6LseJv20FpyN9X+FRl6+KTxN34d4Esg7q2stIr37fqKhG71LBr9H7RnA6inM4XBvxrKP8+X3mQH/kAG3d2z7CEKbfCAYIJggJHKPDQomlE4H0NAiCrcJgEYdIyJ5wzLUxwTbBRpPjBWVmao5cyJv0DcDD/J5JNiZ2LghhZun4KItNwDnKxvfvOV6YjoJXu6H8lhEqfU81NOFwCpN+Ju+Yh956660GxstFgHJhEbN3zuNzASsVkIRom8UjOOAV2fN1ZDKKYMaeeMoFL/b2dTdgaosAigCE2S7mjHighnfgTx05rdQ5x3FQJu9Jaw5SSuEGx11sjXBa0zrsLn49ka9eIIRfhqeAO21VOaonzKCl/av4e8EF51fCHel9nz55PD8edecpTX7hD3xy+k2YJC3tWD/MSklD/WFqjMCZQ+ZA5sDsx4EsEHanTpPB0jvY7oDpyzze+YNDet/ouQZPp92vZf6aND34MAN/Va7H1ePdqNjOpGmUb4a4kt5UYJshTRnh+DGYCtm2klXxnr5KW5dnZmnoDM4VMvkmc2A24oB/W0yyERhMOJNAgDDhRx9YGvoV0T2jMFgwgzQc94N2ywQqTZAHDRwUDz/88EKgJH/5IwffHNqqVDMm80YD5jiRBocmTMYdL2AjYLE/0SfmBQYz/gXOO9IQ4T0UgYBJO/sS+XG/tvZes2+QYH2A0j+v81eHI1CJB+xNRuPDPeWjTfQyre+asUiLIQ1npCJcUw4CWnuORuA9WkyjUeVwbE53AwKwO2SjfGi1+hBc9g/iOMZpoD+95eZbrFzSoEGkPrhHWEYb6n2u10l38erJfPUC4ZjRYypNNvWS4sp9y9Spcd3Sizf1wZ77u6T5QyC2tEpT1afu2VNqWj/xjDphzzoLBfVwnSY8ayOAwzfOVcZ5XA6ZA5kDsx8HskA4E3VKB5p2ojMBqlezpnhXA4UwqKelSldHp8fXp58VRNQPgF5GijdxKS5+X3/1vF29ukDVFi4pPE/jZafvOronDz+jTdc0+Ls0rjP3zieuft8d3DpTVk6TOdBMHPB2zlV75CqHKkya8S6JZ2APfBt8cf7zeL8iZAAHRyU41AIGE2ScpZgJnd55P0Ee0iIQukdT0l900UUW73h5Ou11NrNHF5i4YgaY4ud4pFfggPdNMhPlnNs0P5410yN5SMuP4ye0Z7BKSzryIViBr+Pm17Q8v4cXmIwikMGDzpiMfnbpQotHWQiE7cH3chpd0ZSZh+0Sb68HcEED65pVFwqfksYQIcbTgS84wBvMhcGju7g0wq8n4uoFQhYhKpNR2ik/4e2BNnDeeeeacxnoZHEAD+NXXnnlDCaxOBxCU+ptGEEP53MIjwSH61f4eJic0gAXvsFL7ZH3ovM1cyBzYDbiQBYIu1iZdJQ+2HQxa1Ml9w4/RcriyoGmrfddiU9hz+w95fqvBhb46ufCTs278qERzo3S1cd1Nx9wbIJZ8rIebvrsZfg1fef3vPOfx3X22h7czsLI6TIH+isH+A7pr9GI+PlrCA9nnXWmxdt3pTQe7Ll8sG8n+YZ5RngbNmxYNUFmkowpqvc/qXkeRwKYBk5pEEQuuOAC66u8LL+S96677iq1iYXAgiA5YcKECkdP61cvj+cWaYjYR8fknok7PzxPYg6KAGV0KJ3n8SOIfJIPbnJiUnnb9PReVv0Vfp533nmVl1G0f753rz4tz5iMorUyYUzaSDmGaZSsU3HgdvPNN5u5I/Q6zWg7Mb8FtxR/vGvvzfnBqgN+0AwenKPo/PCC6589vrev9QLhvvvuW2kIG+ECzXJmVp27CJ3QCK2cU4sn2nHjxsWxY8dWJs/OB0xA75DXW2AQKt7R7su2f4z2mhZtZaCZQNPecsgcyByY/TiQBcKZqNOq85wJGH2R1fG2a9npt4UHaTx9mqZRXPq+J+8bllWHd5omXakHj/Rdd/FyGH5tBMff+dXS1OHZKF8al05KauCkibp5n8LuJoicLXOgX3GAb4jjClLTTcwF2d9HqL6x9Dt15YtflY5vh7QIGAcccEAl3DD5xhSVSXwFq4RLGZjjmTAiQchNRimXkKbnLFEm7ZWmT+lxmpLuiUvTe37wwnGWHzrvQg/HaOBEpWaiL/zpGzlYHPPJYpJfCA+YgDqNVk7KD8O29Q8wEagQrIGBhvAP7ZxNB28Qoh039jnW09IKvf078skzdPxCaSJpvFUdINi0tLTMAJf0dsZrIiShrUQI8v7QcfFr+xjM+rdonKuD6cVfNLou2IOj4a1rGqgTHMS4Oa3Xbf3V+UU82m0cJbl2sIJXBxsnRaTnl53KVFzKN5kDsx0HskA421VpJihzIHMgcyBzAA4wgea8UTQmpqGSYMA5dO6kozNcqgQFweJ+8uTJJtwYPAluCJjuXIaJuad/4oknzGTUBSGcf7QVyIPg6nvBHNdRo0ZVE3bSGPxSOAUWcQgIOI9xE04m7ghICJOp0ON4oeVcf/31bYJPOWj47pG3UgErcNe1vQAOaAg5DJ6yEAhdwG6UDxPDNXTOqwsV0NTtUPKAM/Xgq/MJDSdCNfQanQkNnIeL4x5Pz5mE7INzfkB3swR4i0Co4zIqfqHZM2+4wrPGXDTBG1rIi0not7/9bduH6sKf8wj+c4/2mb2vd06ZUmmF26PfeU1+BEI/a7m9PPld5kDmQP/jQD6HUL1cDpkDmQOZA5kDsx8HJCDYea2cYacJs53LJs+fdqapJsx25hrns2no1jFuOsitjWM4gUM6Amk5G1TmoWGuuec2GJzvKS2kvQcugfI4s5bzaIlbXOXOr7NUGwUrX2k4F5XzYt/X2XmcCUc8555K6LR7TegLXMsyeE/gytl6lEmaOZV3OZ27SrkGm0S6hw6ChA47p1TaRTuDjvNNJeDZO/44DVVEciOhJLyq8+8429R5KkHBzmZNktXccj6rtKtGE+ehLqHz7AaW/KxJ2MGDBB9LIecxVq/UCfXwGZ33KiHY3jlPeIAOHc1g9EoTZu8lEAU5Faqpz/botUy98MfqSfiCp7SqdtWeyDB48OBAmyV4fcIHb4/Ek9fjqGM5jglaEAhy9mNn4moPop0LzNnBEuDtTF7y0Vbaox2Y1DPn+XI/t9r7sGHDOswH7BwyBzIH+hcHskDYv+orY5s5kDmQOZA50AUOuIDAxJdJLcEn1gMVh0jV3qTYMiB4kVZXh2N5y3iHyZUJOWn8Z+WTT5Pv9oLjSRovg2sa/Bk6mMwTyOd4+XtFFNmUHwFOAA1mEdn616E7DwyOXnPofSpwtOYo7iifsvh5+Y5PfVqeHV/SEio87akLf8hflmllC48a3OvphDcleC/TeTXTuHQB7c4mTfma5jH+iTZo9+B02HPJl/Qd7/m50E99Os2k87pzvnje9Orp0zTEpc9p+nyfOZA50H85kAXC/lt3GfPMgcyBzIHMgbY4wCRZIRUYTFDSpNoFlDRru5NcYJWT8VTga5S/fhLd2Qm0p7NrgrfjSjy/SvAqcSKO4O8QAFPhE7pcoJBxZDWZJx5aXFDw/M4jA9rgj5dXwZVgSlxb/EvTNwDXpSgvx2GSOY0DB8Oj5A10O14mSum9p+9Swb2YOKUN3B1fp8Xp8fiUB46mv/M8AlLTJtIyyOMwPb9fPZ2/l3ltDRxPl6+ZA5kD/Z8DWSDs/3WYKcgcyBzIHMgcaMABnxi74ONJEJpMsNKEu5o06z4N1VMpXPCOtGgGEawqwazMZO8SrV01iSa/gj+XyWsuNvFWOuC6Zs5xJ2E6Ebd4xZkWD2FM98A2GNyX78CPe3uva4WzyiAOfF0Y1GMNDH/mWh+MX2UkgmeKZ33a9NnyCc/2+JCmb3Sf1mNFb129kcZpV2EVfo3qpy0Yjcqe1XGOXw2fyrpKeZbiXH/PM2n5OTzi+MGTFHbKy/Zo8zykSfFoL09+lzmQOdD/OJAFwm7WmXe83cyes2mAYrDuSsg87wq3+nNan8L2Zxoy7k3BgaSf8f6DqwfuXbBrjS3e1vROnqfss1IYpPaJcjrJTu+9bC/XrgluPDtMynXhrT5fW89pfHqfwuWe4MKCaRGdrjLeEuhPPQyPT6/pV2q8Eyxgp/GkN/FTkfXv6tOlsNu7d9ysTEorbgr4joPzto4+8iphW1tF2yu23Xeg4O3F8Ws/Q4FHozRpfr83vCkjaX9+7zDaSuvvrU1RPyVPrD50Xw/H03NNYZIubdNpunyfOZA50P85kAXCNurQO0J/7c92VSSdqw0AZQfdVqdKesIM74knr65FigZpLOes+QNebFiXZzrDQaXb/1lTWi1U5wmx8BD6Z+APL8vAIEQgjafza5mkc5eS515+Z8puE7DXX5kAmPzQPAySQ4du4VdXGPCAU+FbtjWS2TtdP1AdzjnnnFVOz9Nh+dboaAMfmaMHr36vCyuzLM/L9z1TnS6jwqqzN4VjhAL31rrmGxEjKj7wnJrEdRZ6TvfJ4gDf4rtypkE/hyYMwY/9VDhcwdGLB2/f/mwyBm2OELVHTbcfTf8ozKm+EicqpK/RtigZ48FHfItlGrLSb9G/UqaX4X0ZOKWBZ2ACn/bPt7a4HLXgrKZRAB7/Xsaxi77h995/T3TNWeI1XXCmhznmnCN8rOuAgQPUR8wVdCi9OY758KMPwxyD5ihoUh6c1yy44IKWl7LSvoNyeH5bDmEoi7TwYg7lm67rIMFxDdJHgks5XAcOHFRqqBhXBiiP8MGJjOBZGaJ1LqVdWA5TKMM1lVY2aZSnUXjvg/fDa6+8amPGBx9+YP3AIMGaDp1WVFEeGlWc1kwXbwbNUeCiMwsFlyotylt44YVVP0XfSZHw3INr19544w1zSlM4BirQBzZ9PGm8HK9f8gNGTj9tbKNOeUdaeIcDHBIsLqc6tEPuvSznNQ5g3lS57+hqbUEwSOPoFWWBK3Wjd+It7Y764B11w5W2NM88c1sfD17wnzgC7RLnNf5dcA+u9k7jyXulAx7aEO0LesF9Dr2jfikXvs47z7xqOwuoPEgp+NfKRQOX/2QOZA70Ew5kgbCDivJO2q8k91WyNK4DMNVr8uJJ7vnnn7fBBO9xK3/uczZQA8875SpDD98wHDOAyO12uP/++82D2brrrhsWXGBB9eg9XFgDcEx8nn32WeMBAySDMl7PGJgaBbkSD0899ZR59fv85z8f8IY377zzVoNPozztxaWmV6TzumwvT/27ehi8ZxB/4IEHQktLS1hjjTXC6qutZoOoD5L1MNp7ph0QyMtEwHnAoM07+DVEHg2nydOe3MXb4E2ZxHtwGGl7Is5h4snwwQcfDDo0Oqy19tphpZVWmmFiAiwmuvJHH/729N/CSy++aOUzecRbHZODcibgxc7UlXLA8bXXXpXHxL9XwuqwYcOCzk1rs43MVKE582zLAb6bX/3qV+FPf/qTurYBJjTxvfMN+MSYZ74RvrO33njT4vn6PtC3RpybZb7w4gthPnmn5DsnP+0U+KTx/P4tEOffWfUu4bLBLfEgGljE+T24Dl54cNDx3C+W8wAAQABJREFUAWHbbbc1WPay7g+eSM8443vh55dfXuHkMIDnQhZx4AHN9Lm8c7wGamK/8UYbWVl4SSWeQBposCFB13vuuSfoPLxCqCH/IHhGf2LJ7Y9OfJAXyrn03UpQE1y+ZwYVBNLpH8v76QAXCCXwKu6LG24YvnPad8KQIUOsLIBY3wrQFLBBL/78/R9/D0cfc0z485NPFouylpZ8hQBmOCsO3Cjj4+mFYPjxx6pn4QRBTttPL/1p2HDDDQS4qE8XCG1MgA+C8/jjj4fddt01FLWjKMH86COEu4J+4MJT6pBfVT7lKj/8BB6B+uAeT52/ve66sMzQoUV6XkJHGZgfHHXUUeGxxx4zwdfaknhJbbAIUBugtcABuvRf+OA8psDYhGByCTfoL2inuEJQBRZFTxe+Hgapbv25MAku2gvtp75Nff3r+4ZxRx9l8MCT0EqJQ8zXzIHMgf7AgSwQNqoldZ4W1MF5J+/JeKZTp/NrS4jxtFx98LEOWYMD7s9POeWU8P3vf9/gjBgxIvzsZz8zN9jeoab5e/Leh5IXXvhPOOKII8MvrrrK6GDiceSRR9a4He/JclNYr2qVee999gk33XSTRevQ23DmGWeEuROX52n6hx56KGyzzTZh2mvTwryfmtfcaA8fPtwGWxvJ0sQd3PvATDJ47ZOfDrK1+Zo6pX6B+7vf/S589atftUnif/3Xf4WJEyeG1Vdf3fJ2p16Ba/ipjD8++mjQOVsmbALrOk0mdth++3DueeeFY489Nnz4wYdhq623ChMmTDDBiQlKGrwN+xWNhQ6tDnvssYfhr0Oew29/+1ubmHm5ThttnNXqIzVBueSSS4xvu+66S7j44kuCDt3u1DeQ4tLePZMYkWdtY9SovSQYTjN3+9dee23YcsstLSt46aO0+6wlbI+b+R2LXgceeGDQeWvFrLcBS/ie/LvwiSzas3RCzSQcbVOaFlB8nx5nlhaKm3/++cO0adPCAjoGgWDtVVe0+C6EflrHLqCBYWGL7428/h543CMkHSPBZ031JfZRGLTWP97vHKHvcsJPfyrhCAFEE36uJjiobPBGCKKf0n0p3tmEnS/Icd9OQueFF15oZTq+vLNAXv2m3DEl7LjTjkWU/jps0tt9WSZCkE4CtLKIL4JzlqfWuG3Vr//gBz+wIxW8Drz/KTPOcHnq6afDmP3HhIcffsTogDdVXRUxhk+aMRWk/J7rb9SvbGX9ijA14bZYgEvH9bvuvCtsu10hlEPXIPGTq7inXytPoRWY8I06sHtSiD8FK1t5QP2yGMc45vQ6/eCtc/7C3nvvHf74xz/yaBxr5aVF2R/KqA9FukLDDEwPjh/PXu/ce3zbV6e0SO1lOoxDDz00fPe7/wNU0SLrGGmGc8gcyBzonxzIAmE79ZZ20iSj8+b8oymaYKy91lrhszofyjpGxbc1OU07ZdIiEJ511llBhyWbKcaWW20ZdGCxDYouoJCup0Pr0BACZ0KN3H1keESDKiuyOqg3XHbZZSZM9HS59fBeffVVEz4pj4Ag+p3vfKdNYfSKK64IOsi4AoPwzHN3eIR28q677lJZ84Z11/2Crex2Bw7IeNvgClwd1BxOOOEEu0fre/HFF5uAyHtbee5inabt5lEJhLvsskslEF599dXhK1/5StDhwuH88883XnBO1ZVXXhk22WQTE1BtUsOEoEG5aBrJe9FFF1nez+hstGuuuSZsuumm9uyTFKfzvXffDYcfcYTRBL/2kUBPuUxovc1WFTQTN0wogD/59tvDHnuOsrO0mGAjEG6qhRNocb50t95mAr2ctZ9xQIfPh4e1oPRCqdmmV6UfTNvOPNLWYHaN1qbodQeYqSWkusDHPW3dNWz2TUsYxASPfj9NB2xvowh65AE2aVg44qw/rnyfno9n7u2n/KZ5V5lo4snbVuA71YHwYeozLZYErQ7mk0KgoFOxPtEHL/uuVa5r4RD06JsWk/C5jqwvjAd69tHH3/Pd6XB5syhxXCo69Y7ySEPweJ6M10WkNITQ6MceqFzdLyqt/xeScoFTaKQQohwLALSG16a9Fh586OHwxhuvWxr4a3y0JMLdC+ZZ9xVqIJMGJdTh7zLdXEzJWsui7pwGknMe4H333VflLMAUgjZpq/Si1vKVgqW3AacD3lPnXFmw22KLLQLnIaZleSG0W8pkYcGD1ahwhh44a3DtoSDS4VAu/LDyLX2xUODP1GmRtlhwLPBspR/YhbkvWk0ES3hY0Ovtwa56gZkuliWrr6GFz5K/hpcjna+ZA5kD/YsD+thzaIcD6sCjBh1LIXOhKIEkLjts2SiNkMbV1nftgCheKa0G/iiBMEoAipos0IVGTeDjM888U6XpEE43E6gT1yJo8Xv1tVfjmLH7R+0PiFqtjBJOowafbkLuWjYdchv3339/o10DVzzssMOiBI42gUhDGGUmGmXiEocNGxbvvfde42ObGdp5oUHWYJx88slRhyRbSuqwq4F69OBtQCvoUSZXRtc666wTtbpbJOkGfIft7Q5Y0jYabPhwww03WNuTRjBqUiHeDIjbb799bGlpsXjyg1dKW3oP3F//+tdRWllmB1GCYNTEp0if5itZ887bb8exqjPqi7L22efrUVrDbteD01d/lUCoqOlx8uTbxctFjF7ou+OOO+wbNBqEn4eUJo/L18wB5wDto/7HO77f+vg221LS3vy7r0/rsNJy/d7z+DNXz+9XRdhrmfLXvKvep5kb3JNO+/qq/j2lz+/J5rg0gktce/H179L0DrcBahYlyBVufi8BMcoc18qE7s4Gy6PEBZzWv53N7+mML+VDWr7XAfR5/0uyevodTvVO6f3e06Y8Su89r6cTcIPvfPS06XuDrT+Ukv6Ir8fT4fDOg8NK89bew8ta2DxbKGnzR65VGQ3epenyfeZA5kD/4QCrPzl0ggN0ur///e/j0ksvHbVabPfWKbbRIXqnDmi/J/3bmlx/61vfMkEMgXDrrbeOWn1td8BJ0XNYaVx7954+7ey1wT/+WwLApKuujJdffrnhxKDUraB8lNFRcDxefPHFuPvuu5tggXAhk8coE8Y2s5NPq/zx0ksvjY9KMOqorLbe//Wvf41f/OIXo1Zn4//8z/9YmdWgVle641oXXfNIGs/v6bUnM0ozaMJgOkjXZCwfDM92+OYwuUI/wjACGQL8TTfeaFDk8CDK9Db+5Cc/iS0tLVUxDptrimOVQDcM/1PuvitOmDgx/mPqP4pXSk87sPzElM/vqs2OGT3aBDTa7NixY21ho0jScd0XwGf8SzlVWfaa5+mi6YYoRwVGr/YORvjqgfQd8dbT5usnmwPWvkpho7adiS8ztL1WXqVpDQbfgWVpbeveBuu/L49vhVbcpXDsu6qDl6a38ssy0/j0PsXR4XnZ/q5RmfX4elpg+zvua/KWz8RXoeRfmp93Llyl8XCN/qa4ct8aSGfllvB4k+ZtTdl61wqnFaa9TWC0pm6FB9wUdv0zefy900Gc85V7cPU0PPu9XxVBJK8seLxfieTen/1apC7+tve+lXbBKWFZLsFM64+4FLbfF/lb+VYLj3jBUR9cxZe0eP60DIsr36c8Mnzyn8yBzIF+x4FsMtpAoataNDMJN39Qx2eOTUaPHh0kFJrZD3su1pLZKCZAyy23nO0DUWcZ/v3vf4cXXnjBnHVgmrf88suHJeQtbrC8qWHKgTkI5oXjx48373OYjkzUfjPSsJlcGjQrm30GwP2UTJVwbIDJjsH+D84N5gvD5UBkySWXNBMb8PyX8r708stGDaY/OF9x5y14Y1tttdXDEko/l+Cq87Z3eFDDWATTnYWEX0tLi3keAwgw4YMHzCJxOrCk8MSjGV7nntUeHWiVts3wl9BiZk7ONwEIb739dnha+z7ABfMsPOdBPzRjqnPoYYfKMcIZxj8vK71iNiMNaoUL+y4wi4Ifr8j8FD5hLgmuOOp5Qfz5zAKfsf0Z0KWBzXAcf9L48NMJP7V0o/cbHfb5+j5W5rLLLms4k5+ynhNNz6sOp8k0aejQYcZH4FN3RpfS6aYyu+KeeoeX7FniHlMxeEHbAHfeAZ82gGc5TNjgNY5SPieHQsRbKGHj6OXvf/97+D/hsbTqEf4eIZNNnGOAx1Xa+7mrHB2QDpMmAmaq82lv0stqA+AArrSBwfJSCA/gDe8ImIiSXosC9ownupVWHF60JcW8qfIo/3nxmPa3xJJLhXPOOSdccuklRgd7DzE3ZS8i9FEeZbvDH/hIfXv7oR1j+skzTjng02uvvWY4UX+0K+r1M5+ZX/QNCLffPln7G/c0fNlv9atf/zpsttlmRrshXPLJ7vOfzIEe4gDt0/uu9B7wml1X5ow8m5GdvjH6PwJtmDjvMR2OvZxVf5LvIMXX7+k3tABnfVFP42NlQJd4oA+7ukK/82ZWkd0WXHBy2kkDzelzet8WjJmJZ57AD2+un9L+aueDl8uV0BN1UbWzNhCuyvL34gXtAXNV269f4lIiWdSh0pKPMQYT1dSU1sHka+ZA5sBszAF1ADk04IAmudVKnibHUd7e6INNs6UOMy611FJRE10zt5s6dWrEnPT222+P2qAfV1hhhSghwkwIZWNvJpKazBs8TEYx0XST0c032zxqghy1NzFK4LS8wN1hhx0snlW4yZMn27OEF4OLllKOVkw7ZNo1pZGTGstL2eusvXY89dRT46qrrlql33a77eLd994T5T47yjtlPPCgg+LyKywXh680PMrJjZmtbrXVVlGeKo0u4GiSXt0PGzosfve73zVt4isvv2zlrbXmWqYxlTBr+bQfMEpoNW7CP3iCNk5CT0TTA8+0b8NgwkMNjFGCjqVrUAUWhXYIPMAH3NDSYna61157GTzi99133zhqzz0tDWab8I84CV1RQlAcN25clDBq5VGHmCGShrzXXXud1Yu8ycUxY8YYrsBYZOFFIvzWXj3jf7UCKl4TqBcC8awm33rrrXG11VYzmGgi//znP0d5IYyHHHJIhfuOO+4Y5XjGnuEHOMjpRdSk0mDxB5zlzc80gnI5bzTDMwlx1v7gmxzAWPpLLrmk4s12ql+e119//bi84MKrSZOuMDzBAx4QB83f/OY3o/atxhVWXCEuq7Sbbb55RHMLTeCCSS11trja8JKLLxE33GCDuKLyefuXQG0mt7R3aBg6dGhcb7314hNPPGF43X333RVelKd9TsYnLQxECf9RCynGW/gs9+uGF+311VdfVv7p+o5+Z+2F8qAb82zakwfnvT/na+ZAT3DA2xXX6r4cB7z9+bjwoawa6Iswf9ee5srk2vP1BD4dwXCcUOfImyadkv3Agb73oot+bFYRvr2hI3hdee902pVyFbDCkKfliOWChYSPRcQs/FuWBU+gHZP4W2+5pUa756U77v7cE1fGAX4333yz9XFa8CrqIwUuHKs6S+O7cV9wvO2MVTll3fB84QUXxnPPOSdqsa7Q5JbvqnZDH0sTKq/c55A5kDnwyeEAK0I5NOCADxqYeGLWKK2UmbAxIefnk2MmvNLUxIcfftgEMIQcF3a456fN5CZQSjtoAhUCmAuE0nxEaQajHIKYOaPnxfSQAYb9Y0yagUOZwPKymVAjyBDYl6gVvQpH0jks0nOPwIngyWCFwOnxxx9/vOGwzGeXsXI8n8OjbCbmDPbwg7IwvXT6HA5lHvqNQ20yxb4zOYSJ0ojV4EEe4DsNcm4SpUltUANFFMKFp+XKHkL2u/33f/93FV/RKvrBmXQIfez3RFDz99Shl8+VdD//+c9N8B4xYkSFl+PnfECQhXbaRDrQ6lwmQ1La0yjHJ1EaQYNBm2AB4C0JYtKmVXAdjwJuwQNMQH/84x8bHNrRfvvtZ+nZKwh+/IzPJW3kvaWc6LAIwDM/hFB4Iw+nVXnyAGdwmaghhJEOHDExRXgENnFrawGBPaTU7QUXXGAm0a1lt9YVaYk/YOwBtu+TiaanW2WVVWxCCH/kuMdw5h314QIhCwrQ67z3uiCdHGjE3z9wv/j7kQmEtHnKQ3Bm4k2A//5dWkT+kzkwCzjAhLhRO/M4FlhOHj/e9jbTRtnfyzdGqPqHWYBXCtJxYYyQjV/xYwLPhF7fyUknnRSllbfvnT3HPYmXlw0+Vr6uwGcRjn5AR31YvL8j3awOJsSoEHB76aWXrG7Yn88CLHEpznroPDolT9vL4LBZnKX/po+Th1hbNPN3lOnjRXuwevIdPKFe+LHoTB8rC6G43Ze2jY8/+hjMqms7NB5hwM/bVE8ilGFlDmQONDUHskDYQfUwqNGZXqcJv09+ZUZnGhaEMbQeTKTRjtkEWIIGAgSaMbRDCAE+8UUr4wKVC4Tbb7+dTZjRsPhEGU0SWjAGGJyuAJeJB0Ick+PddtvN0gLbtXbf+973yvIl9GgSjiOWvffe2zQ7LtghFKDBQyDcWZov4M4xcFA8Rtojef+01UOEiCOPONI0OAgl4ITwh+DGwCKPl6Z1JJ69lAglTDjQZhHHYIgQy75ItKPEgTsCJXsHoUHmihWvgMuKblvhzjvvtHJc0EPoQZsFHOA6fATrffbZJ84vQRC6EES/8Y1vRLnwjgiV8Nf5SDxCis55MuFSrs+jzGyNb+DGAgCCEZov8lDGntJAUi4BPvgkgytt5Ibrb4jzStgiLfmAz0o52gPHET7iwAVNpPMA+F/+8pcNpgtSpIf3OC9CAwHuLoBT57/85S+t/B/96EcGm/QIhC0tLfHss882vgAXzarOcLRV64UWWtBoWVUTNtoswnJRzgCbxIErK8dbbrFlxVfqdOTIkVHncEUdMVHRgZCLsIuwXfBnoGkeEYIJcvNfObuhDBZLEJpPOvHEqHMnjV55KY2nn366LYxQj/wmTpyg3NOlEbxNguDCBhvBvqGGkMlMDpkDPcwBvm1CerWJvJrba+ojr7/ut3Hbbb4U5WE0YjVxoto03433CT2MTtvgaP/+DfApaAKvQ+jj8/96Ph5/3HH2PWEhQl/Bt9eTIe37gMszFhErr7SyLV7qSIWqf+zJctuF5bxQIvoyxkgEoKlTp1bZwLPLgSwdZHN+0AYYnzbeeGPjP74CGFetnrpTdpeRTTKU5TnNjLGMSYw1zF8Yu8/43hk2t5G30CIjeYze5JqAzLeZA5kDszcHskDYRv16R+qd/V/+8hfr5JkAM5mn4/c0qQaG92jcWEVG64K5H5NiJrzcoyVEeHMBRIfCV0If6TA1xbMmsFtaWkwwIy8CJJo5BDpMTokjPYIRZn7flQDq5ZD2epkVTpPgd9YZZ5pwxDvM+xCQwEvn2kkAkqApweO4Y78Z33nr7ai9D4af9oWZgAEt/DCFRMBD8EGzBHzgrfK5VUzYAia0gRMCy+WX/9yEAgYd0iEknvbtb5sgSloGJRdSO9IQwmdWNYFDHjyFsgJs+BOnHxouJmVoDjHxJB3xTAoYkOEDJr8GQ/EIIi6E8h7zU+gEf/JDq3uDdY0WwhUmkVbnqhuve1Zh4cv1v73e2gVlDBs2LD755JO2QoxA6HzUeX8mHLEoMHJkIdSTHiGRBQDMKR1H2sFtt91mCwiYZmK+Cn4Ihtdff71NQBFknVZWwzFtZjKGVg04lHuznM6wMEE6ng+SqTALDTjpsTakuDWk4UBz7F5YiaeO0WTDU+1NjdqzWMH82te+ZnjdKOc2lEN6aDb+iB8ItuSnPMrFGRCTUp19aD8WJLSfxQTKxRcrtN/AOffcs0XXR6L7lsrLKAsJLAo4v3XTxhebozMHZo4D3saqq9oy3/f7775njp0OOuDAuLisMuaZe66I2fTdaue0YwLpPN/MYdH53IWZqNKjzdGk/ilpKfcatZd9eywisZCCaavh1cPfDTD9R3+iPcWmjdxDJvEIZDW86OGyG3HIcVHB1h8zxtJXaq96hUsNTo2A1MfR1fiv/l3yXJWtOMYV+us111zTFsXo02kjtA9Cl3GwXF3/k+LEPcIqHlqxRvrhD38YV9WYTh+9005ftvFE52Lae+9d3QNs10vOOTIHMgf6KweyQNhOzVWdqjpSVtdssq4Jbo0Zmzpa3OIzcfVJOCZ9nveE40+wCTOTY1aUEcbYL1UIGoXXSMz4eM8AhjDpxzDcc8891VEGwGbyzJEGaFnQIDERZ+BpaWkxIdEn4MTpIHcbhK7VXgrbPyf4K0moQbB9Q5P/r0pbpzOoTCD85rhj4puva9+HRgMm7pirugYLPNFEERByWRFH6KMsBhQ0TnJwY5MBcAQnBAmdM2jviUNYgH/wBMEHbRvpeHf00Ue3azKKMEBa5w8C4gsyrcQ7q8FQfbDnjQEPQQvtm6dH04pWDwGE9JTHD4HaTYkQ/hCmiIdWhEWEdnBFgGF/JGWzb5P6QPjzQBoCcZhJucko++0QjpgIuIYQGJgTIYCSb9zR40p8Blr5CF68Jx24IOj7xAoNG6ZYCFfQ5sdOnHvuuVV6JoAtagdMSNiD6LRSPpo+5wn8JOgw60KYVHmraL8gWhDMltHIkRctNwKipn1RTmbiAdrrCG788DIKj8DD8WXPIVoCAgIh5XmZ4A/NmAbDKwRdNI9oUr0tAecHP7hA6aZrzybHThRHeNDWHWcDnv9kDsxCDtCPEOyqz/uF//tPPPXkU+JS6gewOth4wy+alvAN9eNuAkjbtr6gvNr9LMSxBjRdkATCx2W5oUPWbfGMhTAsOfjWZhUuwIVHXOWwKuosW+s3pkyZUvBOaPWmkOy4gA8/+mNMZjFjdWGshm+deYC3/utEem878P2ee+6N7LFHGycnapYbvIRcJyDNfBIrS2CcH0AsSPk4vvv+e/HPmgfspYU9xvAFZD1y4MEHxX/+6znr751k+v4cMgcyBz45HMgCYVt1XXbe3rEywXezPYQlJrUWlI574phIMwlGaCGQF5NK4pnwIjSiyWLVEA0hcT5xJg1xmCqaiY/yTpYzGSbEno787PPDOQgTcEyCEHTQup111plWDkIDe1rQ+DD4YMo4tzp9tIFMwJm0ozHbScISaTF90oHqFgfODO4IUuDDD0Hjb3/7G69MmEXb5DgjQCEw4cSEfXPgA27gwipkIfQOMNNFzBQJCISYQbqwgIlqe3sIEQYQtMCVH0IKMFxjRRz4ExDyMN2lnuAZjlbQJiIQfklmXtBDuQjkJvRpQsOKaard5B0r3tQdkxvoIw/18FuZizHYV0FpfCKCtszbANrER/7wSHzjrTclEO5Z8RJhFSGPwAq28wABHr6jnQRvaMK8FgEXPDBt9XMIyXP1L642PNgL6DShaYbHpL/66l9WuBi8si5XU/0gkELDxAkTKryoN+LYy4hpKGXQzh555BGbEoAH9U59Ag/tCOcQ0u4d/pJLLGX7qCgfwdkXFID1iARC+ITmGR4gBDIRYWGFKzQA57zzzjX80Wy4lrMyGRV+wM4hc6AnOODfcX2b4hlBz02iN5CTJtrrIvr+Wdwzp1m93A4dRxc4ePa4D7TIwjjBohwCKwIQfYnRoW+O4Gl7gm+N4LEAxBaFHXQWqmtMVWhPFdcpOPU0Ms6xeEpfTB/vvPNrp4DOZKIpWij2bRMIhSzWVXiW/PF22Fv8MmGP9iPa6NcnaBxw6xMsba7XIt87WuwDL69BeGZ4lzhXNMwkf3L2zIHMgebiQBYI26mPqrNWGjRcDLhMXll5ZP8UHSOTh4dkpucaQt6jWbJOVB3pUUcdVU6atSdMZn90wuwvxAySSTACB0KXT6zZ54fpH+GeuwsNIQICE2e0V2iSGPD5TZ061QQe8AQm6ZiA41gEbR7xeKRkbxvxmIyaQKjVbReoiD9Oe05cG8U+LtdYsrqJkIDAxiorg/1x8lDJBAk6KYfJv+PElf2WCJyTJk2qhF60TaQj4KGUSQv5KRsBrj2BkD2TLliS3kxGpfXbURo0YPBDawm/EQjZc0k64hFsMadFCCo0hIXWCocLpCUwWWD/Iemhi/2DvIN3v/jFL2wfCnWDMA0uPhhy9faBAIkZZ2EiO9CEYtrL62+8HkftJZNRwQYnNGvOZ+oLuPzY/4emEo+j4EGcjiOphDdgDV9xuMFA2KUsyr/ggvMLWlXveBel3cAHBC9oAg5twmFecsnFtkjAggP7WYnnh7CJgIxjHLSJ5MOpC6ZP0EibHbv/WOMP76g/4vCoZ2UIBiauf/jDH4ynaMi9LUL3E9prSx1AH/jzO+Tgg61NbCAPpgMGFPWFJhq6br31NhPAyct3xYST+PRnBeU/mQMzwQG+lTTQvmjX7IE94IADbCGNhSA095hiu+UA6SyvrrM6UI5r2rz9e5ngSj/LIhyLiXhspg8mj/dNnpa8PRkcF67syWaswMLAyvGydO22dq4byDqNXPEuzdYExjLfg5y+7wb4LmdhHNERQTZ2MGdgLMVCyOoU3pR88ucuF9DNDJRLmULAFp8ZX2jv9P0sxDEGEufjvuPZzeJytsyBzIF+woEsEHZQUd4Z0kG6oMEkGtf9LS0tpiW5X1orhDqfYNO5IogwQcd80OMRUBgkvq39dK4Z4fgIBlKfWFMGWhQ6YzRzDPa8I55jITCBZEIPHAZ/BBrSpppIBDXXRGHWZxo24YwWj/2O5lSGPYSKAy6b3zEjJQ+rhEanBAlWN9ESQQtCHkIme88Md70HLoIFK5/gxAQFLRWTfwRAE5CUDkGLSQP5ccSD5s55gsDcnkCIAEh+cIIPbjKawsAElHqi/IMlaHhaJgRMDKA33UPIPSZVTBT4YcLq+Gw6YlMzq0X4PVzCJWVTLhpZHLSwAJCaitF8mHxhooTgTVrq7FFp9V4XvXvsuUfFZwQiNLfgCs8dT5wQwLOzzjqrimOCdc0119gEAi2ve5oFz+uuK47KYNWZZ8pEAKQ9AvtdtQ3gU0+8Iw1mu7wHV37Um7+jzqkbjvigjRBvdXbIN0y4ZPFhe63+e1m0TybHeF51GAh5l2h/Kdpq3hPv7x4TrzFVZnINDBz/3DH5DmvfZgqrOHgxfvx4qy8EUUxGiWOSglMg/w7tcxWNOWQOdJcDtCVvT36l/2Ixa/xJ4+Nyyy5n7R/Pw7/Vt0Yfogw1wk0Ko7t4dCZfVY7K57t1fOnrdBauLcTwXWFZQh/i74Ft92W+zpTVpTSCS2A8YVGTfdCMRfUhxaf+3ax49vLYdsHCH/0S44MLQJTpaWZF+SlMyqGfZGygHxuy6GLm1drLN5zSDL1070I64xi48ENQxQERC9Is0LFQN2nSFTYnAM80bS+hmYvJHMgc6GUOZIGwDYbTCXrHzZXJgnlalIDjk12udPRMdtHe0ZESx0QcT4yF9qNIj9nmFK08M0CceeaZloYJ71ZbbW3avmO0j88FBGDQOdMJI1wSz0QarQvCHnvmMJOkbMrBhNL3k5EXE0QED2i4VtpK8AEG++BcQ+jmiRzFgItshEFgIAj4xB+BD7MbnKGQlwk/Ah2rnaQBJj9wwAyWM/bIf9ONN5nA6qaY4MQP3BE+3PQQGJgiwpO2AoKlOeBRWmCgLYLe9NgJNIRMlhBMEdTBibQIjQjQpMeJi+Ph75ksQDNHT6QmjgjeOJpxYZB0aB4ZNOuDtxMEbwRgysB86o+P/tH23rFPAw0hdYew6vXiJqPggkCIaSvCN89W12pL1BuCHhMu4PIOnK6++mqrW1acieOHySgLED5pRHCmzrwu4TOLCBbUnt2pDHAR/JlMYg7HOZpF+WgPi4lBqsHmHfv/4AVeRVvrssAXwRN+AdfhsIeQiSNe/4iHBuqGxRBP4/TRhtBq+x5C2hpCO3TpgyzRb53Q19dHfs4c6AwHbJJb9vF8k2jH3XRusPrVU9TH+rdU0+6Ux+J17a3gk3YfjxBQ6fP4dtDM0x+AEzQR/N7T9zSeXg7wsXSg/2EM8f6lHt+eLr89eNBOAAcWlnwspn9N+TKreFOPm/FKuDCeY+3AWGYWRAmejnN93lnxDD6NaPc6YwzAkoU+nPbF/INF3t7EcVbQnWFmDmQOdMyBLBC2xyN15HSUdKJ44EQIYfCjo/QrZpjsL2TCy2Z+F158osuVgcCdp6B5QqBjoOIdK6sIm3S6xepcYcaHEAZM4lmpNrNJCRUGl6t+xAGXyTkaIS8Tr6CuiWLwQbADX5zaIBCiMYOWIn0xmLNPjZVxo0uwERSrSb2eiWcSAv54lMMM1AUmF4RJw6R/igRfAma1aJyI5wc8Bhry+TOaw/Y0hOzDIK3ThsYQIQ9hwmGwqk8dsWru+xNJj4aQiQDwEcLd66nRJZrYP4mnTuChvXOzXx8MgYEgD//Z+0nwwdSuahsEtAvwuTh2ovC4+ac/PxmnvT4tjpSAM6DEH9MzcBQQc7xDHVIG9Q6eCLRojxGCECLBMwzQERqlQM/zIPHvxptuNHrP1iHDDhvB3U2NwQ2tnmtRgXf55ZcbnrxjcHcNITxEo4mG0Fez2RNqPBIO4Eh9ueBHPE5roIM8++67b9U2eYdZteGve6NP+WlzmMQi+FKe1xsLLIXWkPot6viQgw+JN8kzaioQ4rTJ+Q6/03uec8gc6AoH/BtgEQytON8+bZa2SHtmC0DVJ5XfOPDTdpfed6XsmU3bom0C7LtmAQtTbw5gd0EsxdHxM4FEL1hc7KkAbH5/lwULi0n08ZjTu9DgZbsmqqfKbRcO9VTWFeVDNxYd1CuLkCxeOV6erl14PfDSyitxom+96KIfmwA/n/o9xgurN72v8OqBMjsDwvmTmiKTD575u6u1XYJxj3kKC8wcU8SY4nXcmXJymsyBzIH+xYEBoKuJXA5tcEAdpObkmt3qJxPOIM1OkCYnSGgIEoqCzA+DHICE+eabL8hcLmjPQJBAFKSVCnKIEYYMGRI0MQ/yGhlknx/kBjz88pprgibo4YP3Pwhrrb1W+Oaxx4YFF1ooaJU6SHMTJBgETZaDJipBgk+QUBhkVhq0jyW0tLSEBRZYIGjyErT3LEjTF7SyHbRKHC695NIwcNDAIC1N0H6soIl3uO/e+4JWccMHH34QllxyyaCjK4KENouTyZ/kjgFBJpNWnoSEIOHG8mlwMBq5Dho4KEz/eHrYZ5+9RetXjYY777oryBQmaLIfXp/2elhgwQWEx7Cw4447hS233DIspDLkujpIoxfktTRIaA4STMN6664X5phzDnvWrvWw28jdwujRo62sRlUg084wbtw4w4m6+P5ZZ4Vll1suyAwogL8ElaBjEII0ekF7+YxuaZgM1IYbbBiOOvooqwcJ3UGOboK0TUbzQgsuFNZbfz0rW/sDg4TCQD4N1EGmuJZ/sSGLhY023ijssssuQZOeWvT02fDpSCAL8EgToqAzIYMG+SCNnvF3kUUXCd///tlBAk2QR9ew/fbbhbFjDwiazAV4rf0/lldmk9auqHMJ6+EKxctcNOig+rDokEWDHFuEf/7zuaDV2zDX3HOFU8afHNZdb91wjfgPTTo6JMhhTNBe0CCNgeEFr6T5DNJcBy0QBGlwwzLLLFPVrYT1IBNVex66zNAghy5hXuFF25OTiiB37UETKmsrtCfg6nzJoDOrwnaiQ8dXBAnYlubMM84M0ogarPXXWz+sudaaxkctHhiv5fwmSFtpvKdM+AuPpFk2+NLSGt/AUwsEAdzBW4saVncyJQ1rrLGGfYcCWFsP+SlzoIsc4Hul37riiivsO9NEN8gqwPpbadqDFoas3dr3XbY3+kkLDJd+38Vyu5vc8aAv1KJcuEPf5xc32si+35VXXtn6Tk+TXimv+lp6EGfK4BuVkBCkQQpaCFU/9/2gRZyiT+zBsrrCM6NdGSQaWn/7xptvBi1eBTkms7reZuutre7AnbGxN4LjRJuhP4RnEuiDBGnr8xnfwaVqX7MYKfBRJdl8hjEJvOBHWj73EvxsrsEYwpxEC4BBnmTDuKOPDqutvrqNu7MY1Qw+cyBzoJc5kAXCLjCczhShg86RDlOrj0FaJgk4c1oniwBEGibVWhEMOu4haIXN3kvLUpVEXn6kJR6hhk6YiQoCGfE8I3TyI5Ced9LKWHom4wwkwE/fcw9Mj09henomCR8IFu8IlE8APoH3CMDVVbiAEzCdDi0lhg9LOpi4M4lKafEBhsEGuNIQ2eQeYdZohX6VQdlOox5nCFrFNFz9BThAB/UA/vV8oiythltyx0eJbNBzvlN/CF8OC3jQB67SDNgP+NAEfk6z49DoWs/nOeeiToWn8Pm4xCel1XDRO3gAfK8vYAPrfZX/yquvhMELDQ7SCgq/jwO8AOZcgj1QQnpBT1FnCO1ej/AEWt7WBORtCagsQiypxQvo9EAZ0EgdEy8tpPFSBdmEijyvTZtmQjwCrNWZ8sAn6svL4hme0d6lHbd30EM98I5APGU4f7XXyAREaAYu9cE72jRwube2SH6993oyYPlP5kADDtDWaEt25X15X9zSyumio7VTOWUKZ599ti3ssUjF4gNCDQINMPo68F1bnyh8iy8oBHnqDaPHjAk639QWqFhYYUFyVgbnqZfBdwl/+MlsNWiPdZikhUqZQ9rCZDPwznG1q/g38bLLtAg3NmiLhS0s0sfU01WTZxY/0O8iYGn7QECYP/+888KITTetSoXHPh7BT3+uEvTyDf3w7++/P5x40klB2nRbwGOBjkVkxvKUl35fj3P9cy+TkIvLHMgc6CQHskDYSUalyejg6PyY+Hon6FfScc8vnYCn+WfmnrIJPsGeFWV0FT+fwKQ8AEb6zEDYGcGqq2V3J309LuBJSCc0MzuI+UTO4Br0zv/xvM7XVvG8HRiiAfxTniO0uwbTeZ++bwua084VmClf2syj+h2o76EzIcXBy+pMvpwmc6ARB7w9WVviGygTWbvVd4HGiEUH7WUNOm7FNPBYWCAEykQ0aG9zoUlT3qYI9EclLiwu3ikNl5xvhWeeeSaMHLl7OOmkE8PQoUN7BdX67xNeE8BJzqPC4MGDg5xcmQVBryDUxUKw5tFe9qC9yeGcc84xgaaLIHo8OeMPFhtYuWjLiVm1fP7zn7eFr7Qtd7bv7XEEE4CGj56f04IuVkdYNr34wgthDwmE2gJhlhu+YMjXY9rZcuGRvD6GNMM8JSEr32YOZA404EAWCBswpStR3oH7tSt5ZzZtX5Q5A87l5MVw4aUmMvV4+XO9IDYDrF6OcLxmRbE+KQV2V6eZRV4JePoHjvAUGJ3F1/JQrvLBcx+MOyPYga/n140JlJ0t1/N2VI7BL2HbhIGM0KhfDpkD3eGAt1nakN8Dh0UVTJ91hIyZ1f9H5spbyKQdE/NNNtnEBISutO/u4NaZPCnOnl57w20LgryJhpdfejkcetihNgnHfLu3QyoYwtPvSJg5Xdsn5N3UzDLpY5rx+335pZfCDjvuaO0ATSZm832NJ3VN3cpLtG3hkNMuuyK41vfVzdI24RnWSfK2btsU2F6B2evOO+8cRo0aZRYf1gZomErrgiD4E98MdPT2N5PLyxzobxzIAmE3aqzq3NTZ0fl5qOKJqHvnaWbmCnxCXw9oKQ1Os1/Td3af8iG9nyFh70a0iW+JRkfvO8K2qKkiVWsL6ShX8r7kVYVHN3lX5Rfo6r4dWK5VBJP0PsFshtsK7gxv2o+oJpnt4NM+hPw2c6AwsaZPtIknFhS651lOY2yfM9oY9l4PHTo0yAmXmTdi7k96fs0S/DviisDA3mv2fGMyLWdTtucWvGfF2NIWD8CFAD/9nr30u+26q2mD5ADK9qZbH6c0zRZYEMPEUY7QbP+ezqPt8zr3ema/OHsv2Xs+YpMR4Zxzz7H93vDQ0zg/m2HM98XFf8nkXwfYB3n0tm0HcoxnGuzNN9/c0W2do+S+veJJvskcaHoOqOPJoQc4oMltD0DpfyBSujVgmKeylAp/r1XlNLpP7h0XCTpV+R7n1+rFTN5Qgv9mEpR5z5sZ/Jz3FYyE/ka4ka5KWyZo12NgHbz6vG2VQXshNCqvUZ4clznQiANp++Ee77ccT4OXYe3FM8/HuNLHa7P2RFXtzdufXxvB7q24lAaOgDnyyCPNYzUHheNJVPt9K7x7CycVaGV6eeAIrySomudhDjDXXmN7zbtmDRMnTrR2gKdp8G8GXL1PxtMtZ/FK6DfP2S0tLU2Bn9el4+nP6fWhhx6Ku+66q3kxx+utFi/iVHnBJY+35/byp7DyfeZA5kDfcyBrCGeByK5qrVZUm2FlbxaQ2BBkSjcJfFXZePAJWymcaQ2h+Of8bMjsLkQCh+BtsT24/k4DeqFxKdtye8V5Hk9T/+zxfrX3PDShRsFxzNf+wwHaE0Gz0PC/8oSLaSA/vPTi3RkvxJjjufdQ0kowaHMPOO97O0AD35yOjpE55nfCL67+RdDRQzWmhHy/pOHq3/KsxtO/ZecxHoLZj4djKDSYOifVUOgtfLpKL3jjnXufvfcOa2ivqM7SDZ+WR/C+7HuMpxBS9n94j2Y/Ic5mtthiC/MeO3z48GKrQS/WdSPegiu/RmafxOOdG3Psy+S8R0d7BLSFeIreSF5w8bJutJZ0NmsbaUR3jssc+CRyIAuEn8RazzT3CgdcKGw+Q6peIT8XkjnQbQ5UE0lNOqV7qiakAKyZWOod35m0arbfjgk/R0osv/zyZh6KieBiOvoHh0cGswDA36YJCHlCLjz2+OMywzsu3H777wJ4c1yQHbdSTqj7AmFfGPKy2TumM2xt7xh74PyYm2YyvXVc/fpvHSsyZv/9bf8bJq7mRKgPeQpe3hZpu/D4OR2LdNzxx9sxKPD3dJmRcrxSowWA6ttwAvvwCi44PmIhg+OFOE6JhRf2FnIkCfsM+V7T9lHTppTfBeM+JCMXnTmQOQAH9EHnkDmQOZA5kDmQOdDnHNBksSEOM8RjvijTNE1GozxexvXXXz9q0hl1rICZ4Ek7aKZrmKy52doMMBqWNGsjMVl0fCgJnIiTS/+4zjrrmGkjpq4cAt7X+Hr54Mv9Cy+8EHfZeWfDURqhGvygoVmDjkWKOvvP8NbZuTV49wXO8NJ563zjKq2rmY3SjnU2r7XtmnTK53VBen/XFzQ43pTteLwp81faxRKLL2HforTyUef+mpl2iq+nb3cbQl8QlcvMHPiEcyBrCPO6QOZA5kDmQOZA03BAY7Lhgmah0T0vOUOTM/k0wTetxDs6VmJjeQ095OBDwkYbb2TnZ7omsR5OnxJaakSgC7zw3HiDHHScfPLJ8iT6UviGDi0/+KCDwsKLLFLxoK/wdd5TPveYXu4t00u0PTfeeGNYdtll+xzHjngD3pylN2nSpHDIIYfYMSM4ceEc2r4MXv8Sjsw0lOOBiONokXHjxtlRHnjvxCGOe0a1PEIajTltpxkc+YCTBXASDRJYA06HOOLjV9dcY+fpHnjggebVdyWZweIgiRxOP3n9OzU4+U/mQOZAn3EgC4R9xvpccOZA5kDmQOZAIw5UE83kJRNgJsPSVIUrdSA6k/xHH33UPDMeeeQRYfPNtwhLLLGEmdkhtFSTTuVhEuqCYZ9OQEtcIIuzESfoXERMQ/GIikdRDvxeRGckCllmzX1uTuc8xCxQTlnCafJ2yiHleJiEx80imMDPtgI0IMx+eaf/Dsstv2y4QmfpDR02rK3kvRLvfLXCkjaBgPi4TIe/dcIJ4ZZbbw37y9RVzntMKCQt34C35WZoH+AELeDiQi1x0sqG2267zY7W+P3vfx+kwbcjUzAlxaSUAK20oRwyBzIHmoMDWSBsjnrIWGQOZA5kDmQOlBzwySKTTe4HaQ+gHy5/gibLDz7wgE2Mjz7q6HDY4YdVB6P7BDPN50y1STgPCFt9HN566y1zJHK2jh2YU1qTKyddGbbbfrswSBPkD6VlgQ5o7stg/BKvZO4X/qk9bpzd2KLjO+TB1fZo+ntwTO/7Euf6ssGLgBMc8Gd/6bXXXmtOhurT9tZzW7yS7aUJVfAboXCnnXYypy2HH354OPXUU8Ncc85ZCYNOV18ubtg3yreUfE8pbdCBE6Jzzz03nH322da29/n618MJ2iu5xJJLmrawt3iey8kcyBzomANZIOyYRzlF5kDmQOZA5kAvccAnxj65fOedd8Lfnn46TJJW8KyzzjJzP5yuHHzQwWHEiE1skgxqTI49T4pqGueCZvq+N+8xqUM4+fGPf2xn0OHgBLPA7bff3vBH05JOsHsTt0ZlwTt4dqu0VV+Rs5P9Ro8OF154YcVnF0hSHjeC09dx70vDeeKJJ4Yf/uhH4YILLrDD1OeUgNUXIeUV9wTnI/f+Hq+daAgfeeQRMyPFe+cQOUjivS98kL6vA/j4dwUdCIIsbHg75hmzaATD++67Lyy11FLhuOOOC9orGxZccMGgo2H6moRcfuZA5oA4kAXCWdUM6OjbWDnzDj8tuj6u/jlN6/c+cfJnu9aVW71rK14JOlMWcEhHaDR42Qv96TSscjXU883MtVGZjeJmpoyZzesDpsOpx69hXXriHrzWl9sV0J3CsY12NjPldgXHnLb/ciBtI9zzzSA8XX311ebangnyWmutZd4Lt9tuuzB48GAjNu2PZqA+aY8p/BnS9XRE2VfaGFDiQPmYuHIYOSavHEY+/uTxpq1ybSBpCO3S1NO4tgdP+Lwuc9Z99/16uPvue8IvrvpF2GzzzTrdz7cHurffcRQJR2YcKO+Xp8k8100XexuPtsqr6l4J7F7zh7vvvtvMcx977LGgsynDEUccERZaaKGG7YM8fdlu0vLTe+jlW2ZvIUdUYCb92muvhV122SV8XRpDFkV8T2d9vvQ5vW+Lhzk+cyBzoPscyAJh93lHr125RAfMyy+/HP6oc7DYbzH33HPb3hZW9Hw1jw6NkHbaLii01dkRzw8YnsavBkx/Gj2n5TR6n+LgcBpdycvPafA0rPoR1whOfXmep71rfR7jCwJ1IlTX568XUFIYfm+rld0wvUphA4sArQ7XceGZXz1//L1dy/zTNSiSDtpwk09bweHBHHPMGdZeey2b4DbiZw2sbjykODr+XAlpef7O26QXlfKCuDQv9/ygSwcVm4kTadjLtfLKKwd5fbT3noZ3aSDeDPjaqec0fb6fPTjgbYy2xTfu3xbU8Q6nMTfffHM444wzTIiaf/75gw7wDvvss499Jy5Ape232Thjbbts1/RDD+v7OFZ779hThXbk9NNPD5/97Gft22m3/+gjwsCfupg8eXJAAN9xxx1Ns7lI6fCmj9DqdrFPPPGEnZsob652RMLSSy9dwUrrqors5RvHgSvB+Y9WTQfAh/fff9+0nAcffLD1q57GvyHaUHfHOytwVv8RXe+Jhv/93/8NmH3fc889YUmZjiLoIqgj6Lq20Gni+25qmmY1zzL8zIHe5IA6nRy6ygG5f64JpRvpOyZPjgsvvLC5XJ57rrnir3/9a0umQdVci6tjUz+nvOVzCgMXzPZOkel9lYZ8SSCtw/Vohw18QlWeJ9DVy7CoOjwcJu9wb00gTpMz+6Xv7WX5x8upgZ0mqL9PcQdXfgrkB5bf200n/lTlJnCquDJ//XMK1ss1N9gljPR9/T3p6+HVP6d5GqXXoBg12DHyR62Omntu8jRKm8Lq6r3z0/Ol8B1nv3oav3q85/Er79N3PNNeNKgbPdAk5wFRpn5VfZLG2wn3HgxOJ3ju6fN19uSAt6131WYkONnRERICo7Q4UeeyRWlK4ofqh+qDt8P6+L5+Bi//9t59991455QpcfHFF4/zzD13lBlg5CgEx92vfY1zffngD+7S4sR55pkn6tzBKKGkPllTPztvoUV7UOOoPUdFHfoeJWTV4O3paiJ7+QEcKjzKPtHakO7vvffeOHToUBsrLrroxzVHUng+jmEheLvrZfQ7VZzjqr2FUSa8UYsLUYvnceTIkVYnPmY4H/wKcO6bmbZOMSAnyhxoYg6wCpVDVzhQdtTesZGVTornKRr06eCYEH/qU5+KOsS36ODJU+YjfdrJ8ewhhUlc9ay8nsevDq96LtM7LMfJn2e4JvgAy8syeOU77um4f/7zn9u1/p09O+A6eB7dmSvChAvBwDTBrIOMXral97LJW/46yN7ha4dfk7Asp+G7moQzPthAluCnfSGRRQOEwk9/+tNxshYTOkP3jJC7HgP+6cCa0lPd1/Gxildx6b23HbBg4uhC7mGHHRalBa2Qq8lTxSY3JW+TmHw7G3OA9uBtwu+ffvrpKHPKuOqqq9qZcZuO2DRefvnl8aWXXqr6T+/XPE+zsshpk/fQOGHChChtlI0J8tIZZUliaDc7DSDJwpUOn486YDzKbLGqs2blez1e3s/Ba+515ETU0Qfx0ksvtaReT/X5+urZx8F6vMFHR33Ez33uczbH+NGPfhTlmMjQtPGz7D+bjZ56PqZ0sdDMOYUjd9vNvg2+e3ncjTrkvjpvsSY/NJZ01sTnh8yBzIEe4UAWCLvIRjpc156lk2Hi77jjDuusfZJPZ0fwTrDquJWW9FXnrXsLSZznIb4mbZGyTF7mK9OUkTO8s4jyTworFUCI9zINLz2zoqrzseKwYcPiX//615rOuCZtUoDHJ1Ft3lZllvRbuUrt1zYzli8cTx49j1/TvI3i0vd2n9DPc5qH+/rn+vzp+/p3PDtfvA2YQKiVUdoKiwhT1HYchl8bwelqnMGq468KmqGstEzu/dmv5HEa6t/TjmT6GuXFz+iBpn333dcmLGl+w73EhfsUDvBz+ORwIG0X06ZNi9pTF0eMGGETQzQ4ch5jE0PaFaG+7fFcwWhCtoEb/ScT3MELLRTlPCP+7Gc/qzSDNoYoTTPTgDbwtNNOi3K+EuXQpNAO9rPvFP4aj8srYzICrjx3xg8SbWdT1EPJW2/r3u4dN+pD+2lNay7zyjhx4kSrEx9T0nzN9kmAm+Pn9Bh9WgzWPuGocwtNg462UObJ8a477zLtdEqH12Mal+8zBzIHeo4DWSDsJi/p3Kwj1pVAZ3XnnXeayahrCK+77jrrBD0t6bxT9DzpFXjeuQPPO07i0uCmIQwQKTzSeH7ece/vHRZp0nueSZtOvHhPPm3Cj5htYaryl7/8pYLlMMnLPenJ7/mIbyt4GgZj7vXHkjrefrV3bQGpiyeP0+r3JHEYfq3LZo+8I08VSnwsT3pfJnD4Tnd7sCuY5U2a9nGttrNSTVvBLE6u3A1fVk1TQb0eRneenRau/KCBcgjcp3il8KHR33MlWN0Lhl31bPVYfgNjx441c2lo2m+//SoNofMKGP4zYPrTVtn+Pl9nXw7QBtFAoVnW/icTBnfffaTFefvy9upcSJ+bte2A17///e946KGH2gIJAi4TeQ9Om38XHt9s1+effz5+6Utfsn6KempWfnfIt7LfA////Oc/cYMNNohrr7VWhD4L5fsO4cziBN4uKMb7XS/S30HDb37zGxPS5a0zXnXVVVVf7Gmb9ZrSAI4+54Amfk/+6U9m0qt9hDYu6qzL+K9//aviBWlyyBzIHJh1HMhOZTR77UxQFVgynIHgLUsDvh2+uuiii9qZTGxQx6kGm79feeUV2/QtgdCcBrRMnRpelVetZZddNmhyYN7NpEWxTeM4oHn22WeDBqqgAco28eOQQ6YhYYhgD5RDFM7fkjlVePutt3VO0QBz1iEhztxRa+AIq6+2WvCDdvHKB27qSM25DZ74gAV+OGKgXAL5SfM8P6VXZxsk+NkBuNrrYo4ExowZE57753NhyGJDzGU07qJx7gANEmYE/93wzDPPGpxXX31Fm8IHW37odKcPnF/FjwCvgIG3wGef/accjyweZCZi/JgqHsHXF1980VxRaxXXcMYpT7tB9YKzln/84x8FPeIhjkygV5rNoD2dhcMKpYE3/HBiAXzw1ETH4ihn1VVWCfOXh+bWlKkyPpJTiGeeeSY8q98/BWNROVbgLCXKoQzqEQ+C1AcBXkIrfCYfDofgMbwFL9JuuOGG5jxD5sXhkksuDkssvmRoeabFnGbgeW1JtYP35VxDwri1AZhZAm0AABQpSURBVOrusyoPuBwC3KIzwWgzODBaRbgDBxf9tJW31FYIKw1fMQwWfpp8Gx6k52BvYK2w/PJh2eWWM/7jkOAjObh5Tu2B9kNYQrguqbIeE67EUy6OYmTiGqTVsTO9KAsnE8sL1imnnGLeE4E9Wu7pcTMOTrTfp/761/CM2jn8gPfwAYca1JW1Sb4v5cth9uIA/abVb0IWbZHv8Fe/+lWQ1sy+3XXXXTeMHbt/2Hrrbcy5hCXvB22iEX18rxziLnNXOYtaO8jKImy26aZhjvKYA/jRKF/Coqa4lYli4CBxHOBI8DCcQay+PpsC2TaQSPnM/ZtvvhlwyoLHUZyaUD/m0KeJ2xp4E7zdSJAyz7s4WWLs4SgWadetL03pTVnSVnyapjfvHR+/qnFZ/888SL4XNB5eEp588smw1VZbhTEaS0bo+2HccR70pzbYm3zNZWUOzBQH9EHm0B4HylUpW8F68smIFmS55ZYzsxP2CWLut87a60QdeGsmo5hyqLOyTfiY0H3hC1+wNJgMDZPppc5AMlMiitSEPsqLXlxvvfUMHtq4+bWfTIKTrZpLkLKVMwk7URMmSzNU2jodrBvHjRsXNUE3jaQGhihBKv70pz+N22yzje1XQevksNSpRnm0LLRxooeN23L/HDfffHMri7T8JIjGo48+2jawUx508JNwZ+YcOEWQwBs1qNqPfRjrrfcFvRsik6gFROfCkbIwnfUVzvPPP8/whqbDta/sWq1uQu9C4odcyMcp2ncpr3txiy22sDLgH7ySsBblfczoSlcGuU+f2ac2QXt05DnO+PGZ+T9jJlrDV1gx6pyyKCHT6Ga/xTeP/abRu5joOOXUU+Ott90WV1p5ZasfygNvAa/gp/s5dA5X3Gyzzap6wnmQhDBrD/CevZbsgcAciZ/OGbOVWwlfUWd3xSGLLxaHKH68THDfff+9+LD2EKIhRDOCSRZ7Q6jbT8//6biY0rLJnjojP85aqBv4r/ObrP1Qh/CTsmhXDzzwgJVHHjQSjsfv778/YpJ38cUXx/XXX9/i4S+/4SuuGMepvrUgYV8AvDxMWg3aFWWddNJJ8Ybrb7B0ll5w2ecFvSccf0L87NKfjfPJIY59A+I/+4xoL+qQzHEGJnOUjfnf8BWHW1ulfoFN+2JvaqUNFd9z6L8csHpMvp2KkjLO65k2hukk35IWA6zNsG+wRX2ha62rvE1yk/Y3Nf2P05ZccVayww7b2x5InOHogHHrCyHFNSRNQtYMaIBfRZ9o2nPPPc2JyS233FKlTXlRRTbzjeiwUF61cKf+6Mw4r5zksA/P2xy0N3v9MDYRwBM6wJ9xaIUVVjB/BW6lQxqvJ6vPJqfNcC1po5+ANsaxgw46yMYpxgtMfLWQbLSTPq2vpq83KiSHzIF+wAFW/XJowAHvZLxjRQhC2GIC75PeVGC6/Xe3m9kfHTQTYn6k5WpCVXnPxJ/JO4F9Mw7PYXo+bOkRuMBDGkab5PMOIUKu101AMNg6ShLTJLyQFcJogR9wq/KVhjxMzgn33HNvXHSRRWegg/TSTMUDDjjAJjTAT3/giDCHcMUkYdFFF1EZCI3QCp0FzV/84hfjVOEM784///wKBhMkTJCcVgay66+/3vYMEOc/o2vAQJuMYKpE8HpIr/AG4RiBpMhTwih5jukJAiye8vh961vfKsoQzqPHjIlr/NfqRT7xB+H+4YcftrKAy+DqbQCBaZuti7p3nvoVYRkcMW1xPHj3gx/8wGBhOrbzLrvEQXMMQlUSjzr6qCjX2/HxJ54w72rOC6O9bCPSAlvdbbfdtiasnXfeuVbv0LPVVlvbngvqACHb6wdnCfAG4Zg4HQxsAjcmUr+V6TICZS2PijLA9Wtf+5pNWt+UAwwGXuLAh70cmFc5jiwa0IaY0ON1ENq9fIdNXn7SEJrgSv3iRdXoU516Op732GOPYrLMZIBfDrMNB+w7VZ369wph0hJHHV1gbVkHTdi3KS1AJTCRNk3fLMxwnFjk8sC99w/E8cy+YFkMWPtnQUdaUIv3/J632a7Q4Thy5ffUU09Zn4jgjlMfpz2ludnoaAsfp8lpZL82/SELotDW9DSpPgiOP/dsG2FRkMU2+tQVtbjn2w6c3nq66p+B0xQh+e7B3QVbxrhf/vIaW6BkTGHBERPZNPTndpnSke8zB5qBA1kg7KAW6KDodFywKSa2A0xwOvbYY+MhBx8cZfpnK1pTEi+jpGMCLfMUTXy/alogOjUmx+zNAyZaJDQvrMT+5Cc/MS0OnR7p6ORxy/yOtCxoCD2eVXWEQoQDNENoKy+77DLzUolQs/XWW8ezzz47yhwrbr/99hUs7tFisUKPYOYTc7RTO+ywQxw/fnzcSZO1Qw4+JD7T0mLaRvDgh+CBwAkeMn80gdCOGJAAOECC4OjR+8bbb/+dtD5f0MQ/mNfMSZMm2UCLUwVgwA/wg35+4C1TpHi1NJXQBD4IH5TD6uDJ40+2owvMmY3qqNFgpsNtDXeHv/rqq2vV9IdRh/cWk06VSbns33lLAr3OPtKzcNFkFBxwAQ9OaMTQnhF8MOVKmVzvnHKnaR2BhcYXbfD90gQgYKLpelqTJwQ/E8gFG2Ge1Vvyok0bufvuHNSn34A47phxpiF88MEHKxzBH7hHHHlEXGPN/zJBi7IMd/EHRwhMNOERq6X333e/aXh577Qz0aZ+EPxJRzwOId6TIMzEx9Outtpq8aKLLjKnL54XTfKUO6ZY22BVFkGPd9DBlXYMj74qOpiEAM/bD20D4U+HDBsvKYd3o/crBEJ4Dgx+aHzR2Op8OcMT/jnPG9Wvvcx/+g0H0m/GkFb7Z3KHVlnmxKadpu/CGoCJHm2JPAT/1uyhCf+AJ9oLxxcU7V7xLDZxxBBWBtCHlQV9reXRe5+0NiFZNSg5PeDri4Job/24j5T2moxN/OB1AIrc087Yv73mmmvauPM3tU3XXjdzG/S6cTp4pp4Yz7/3ve8ZLYxhf/jDHyze+1On32lv4qqa8dsSstpiYA7tOKqFsYb50lFHHmWad96l9DUzbRm3zIH+wIEsELZRS3Q0Hlipko2+CRIIE0zOMV9gQoPmkMGfNDiVQUtEGibAmNyhUUGDhBkfcQggCH9MlEiPlvA/yk/nzgqfa2SYWDOxwOyOSTQClE/C55IQh1B3v8wBOdoCIQ2X4GgUWyTMgReTMCbqwOGHKaf2v8UHZJ6JEOjxY0aPMfzpXDkbyzfaI4QgPFGm9nqZxz/nB/S4xgnN4MSJE+LUqf8woYD0CBQIdMBkQkFZhrv4gmBx4YUXxkekjUOrSjnwhDQcv4C2E7NSXLOjdXtNA54HqxPViw9uaBcwjXSBg3OyMAFi1XezTTeryt1/zP4GBzNb0jrtTN4QjsDBV1cpyycG3gZ4j/BIPoRXTHQn65gIBmP4Td3TBvAmSN0DFxrJ/6JMPnf/KgKheKCyjxYOmMQwcLvAhXDKhJK6flT1uKqENsfzkEMOEW+nVkIdCwF4ZNt0000tDXzlx+IAJpgIfDxTZ+D4qITrz8gU2eFhVkzbo55JY/Uiuli4QMDmShnOI/ir/RxxihY7wJl25u0HmOO1kEAbp55c+0s8ptW0pxMl9Dk8TIRZ0ebbgXdoUMQk47fXcb72Xw74dwkF9Gd8h/R1Zh4qjfJamoSzWMXCBe/5zvxbI49PYrlvtuC4eZ/geNNPsQ1g2WHLWp9I+7ZjJdSuXYB0vnjeZqMtxQu66FdZeELrlFpopOmajYb28AHv9PeSFunwgky/xFEOXpftwejLdynfjQ7VEcHxZrxn8ZhxZMMNNrR5gdNracrvrC9p6Kjsii7VVRqcduZZLCJhfcTYtM7aa9u4RHwOmQOZAz3DgSwQtsNHOiNMM/6lias2n9vkmQn03nvvXeXyNESwBw1TTNIg5Fz7m2stHQLbJptsYvEIAUwgEFwQmFhdxoQTzR7CJIOUT9LRqCBsIBC4hpDOEIF0iiboXjZXJvnAYzBnUo/AhmACLH6U3yLh5bprrysn+4Wwd/vttxuNwCBwZSJz0403VemYHADXwy0331Jpt9AIsncQgXXeeecxwQOBAA0iAxXCC+UjJPJjpQ8hicBghdCHdow05JtDadBIjRo1ylYGHS/S1gcEHgQ08gH77rvuLgbJ+LFMM482E03gIswjsDFo8sxP7ktsDx6r38BmgkrwSZzdlzxBy4dADe/JSx2xBxJPmi3iKQEBi9VLx0UOVSwezeGovUYJF5Wr/EdKmEQgRLByIRMzYxYHCODBnkPgUBbtAtwRsA1vwcBsd85EaCMt7Yo6pt3xjBYGgQsTGxe4yW97KlUO7Y52jAALXSwwyBmSCbveBknP6rN7hIVPmAqTnh9moxwY7nVE3fo7JlzUf1W+ygEvhEnaipxuVCbM0A3fc+i/HPDvhrZAG0bT/5WvfMXaHv0QGicWAuijCJ7O2w5X/zUbFxxHx5vvgDi+F/oU6Bs2dFicNOkK+7adjqrPUlrL2+Rt3OnEyoI+YOTI3ewbLpBvtZiw5378h/Z5pvbu0x+xJxuhwmlvVrK8LXnbcjx5hh4WITj7lXGQuQrmy8TXp/d8zXR12hwncPY47gn0L8xx8KtwivbhM+4zrjFuYbHj/YrDyNfMgcyBrnMgC4Qd8UwdEntfhg4dagMIgz9akaqjLTsswEyRkOb7yOiseCa0SGjYeOONLT+TaLRSCCLs70ILyAZ39nwxqUA4YKBiYo3bZSbuHNS6ivYe+uQd80AEKe8sKQPBEQ0Zwhv5EQjBGThM7NEosRduwoQJiivgUxYDhwXRkcJj5dQm95rIg9dUCaUE0rCHzHEhDZomhDocuyCscI92FIEAnMAHHOAJpqxVECwCJpCY3cIb4Hl6BJxp0lrVhDIPcZilurkpAyG0AFGUxFN1ADRlAgveM5Cg2XOa5lD8A9KwenDa27rKI52ZlVL/wAA2PzS68tRqAmGxh7PQEGIySsApzEg0hOSRUHjc8cfZ4PWg9pE6LJwJIVgRKJ99fIan8jC4U9d/EG3OH+cR+d0tvOPDlckc5pi0CfCAB9QXV9oAgyvvWDggnjzwCI0OE3dLr7JZcWa/jeMFbmh8nH7al7cf3u25x556V9T1gQceaGUg/GI2iqYxFTSh5fTTTzfYfoyKPeQ//ZMDqn8mZS3qJ76tb4/FEdon7Ze+JJ2w0VbU0Gvo9AlgTWQTPXgbNdyFFwtA8sJsNNL/QaNPwEHb0zkJzU4f9QHOWJFsOmJTEywQ6omDrv4eoMN/0IKTMNon+6RNo6s43jdjcLwaXdO4wgHZ7kYXC4l+wDs0ebpmpM9wKnlfg2cZ5+3P33Hl6A3mDIz7WB1h+YLmt+m/s6atgIxY5oBc/WYmdMwBtDwIOz5JZ++beSdLBhA3AUXIIh2TaSYJBNcQMtF2gRDzQEwYfZKMRgWhAK0N6Zik8550dOw4YHFBgHgm9HSM/CgbJyaYXJIGIQHHNWipXPhDY9TS0hJvuOGGCg7CABqcdHXfva7ddFOthvDP0hBSFp3zDXIU4hoq8MTslUEVTZZ73MT8kM7ZTUbBi0kiHkUFqGK6azbhEXsqMQmhk3cBBgGEcgl+9XvMPOEzOJDnNnkNJeW7mpiORltVOmfBwQN4IWCbsCO6V5CW6um/PlWDC3DT4OUh1PDDDBc++0BEucBjMEK4R2vIM7/TNCkmoKX70rZfqvYQYjL6rgRl9kkyIQEGfGEPHwEhGnzhFz+c4qCJeF/lm9lyGU8ZDIQI2Oyd9PTEsycQ3hCuueaaqhzePaS9i9BFu8JJkuUTP3ZXmZhx+iozeFEXLWozPshyLUyJhZvygD9eSIHHjzbsPGGyTBm0F/IxuTzmmGMMZ8okHfsvKdP5bAjnP03BgapOyroFKYvTs99XaRTBogUm6+xjop3RX/Lts1hCOk/rVwPSZH+8nc+AY0mziLD2jLXE7tpPS/vHNN0EJ7XxNvM3GZ316Di9fKuMWezV2kSLcfThvEuFYU9bD6O/PTMe4CWavYQ6Aqhqn/2NDseXeuEHXSzqsVDKPIWz/axd6h3B68/T+7PD6U9XTM9ZbFx8scVt7oOTMrbRMO6k9DmN9Vcl6k/kZlwzB2Y5B7JA2AkWYzLHxJyJDpNZOluEF7Qt/NBUYQKIySj7yJjsovXxVWPS+GQebSAmo/+QkMeEHnhza2KBN8YWTb5xzmGTdMVzbAVCyFR1fOznIB4ccBZC5+YTEARWJveUy++CC86Pr2tfF+lI7xO0uyUkIIhgXuhlMCgijDChw/SCvWxMBG6WQAgs0mHmd845Z9vAiQCAsAE+vAc2OP9TNCLcueDECjo4YhqIWSk/6GUylXbM0PfDH/6w2lfGezyxOn5oGj14PnsWbPjqzlYQrNl/+LKEp8fk6n1xaUidXy5YH3/88YYv8SM23iT+n/hmEqQXUH9VGZQJTuyjo44RYJhA4I3VhVY0XazOcuwEsOELgj346SwyO3IC7aDODtQewqONRy4Qwj8WCRDeSX+LHK6kJp46w8wGOCFiE24moV4Ge7MQpNmX5XVhtMlEFjNncAdXnF2AK++Ah4CJR1UzWVU8eU86sdjvyp5FhH3i3FyVsj0g9NN+eA+80TKbRftKPbLa7vGY0zIwY2KK0yPaA7yj7ZOPhQr2O7aozfsKsJeRr03CgaTeHaN08Yj2hbkd2nMWoejzaJ9HydQdZ1AsYpDGf8DgvpmD41pdJehxT19LO0X4YyGDBajddtvN+kwEJk/fzLS1hRu4E1gMxGqAPglHXE6Tv/drW3D6Uzx1qfPtrM1yBBPP0Odjan+hJa0Tv29Rn8rcgW9x2223jToXs+pjScM3XBPK+q+Ja/YH6NCPMQYLI0xHmacwL2He4xZUaX36vfGgP9Lc7HWS8ev3HPj/AAAA//9Nd/jtAABAAElEQVTsnQWcXTX2x0OR4k5xaIHii0OBIsXdtZTF3criWnxxabEi/8WKu2spvri7Fdd2WWRL0fv/fc+7507emzfTmem0dN5L5vMm90ZOkl9yk3MiJyFLplkE/vzzT/O/7777sgkmmCDr1KlTNt5445k922yzZV26dMlCCNn111+fDRkyJJt++untfdJJJ83uv/9+izv0ww+zVVZZxeLhfsUVl2cvvfSS0TB6YbysZ8+e2cYbb5xNNNFEFh+a/DbddNPszTffzBZeeGELP+GEE2YDBw7Msjxf5O9D0V9yySWNPnnjeaeddsommWQSc4MO6Swl9y+++CI74ogj7B33CcYfP+vcuXPWtWtXc1tiiSWyTz/9NHvttdfs3cs6vsKNp3wussgi2VdffZXtuOOOBQ38yD9099xjT8PgvPPOy3799desf/9zsjAe6Yds2WWXsbyS5z/++MOwefzxx7PJJpssA5ctttgi22GHHYvyk+drr73Wyur14DaR//e//2X77rtvRvqUxWksvNBC9k78qaaaKnvl5ZezH3/4Ievbt6+5U6b11lsv+0FuozLk87HHHsummGIKyye48gMzx+bWW2/Nfvzxx2yTTTYp0sVvjjnmKNWnnsEgdBovO+jgg7Kff/45e/7558vqmnqlPZFnysIPN/ChzL///nv20UcfFe0L+sccc4xl/9lnn7V6JC7up59+usXBk7jbbLONYUT9gdFmm21meSMN4nTv3j0bOnRoNmzYsGyvvfaydo5f7969s//85z+Whv/jHXfSIQzY/+1vf8vmm2++ouzQ3HnnnbMRI0ZkRx11lKVB+911112tnRCP37LLLlu0A6ef7HEPAW9/cc5oj/Q7fPP0WfzWXHNN6wPtG1W7w+b78W+dd/OLCY1jz3/m/VKcTyuHyssYsJD6Fto8fcCXX35puffy8QIuHdGQ708++SSbdZbZ7Bv96aefinqjPF7GGJeOWM44zwMGDFA/1ik744wzrN46atmsbvRtYf7I299nn32W9erVy/ryXXbepWircfkpb4ctc15OL8O333yTnXDCCTa+MW5uuOGG2csa93/77bdSP1Tlu+yoZY/rMD0nBNoTgdCexGqZFsLHqaeeagIgDK8z327ffPPN2eDBg41hh1lGGLv7rrttIB0qZnullVYyJhrG6fzzz88YcGHMYS4Izw9mfZZZZrFBioEKAXTrrbfO3n/vPWO4CUN6DGRu6NR++eWX7OCDDy7lSUy/58kFEo+3wgor2MCAgEmHGQufhIFJX3755U1oRGhByDNaookfzz169Mi+UeeLQGMDTi6MEd/TQcC77LLLNMj+psH2NMUL8guK2yAQev5ffPFFE0YRVpwGNgIXeXSmi/De+XtcBsIXXnjBGFHKQv5c2OB59tlmN6wV0YSTgw46qEhji803z4YPH+6kqtqeHnlEWKNO+Hk65HG11VbLPv/8c6vn22+7zeqQPDgW00wzTTah8hZyfMjDyJEjM2hOMP4EErJLuE488cQWx+MysXDmmWdY3frAhdC57bbbFrQfeeQRwwRBDqxIkwkKaBMHfGD0EBjJpwvOMc5zzTVXdumll1q4//73v9nuu+9u5aOcCJIIgI6D5+OhBx8yxjimQ1ulDnCjDC4QnnnmmcXEhPthzzLzLNaOLZ9VBuuqFZIcxxoClXXuCTPJ8/HHH2eXXHKJff8TiflaaqmlNPHT39ytPtXuPL7H491N/Oxu45LNd+Pl4Pn777/Prrrqqqxbt27Wvx9/3PHWR8Z59vDjetniPBfPqhsY5+OOOy6bVOMW41ws2IKBmw5ZPs98ZLsAzBjBpCt13FHL5vXj+cfm95H4jvXWW9f65d00GYfQ5H5AET9H0Izzj+TbjZfd3+HBmFiGl2IMpS1/8MEHGRM9Xl7syngeP9kJgXpGYDwKLwYumWYQUGcifn688ONPP4VHhjwSbrv9tqBVtCAGOkw77bRBqyPhwAMPDN99910479zzwrfDvg1aUTK3xRdfPGhVLvQ/p3/4cOiHQYxzkJAXtEIVXn/99SBGyuzpppsurLHGGmGBBRYIl19+edBsbdDKS9hzzz2DhJHQr1+/IOEoSNAMWp0La621FsK8Fp5klDd1/uGss88OTz31VJh88smDVgktjXvuuSdolSnMOecc4e9/3y6steaaYXzlQatN4eabbgoPDxkSJKAEdZBhhhlmCOuuu27YaqutgoS68Oqrr4YLL7wwSIAMYgTDvPPOGzbfbPOwzrrrBAlFQauc4fbbbw9vvPGG4UGZyeuKK64YNthggzDjjF3CbbfdFq6+epChS9n22We/MNOMM1qecdRAHB588EGjo5VHw1SrekHCqOVjgfnnN+wpI3mUUGO0VHizf/v99/D+++8HCeThiSeeCMOHDQtTTzON5WPLLbc0OuSLMg4aNCjce++9Fm/xJZYIBx90UOg88cQlDEtUy/7bp6F0/jdihOVviLDSzGuQIBm6CKtll1tOmP5d2M5pNEb8/HO44oorwt133x2+/fbbIGEraNVE9T40vPnWm+H3X38LG220Udhuu+3CULn1O/poy9eMwmOBBRe0/GvV0uph/fXXD2uvvXaYeuqpgwYwyxf5ueWWW4MERXO/5ZZbggY+87/66quDBj+jf7ToSjgz3Gi3mjAI77zzjuLeEl588QW1o68CGM8+++xh8803D1q9NjqapAhXXnllePTRR4MYRKvHXXbZxdqT4009QO9JYX3tddeFV155xdrKqquuanUjYdTyqsmCoBVBa/u0AQmvQcKlxZ177rmDBFhra1MrH94Bkddkxg0ErG/J64P2x/dOHyCGK/zf//1foF+hz6Iv22GHHaxv0My89Um0FerSaCgexulhY8bVuq7sY4bpW7/k4ovDKaecEibq3DlIaLLvlz6WcvI9eBwvGzZ4dRRD/TIeaIeKlUWTeWHppZcu1VFeX5STcNTbuFp3rcGbOqKPW2eddWx8Y+zo1rVr6OTjS2uI/ZVh8zZIFihT8d3hoLp67733wmGHHWbfa59t+oTjjj8uzDrLLB26z/VyUkQM7/z45mij8El33XWXxskzjS9ZffXVA+PYiiusEKZVn1UZv0Ql/U8IJASSQNjCNuCdCMKh5qesU0HIQECjE0ZQ0RRU+CMfNCGLu3dSdFRuLDydl+jATHz99ddhpplmKsLjpu12xqRrS2fBdBAfOgiVRcevNNxo1jPA1GvlygSC8ZUG+dHKkjH1JkwpzfFgVmR7+h6HeJ5nT4tya3XUyulMjpUVOuRHNgOrVhRDZwkhME1O488//yAZQuVM04SBPClAwUThSxqUCxqUjR+G9Pjhj4EuBHmzZxzxkzvxwe1n4abVNqNh+Y3wwb8UBQyoG9WZ4neKwliA/B9+pOPpk8ZI5fFXlRchE78YC88HAhNxHE+eNT8ZOgkxi6N0lfHw5x9/6j84Kv/Yokca5Jtnfhi3eabNgRNuCFN6sDjE+14TFDA0WpW09C22/D3/2DD13rZg4KFj5SecaICtTYBQTzKeFxGxujZM9Qwt6p62gZt/B54WaZMX3vmBPWl7/RodhYnLRnrJjFsIeH0yKYQgqN0NgX6GiQ4mHhAc4v6I3FOntCXrZ6LieNuG5rha73HemODT9mtjLCmjVgltwoVvvrIs1cobFX2cf/zXv/5lEzjaFRDOHTAgTKWJKEyBB3WW9wnjfGFakEHKRR0iLJ111lk2KbmqJrU6minaYfS9UTYM3xj+7777rk2uMgHNxPXhhx9uY0RHK2ucX8YTvkO31VBtLPSyY7/z9tvhhBNPCNdff4ONUUcdeWTYRZOUs846a0wqPScEEgI5AkkgTE1hDCNQGpxKiZQEnDGcYCJfYwgwuJsAIfsXCZUIvtNNP70N8hQ1FkCKsHJv9FwKzP9khIDjg43xd3vRP3BlJwSrgayus/tgmWWWsRUyVpZZIbR6ycN6vI5gU1Z+TEwYU62yqjCWdQReVvDPlqBwpYRAdnkcf/zxoVevXubvOHnZO0J5yaPnGxvj+WdnhrZ4h4ceeijcpF0jrJrBbLu/Ba7Bf+Cg899hR61w77jTTib8M0lWC6ayrqUTILBjhu/5kEMOCTpPb7tMKsNVlr2jtQEXkLHJO7u4pN8hXHDBBSYYsxuGnSusGk455ZR8FDYJSrkJ7/Erv5FKXNJ7QqAWEUgCYS3WaipTQqDGELDVSw3er4qxYZs1zDmrU93nmafEvHZi/VVGg7oP5qXX0juDvTM/NQbNaBUnxgrmiFUgVoh/0sov23zZAo2goPM4QWeeww5inufRll9bXVbYjohpWZkj9GgjrDg89+yz4dTTTgt33HGHbW0+UisLCIW+qu3x/T0iMc4/+oqK1Ztyiz344YfD9ttvH2aeeWbb4s+2f/MXHrVsKCNb3vv06WOCA0LTtNpdQR/S0Y3XHzYGQUfn7cP+++9vR1RYGd1nn31spwv+hKM9089S/o7YX3qZVZhiHMDtF+2qeUerpGyFZpV/ismnCBttvJFNgnCMhckPdsn4CnhBB2BkKt9Lrul/QqAGEVBjTyYhkBBICIzTCIiRNcVAmt02ZUsoDUCbLlpMxcAXSjAIhxED1FCe/LnMrcG3rp9ivMCHH0qJUC6Ehl4UBelMcSbh0PB3sEybYQfFlTJ7Wb08/q7zzNautEVUGo93yHQ+uVDO5GGwO6Lx/JN3nlGs8pMUVe233372TYlhNreOWr7W1Im3exSCoXFa4oBp/m4NjXE6bF6/5NHLqomeTGclTVM4CtG05ds0Xns5vH105Pr3ssa2P6Mg7YYbbsh0ht0Up6FR/ZprruFjKMaP5srenJ9jmOyEQEdGIK0Q1qCQn4qUEKhFBDirymrVaVq9QZERSmo0SNssN0p42Ma4nBT9sBXIzzSKGbCZb2a8kylHQIxQsRoCTuDJqhgrsJw7YqWI1TGUjaA8i5n30noD0RpWYjsitrQbVgU4B4thFQEFW9tJSRTbklHmhQIZ2pGvOBCOsnqb8nfsjmDEqJRlk7J8+OGHtkJG3T/wwANhDima8hWissA1+EL754z9scceG04++eSg6yeCrjEqzrB35CJ7+6YuecZQ3zzTh6KYjvPfbIVmCyXn3Vkh9G+ZtuLPHQ2HuOyW94p+S1pHrY9j9wPn/VE4s8fuu4f5pMDOVguFg5sYh/jZ/ZOdEKglBJJAWEu1mcqSEKhBBGDc2M4DI85gj9ZeXcUS7pI212eeeSY8/fTTxsygJXcebSHVfZAmGC666KIlhl6YIA7CDndUJmdMVitKpXRnarhc2o2xEQTZRocGXfA0zHKmKsavI2PqwhHlQXnMddKYe/RRR6kdjR90V6gxzJyRdIVLtD2YRWcKzaZSFL8jGS8HeeZb0pUzQSuEQfdJBq2223cUh+lIZWtNXk1oYIuk2jVnzNgyq+snwr+kOGkSaW6uFePtNZ7UQLkX2rYPOfhg2xqu+/tCHykT0vVIVv9WduFipgO1bx8nKDOGb7upZ7R509ehKAst57o6J+yxxx5hQ2lHRxOpxzfcSi/mlv4lBGoZgSQQ1nLtprIlBGoAgYKpycsCM4dBWyoqxnXPop0NYWCHF+jceSLTJMfVK1yhgiIBru/AxAKNOdTxP1ZcWWk9Uysj94k5QlnPthICWTFYZJFFTJj2c3LOWFXFENA7EONIGbw8tCFWhs7WlT1c1XLuueeG9XUl0MRaGYzLbuerIkazIwpNxXeU1xdX6Oy4w47h408+tskAVte9fouw5lLb/9Cgq/t37ZoglMxwjVBNGNVzSTQqlcb6vrwNszLKlVGsiP5PE0IDzh0gZVHbF99FR+0ni3abt3GvR75X/569bLhxvRdXNp100kl2Lpqxgp0BCy20UJgQbedRv1bQdqLJTgjUGgJq5MkkBBICCYEOiYCEQzsjo6s4Mq0WZprpz3SHpp2JUl+daVUnW3SRRbKBAwdmnBf6QRdQixHQZHL1c2Ccs3FDOAxnrTD+bi/j4L84f5Xlcz/cKQ/naaR5zy5v5rzcQgsumGmVLNMWqnGwZKOXpbj+HBfwkMZFay9iFDPd+Zrdf/8DxQXWaiAN7aSJtjJ6uRr7sb3spMyzNIraWSrOiOrqo7L2HYcd+zkduynSPrRClGmHQaZts4YN5Y9/YzdHYy41r1faP+WWkpVM28HtIneei+8/Lz85cRw8V3Ef6W4d3dbdu9myyy6bSVmW9YnnnXdepp0DRd/vfUhlOSuxqfRP7wmBjoRAWiGsNQk/lSchUCcIqKMtNItqYLbVP1Z83nnnHTsP9egjj4Z/P/1vu5uT7X7du3cPnDVkFhitkdwlaWfEcryMnmaExSzZbLLPJLPsyEw774Th57PN4xTUeT7Jk+edvPo75fr+++/Dw9IqyfZQVlRZDdl8s82ldn9HWyGJt0VaxA78Ly47z44JbYWVUbbK3XLLLWHllVe2c2SsEhHGw42z9dzWOqEtqHyUn3bA2akHtDJ84cCBYStdScCWQUyMVVuTGtfjedvg2wYTzspykTk/zo9i+BYwNYWHyut9Ge2Ae23RvMndhF26dNFugTPDGmusXrQFA0D/+CbAQdKh3S/r7h3d9nZA38huE66nuPnmm4MmD8MWW2xh34iUz4RJdLcxxxY8vJeb93FyLPAMJjsh0AoEkkDYCrBS0IRAQmAcQiBn5uIcuWDoA/xbb70dbtbdajfdfJOdFYOxmWWWWcKCCy5owuHaa69t79JaWiYIOAPkwoHTrXSP0/6rn2FO4nN9zrzg9r9cUL7ooovsagHbHrrttmEn3T/HWcvJVH4YRcrpjPBfXZ7RTd/Lb7io3qk7lEg8//zzJgA+9thjYa211jIhYK655jLGjrCcG/Q4lge915Lh2+Dcbe/eva3ts2WO8ntbt7JW+bZqCQPKQh17PT/33HN27pjt0qdLadXkmixyPDxMrZWfb522PuLnn00oPPTQQ+16GbZPb6CzdN7nebnBw+MIHHfu8Dbfgwt12mkSXnrpJVNcdrfOqEsjadhW/STtYqaZZioEQm8TBSaRIpoOD0gqQN0ikATCuq36VPCEQMdHwAdmZ158gMbmh2HA/+abb+xOPWbD35NCGm0BMv8ZZ5wxbNN7m7Dd9tuF2aVhkbOG0HQGwZmFmC40nTbP45oBC4yXgbKzIohGQVZQYWwGXnhhWE+rpYQpypILAZS5FoRCaxsAkTOyvMP4Mwnw448/muIYVgTsTsWIwY3bkrcvyHR0Y8y86puyn3rKqbpr8VRrE9xJRxugrBj7aiI8Onq5W5J/yj7rrLOaQITCFZ4xuINbLXwPXh7/3ikbP/oAJkouvvjiQFtASETRzhprrtmgcVXh/J4+A6YG/lH2am2d+kYw1DGDcMwxxxg2KJ1BAU3Xrl3DpGgeFkbExzieNQBJKkKdI5AEwjpvAKn4CYGOjEDMvHs5bKDXgO1+uPMM48O2oDvvvDPozEh45ulnwmeffxZQrsLWUTQNrrTSSgFlNFzSjZsLTE6zKSbC0/4r7UoGZdiwYbY99EqpV79HTC6rQL237h3267ufXSNhZVOGS2wNDw3bKmF4asKoTJQPrYJcqXHQQQeZun3svffeO8ww/fTG3FHWWBAGS9pMrQgCXpeUUXcr2lY4rhZB0yIrxG5cMKwHJtfr2+t69912D9ded2148sknTakSmPCNeDjHqCPb3kdgU8d85f79o22XLbNnnXWWtYkzTj8j9Fi2h2HAd+Bx3O7IOFTmnQlCnaUuhDzKSN0/8sgjto30nnvusSgnnnhiWHfddUvb6+XvgiFhk0kIdHQEkkDY0Wsw5T8hUMcImKDHbG2OgTO0o4IE5gftgoMHDw733XdfeO2110xQ4FwhDDKC4TrrrGPnDrnOAmODfi5gjKsMM4wM10i88sortirIagcCL1dx7CCBd9HFFrPzMODlDKEzNTF242r5rCJa+A8sEHK/k/bU888/365YgLE95JBDwtZbbx2mmmqqMkpe/mp2WcAO+mKMvPJ+uSYI9tlnHxMKudPTV0h90qSDFq9V2TYs6DdoIzLUOStAu+22mwlEaN/EjV8tGS8vNv1ZjAMl5VsZMGBA+Oc//xl69uxp2jfRPuvhwCJ+rhVsOBtJPxgb6wfk/rV2WNxyy80SDC+0yZTVVlvNvh8poQnToL26Il5MIz0nBDoSAkkg7Ei1lfKaEEgItBsCMDbcycU2SoTCG2+80e7nYvsUgoO0lYbVV189bKM7upZZZpkwq84extumRrVy0J6MUyUtf69k4rmjke2hAy8cqNXQL0wAPKZfv9BLinQQdmvdgEts2C57yimnhAu1RRalGeeK2V1P10pMMOGEcbDaf85x4TLynaVMBoVCt912W1hxxRVrv+xVSogAwLccfz+cHeNMKTsEbEUIzFwozJ+rkKodp7yMbJc8/fTTTRjk+oVLLrnEMKGg4FWLgnJTlej9LMp3pIk3HH300aZ0hvFhr732CrvrQvs55pjDttna2CAMpb+6NHlYQdRpuV3hnV4TAn85Akkg/MurIGUgIZAQGBcQYFvhU9oudoe2lD7xxBPhgw8+MGFxAg3+K2rFcOONNzbFE/NKWylKJ3ybEAM8z7rKIejqi2Azx9NMY8wT5fJwrS1jzKx6XNLCHYYE4+/kna2w11xzja16ck4QbYk77rijCUKER4AlL7W46mGz+cLGywZG3DF27LHHhkGDBpkSof7nnBNWkkZRx84xrVWbtoFxbMCE9skkx4YbbmhC8jRqp3VrwEcCn39Dn3z8sbTt7mQ7B954/fUwgyYQEBxBsa3fcEfBFgzib2f48OF2vhQlVKussqqUrJwadDVLAw4RdpTR43aU8rY0n5W40M/Sx7KtVtfWhBVWWCEccMABpql4YmkiZdtpYXKMinc9+EpkreIVlzU9dzwEkkDY8eos5TghkBAYAwg4A43gxHZShEK2XL7wwgvhq6++MqZn4YUXNqGQcyRoKu3WrZsJGMR96qmnbMZ42z59wt7akjf55JNbLp2paAsT4HkibvEsqjCpuI3UbP6TSveGG24IukcwoC110002Ddv02cYu2/Z41ewxAOFfRrLARphwHujtt982hhYhGQEI5RBcNQIOtc7cN1UJP4qZ3a/v/mor14f+/fuHHXbYwdoumNSjqZxwQdkO24kvvfRSY/q5dsC/XT2Y8FjLOPk35GX87LPPwsknn2wrhJtttpld2D7vvPNWVcTicWrOVr1bX0vB8u+E/oUjBpdcfIlpr8aLibc+6vfnn3/+MFF8fQueMt5f27No1us3Z2Ckf+MuAuoEkkkIJAQSAnWPgARBTeCWLqQGDC5p5sJu3duXHXLwIZm2BtlF3lphyqbTZc49evTITj311EwCo8XTuRvz11bTTDPrmbajltFrK8DkqdL8oUulJbRmJytNXaORcbm8BJ9M2wDt0nnK4iaO39Szh+2IttcZts5LZtoOmUlwzzp37pztvPPO2UcffWT14PXbEcvY1jzH2OjuRbuAfLHFFsteefllu4g+bg9tTaOjx3MMftP3yoXktButrmd8YxgJAB29iG3Ov3Y9ZLvvtlum1a9sk002zoYOHVrQ8rZVONTZw/BhwzLdY5otssgimYTATPeYZtqun/08YoR9W8ABRkVfrGdva3UGVSpuB0GAGbBkEgIJgYRAXSNQNnALCR+4EeowvL/6yivZOeecY4KgLirOEAzHG69TpllzYyC7zNBF7+MxGZxpK16mC45NQPkzEs6MWAv/eR48fd5hTrVtKdPdcZm2cFn6ui4j091hhSDo8WJG1t3cbmEWOkQwygTG1JVWSjPwgEHbv2/fTCu7DQyZSlOL5W+qkuKy6lxYpsvHbcLiqKOOsnZZMKpNEahld2fOZcdGd1NmOmuarbzSytm3335btJcYyzh8TT3nWFBW+g7aB7Y0M2ebbrppNn6nTtmWW26ZaatkgQvlrwtsooqmvDZZIJtnJpykjMiEZiloyrRamL311lv2jTk+/q25HZFLjwmBcQaBtGV03F28TTlLCCQExiIC6pUtNbbz+DMO8fYeMUh2doQtQyjlePbZZ217ohiDspwSZ4EFFrBzWqOruMNp/6QtbS9K8QVb2tgKOe200wY03nFWkLTYLkpY3xJJGfjxjh2Xo/K9LPMd7IWy/FfaETVbH/pJgQ4YHHzwwWH77bYL0043XYFJXP4OVsTRyi54fKzzcTvpfBztFYUpaNEFj1pqB60FKS47zxi2hq+p+/e+//57u4sPDZvxN9XaNDpKeMfCbc+34SJs3tEVJQceeKApI9pe2orZgq2dCaW+Buzy7ZQer2bsvF1Y+fRcaiWlMcHbDN8Rypr4rtBU+8ADD4Sll17alM6gpIi7bm1Tdp1/bzXTJmq4IEkgrOHKTUVLCCQERg+BSgbJqWmm16534JL7u+66y7Tyoa3UhQ6Ph8ZCbUML2l5aihozTzGzIV9nMAjodEqRQnjnnXdMeygXRsPccyUG9+jBsPr1CbXO4DumYBI/owCD+9O4WgIsUJmvlYziLE9leMe0Vm3HBkGGNoGt1eqwswTCDTbYIPzrssuCtkU2amO1ikdrysU3zJUTKA7hYvK///3vhlPl99gamh06bN5H0abeVV/Xt29fu5tvn733CQcfcrAJO1a+uF/r0AVuW+bBhzGBc5dX6FqXSy6+NPw8coT100zYLSMB0TUbV7Yl/17blnKKlRBoRwTUGJNJCCQEEgIJgVYg4Ft/xGxn99x9t20fVbfMBLL9tCpn2zmxl1pqqUyCY6OzSE6DZKETG38Xg2rnUtgGCS22ql511VUZ7r4lFNvDxzRq9dlxo8xsZ9tt110ztmqx1e9u1YUU7dRq0VtdLjDS6mm26y67Zp21jfahhx4q2go41lO7aRF4wovvayK1pyOPPDLTyk+x9a9F8WsskPcx3k40GZVJs6b1RbpyIdOdp1Zib0v+bdYYDKMujtqNYwUGutA+kxIrGws4b86ZcvpsjGPl4d3NPNO/hMBfiAAzrckkBBICCYGEQCsRcGZbK3WZrrA2Jkmzv8YEYCPA8UPhi1YaMqm1NwaceM5g+bPbZIHzKTCiQ4YMyXr37m3Cjq6RyHTvVaa70goahI3p8F6rxvFxG2bqww8+MFwnnWQSY1IfffTRoviOS+FQJw+OD8V1DFA+pDsos169ehVMqcGhdphMYwS0Gm9nULV11M7LEaJuBR2V3dpR3lbA4emnn850tY71bZxLHSblKt7WGqNZJy55nw4OLvAxWcV53W7dulkfzjnMZ595xvp2UCGs/3iv5zZG+ZP56xFIW0bbcbU1kUoIJATqAwF13baVTMoD7GwNlxZzzcTUU08dppxyysKeTmfY2J43wwwzBDHkYXq9d9KdgGIELL7TATWe+b366qvhpptuCoOuGhS+/OpLuzNuF10m3rNnz+JyeY9v24+Ip/iVW5FqsiZU1t90jvPf//633TH4pK4G2WzzzcMRRxwRFtYl2uDgpi7w8MK6XaUtHHTQQeHcc8/VVRPnhF133S1IOQiNxWMkuwIB7hPlyonPdM/cddqivfhiiyW8wEhtS1MIdq0LZ1HZCsn29cMOO8zOy9H3EaYe2xb9thvvd3CTpurwb10LNFD3Od5+++12iT1XVGy11Vaha9eupT5b4bjUXtKh2U4n2QmBsY1AEgjHNuIpvYRAQqAmEEAo06xukDbCMMkkk9jgDjOgVUG7oJgL0Dvl7y6w4YeBWXDGARq4oxiF+wS59PiDDz4w5gHlDRtttJEJgoTxOE4jZiJiP0ukhv4ZXpRHeN53333h0EMPDa/r8vCtt946nHLKKabgwrEnWIwv7/VmvPxgxDlW7kfTVki7XBwsvK14uHrDp7ny8l1Lm7BNOHAulXOE9WrAgn7H2wm2CX0CBAVX2sFgQqGu3wn76O7VsovZ6wg0+mH6Jlce4xN2BoEw+059O2cLtWJoAvWKK6wYTjv9tLCQJrG0lTv8ofhM1Pg4UUfQpaKOQwgkgXAcqoyUlYRAQqBjIeAMEzbMEkIgBiHPn3l3RoqZYH+HKYeR+Eka6rQVNFwg5vNGrQyyqrjJJpuE/fbbzxj5eEXHGA0IKG7Jqg9NkeCHJj9dCxB0dil89913Yd999g39julnwriBwT+FS0xVsBVoMDv33AFawT4o7LHHHuE0Me2TTjaZCYP4WfvL7QK/9GDfqs6AhTXWWMNWvvpLOPTvtt7gsX7LPqsGbcUxBg/c/0A48KADg7Ylh9NOO00r0LsWSq7icPXw7GNBZd/vE35ggHbqY4891ia1Ro4cGXSPbNhKk1o6I26Ct0/U1ANeqYzjHgJJIBz36iTlKCGQEOhACDhzTZbjZ3/H9oHe/bF1b17QZeGm0ZDZY90VF9Zdd92wk7YUrbX22mVxoIFxOjw7LZ5r0Xj5sFmFBSOYKa7b0Nklu0ZBF2bXYtFHq0yOGxoPt9PVG08++WSQsp2w+uqrjxbdeor8nq5Z2FzbRtnqzfbtqaW9Vh9fPUFQlNXbU+EQPSDUcN0Cq4OEY0fDtn36hMm0fT7uq6IoNf3oWLkdF9YERrWhr3S8gJ0gV155pQmITDzoHsPA9US6v7aI0oiG8K3XNliAkh7GKAJJIByj8CbiCYGEQL0hUAzkDOAYGMnoGX+Y9bvv5rqKM+xewwV1j+DBhxwSuLcKgce3lpYI1PZ/8MA4A+kz7bjx/MMPP4QTTzhR53AGGsPUv3//sLYEZt+mS7hkGhBwPDmzxN2DbEu7//777Z7KhlDpqSkEaHPSnmnXukgrqwnTSyyxRFPB69qdtsbE1uOPP25XvTBBc+qpp2ib7XYlXORPmHpdYW2qcYDZF198YRNcXCVEn8+5VXaFzDnnnKXdJcKNM5u+ZRda3kc6XcO2TicqHINktyMCalDJJAQSAgmBhEA7ISCGsqBU+ezaQzfccAPTZKh78zLNrtv1CUQivP8KInX24JihSfT999/PtA3NNBouvPDCmZTJGBr4ebg6g6dFxZUQnYm5NNx0p17SYNgi1Bo0amq1PjvxxBNNO6TutUz4VcGP70/bIc0HWyupGdqQJ5100uy6666161/8G/VwVcjUrRPYcG2HLrPPZp555kxHA0x765133pnR/ujjquFGPP/VLXip4GMEgbRC2I7CdSKVEEgI1DcC6qVtFhcb40oGftaF12/rcvlLLrkk3HbbbYELsKXW3rYKLb/88sVqF/H41dMKITjFuDELLkYovPjii6YwBrxYOWW76FJSkMJqQ+VMOTSSKSEAlu9qy+Oqq6wapp1u2vCcNEJ21spNwqxlLUTMtrXHu+66yzRprrLKKuHSSy8tP6vaMlI1HwqsaFe0OTRqXn311eHYY44LE040gSnHspV8tnWnVayytlDZ37388ss2Ntx6661hhM5Ko1W6z7bbhgUXXNCUzuR7TYqxgfhmZKfV1zJo08toIJAEwtEAL0VNCCQEEgKVCBSDtTx4/uSTT8KNN94Yrrv22vDyK6+ElVZaKey8885htdVWC5pRtzAwVcawK7xvE6qkW6vvxhxRuJxphMl88MEHg1ZowjPPPGMq2nVJeOjevbtBgLIei5MzoknQaWgZ3vbADgF6wID+UiizZ5mCo4bQ6akaAmDIT/cRWttD0GFSYgFt606mAQFva8X3J8z+p4kutNkeeOCBYe655w4nn3xyWG+99RoipadGCIAjGHLdycMPP2yCNP3e0ksvbWczdX+hTUZYOMVGAPQ4jYglh4TAaCCQBMLRAC9FTQgkBBICMQIIM37mQ1t+gi5LD6ecfEoY/PBgO8PFdQnbb799mENa5eKZ3UrmihWyWEtpnEYtPFdjaBwDrpVAycLw4cPNRqU9WLi2VZgnwweNrbkQWQuYtFcZ0MDKZAPXmNykiYgltKpaDe/2Sq+W6MQ46cJ1O4N57733mhIQNP8mU0IAnOjr/KoEXB07vk9WVFE0M+uss4brrrsuLL3UUulbrdJ46McYL8BM+0BtTBg6dGj417/+pfPlp9uq67rrrBPO1FVE8803XylcLkCCN4a4ySQE2gOBJBC2B4qJRkIgIZAQyBEYKW2hb739drj88suNMULRwjoa1FHJzuqgD+Cx8GgMQS0O8JSpOYYl94e5+f777wMKFo4++mi7qwvhea+99rI7GL1xOdMp7tOdmqffEKr2n3IsuTsP5RRcz4EwPZmumqi3LcjtUdls6x4wYEBgdfqMM04P++67X5iAa2Xy9ly0xfZIrIPSaIRB3gbZIt9f2On8pSlJueCCC8Kyyy5r9xR6/9dBi9xu2f79t9/CBBNOWAjSEAZPzG/yY/vowIEDw1O62F7np237MltwEbIxfhzB+kLaZI69eaZ/CYE2IJAEwjaAlqIkBBIC9YVAzPjEz44Cwh3uH3/8cbj55pvtKgnu5kKV+I66RoIVG1TY1/Kqn2MR22DCzHen/H5G/HDDuBAMYzNMq4EXX3xx6H9Of5136xxOOumksP7664epp566EKAtUvpXQiBn/nyFwdvk11Jpj2ZRmEhWGTbaaKNCGEyMeMsbj7fRxx59LKy62qp2L+j5550Xusw4Y9EeHfOWU62DkGqXdsm6vvf/6Js+6+yzTSjs2bOn3VO4zDLLpPbYTDPwdse3iiZSxhMmyQZeeFH4eeQIm1jcc889Q48ePUy4JnxZO+Rd9NMEUDMgJ68mEUgCYZPQJI+EQEIgISABJt/KEw+8sRvuDMDc9caZmWelxINVQVYW2B5qgmC0vTGmU+v4xquglLVSKAEL1K+DlbRh2rmjiy66yBiezp07Gzy1vn22rW2ALckTTDCBRQdnsH3wgQfC1r17h27dutn9cLS9xBy2HmFvt2zfY1UfHFGY4tv2oFjZllufSm3GcOzoI0fq/CWTO/SLyy23XJBGzTDPPPOUtcmEY9QO1B+qYdl2XP9uOcMq7crhhBNOsCMIXbp0CQf84x9hF+04kZZqiwyGPjnkz/U2+RihmB7biEASCNsIXIqWEEgI1D4CztxQUoQXjDMwvLM9lJXAC7W1B2UKCIKsbKFUgfvfJtSWIAZ2FwJNkNTgzaBfLybGzZ8FiBX/HWnDRAHKNddcG5ZZZulw5plnFrPfBIjxrxe8WlTOnHF0jGiT3NfY7+h+4fwLzretZqxMJ6awRWg2CuTt9Mcff7Tttyj7YPve2tJ266vdPinUKHJyKBDg+2XrLRM+aFheUudZr7jiioa79oqQ6cERqOzzvC0yccbW20GDBoWvvvrK7n3cY489wuKLL16mAZfwLkw6zWQnBFqCQBIIW4JSCpMQSAjULwIaYBFfYLp9cAYMVg/YznPllVeaRkKuRthhh+1Dr5V7hRlz7aGEQ/Tz+LzXo4lx4xks2dbI6sGQIUPsonnODi666KImxMThTQCPBKB6xK9amcHIscR+RRps0V6LMpQnnngizDHHHEV7NQyrEUluZQjEeOIBbggwu+oagH7HHBMOPeQQO/eFu4ctI5BeDAGwcQNWCDPHCD+2MXPdzlma+Jk/19qa2qYjVbL/RNGMb7HnG5ezYaTnX3W2EA2kCIacMZxtttnsbPpWW20VunbtahNohE2YlmOa3lqGQBIIW4ZTCpUQSAjUMQIwOMzcsuKiy4RNDT3KO7g/asopp7QZcNSDc40Es7M+Q1tsd4RB0kDtjFI9DdhxmVlV4f1eaRLdd599w+dffG7KElAgo8uZrYX5VkjwBifCO5513AQbFR1cwMfbGCtYffv2tbbIigx+/msUOTk0jUDFt8o3ztUJq6++emA78ySTTNJ03Hr3EXZ+hjCGgrb62WefmcIotoZvsMEGdr0Ckxa00WQaEAArDLj4Nx6vGvK9f/vtt3ZE4fDDDg8//PiD7ao47LDDwsorr2ztM2HagGd6ajkCSSBsOVYpZEIgIVCHCDAYYxiIuZsMdeDXiqmZcKKJjLE54ogjTAtcU8x3PJhXwucDfqV7Lb27wEJZOQ9zyy23mODCdrz9998/IAxOM800VuQYD54xxtzwnBhHw4N/ldsV2Za3xhprhPfffz9wTQLbyJwpjDEtCKSHJhGoxIvrO1iBYZvePffcY1oeK8M0SaxOPXwyx4vvbfHzzz+3S9cfeuihsMUWm0uR1CWmBdf9PXy922V9Xw6Gtzm3wfi1V18Nxx1/vAmHHE/o169f2FYX2vvEZL3jmMrfOgSSQNg6vFLohEBCoIMj4AMqxfCB193MxoPVldz+WecE2R6KIMP20M810728tOahzZHrJDjYD0PjNIhWs8YFs9z2MmP7cyVzhzsGxhr8TjvtNHs/+OCDTekOmkQxlfHMMf2rikAl3jfccEPYTUomtthiy3D2OWeHySefnMZtcfmfsK0KY5OOPokDzjzTVtkRQB/gF617e2+SSPJojIDw5EoetofffvvtYasttwonnnRimJPtzQrdiX5UdmqvjaFryoUL7Vl1vfDCC23CcpVVVrEJt5Wk4XryKaYwLAs86ROEcdy+C7+mEkjudYNAEgjrpqpTQRMCCQEXThwJBsPYLX7HfeTIkXZWgysRnnzyydBlhi7h8CMON3X+9XpGq4wRzhkMx9Dxw46ZDq5DOOOMM0wxR1eddUGRzLrrrmtKd4jLllBfSfS6SXbzCPgqIQzhHrpzcPDDg4XvxWHjjTcyXJuPnXyrIeBt223C0I6vuupKKZfpa6vZBxxwgCmPisNUo5XcyhFwvPjO33zjjbC/NGVy1hVNzGxxnnPOOQ1r+g5+ybQcAXZefPDBB3a2kPtvmaTceOONwz777GNaXV25VBK4W45pPYZMAmE91noqc0IgIVCGgDMrMNl/SkCBCXzhhRdM1TfbxDg3tOkmm4aT/nmSKesgsgs9zsC4AFRGuMZewAlTjWGL/WIsPvzww3DYYYdqdeXWMP/885tQ6JdU2yqWmL8kDLauoXh7JRbb71i14vLqG2+8MXTTlRPUjwuMcV20LpU6D51PdoACfcHW2jY6zzzdw6CrB4XpppuuzsFpXfG9b3Cb2B999FFYX+32A/UPB0rIPkGTRH5WmP7Ar1RpXUr1Gdr7T7aO0wewAsv23EUWWSScecaZYbnllyvOvnodeJxqfXl9ophKnQTC1AYSAgmBukEA5tgEOErMLLQzfbIRdVgRRPkBl8uzRWyYDu/30hYctDdyyTfnNJwZd0abd559FramwXS8VEjHwRkMym2CCGFkmLV+7733wmmnnhZuvuVmU3jASsAKK6xg/h4Pm5lrqw/zSf9aggC4/e9//zNNrWzD/ec//xn23XffgvGzNRbhau004dsSSMvCgC/tGfzoE9gizn1wjz/+eFhiiSWs72DyyIWYssjppREC3l/i4d/+qzoDt/fee4enhesR6htY0eLOxySkNIKvSQdw9X4Xm+/+JSlC4pqP66+7LozQkYe99tor9Nb9pGhxZgwzo7ZLnxvXS5OJJI+6QCAJhHVRzamQCYGEAAj44MlzzHTg/s0339i5FtTMo8J/3nnnNQUI3CuIeu+Y8fMBGDoYf49plnxq978zzL/++qsxGTAiziCjKfShBx+0WX9WV7bZZpuA8h0upY6FcBgSVrKw6wm79moVKDnabrvtTJnM4MGDjeFz2l4/9dg2HYO22I5bHBcFSGxz5p5M+oett966PiaAYhBG87lS8OB6BaaOELJRLEU/gaZMhMLpp59+NFOrn+jgimFSjf7X+1HuJb3//vt0tnCgTWKwK4NJjQ033NBWuGnnjGnYGI9nL+lffSKgxpBMQiAhkBCoeQTEgGRffvllJsHPyqqBNNO2GXvWtrtsg/XXzyaaaKJMM6iZZq0zrW5lEmyKsDwQp8zk7x6uzK/GX8CCnxiPTNtqM6lCNzzB4qabbsrmnmtuOA3DUissBdYOSyWW1E8yLUfgt99+ywYMGJB17tw5O/yww4q2CgXatePrdsspp5COmfcP2Fdccbn1DRJYMilIMpBSm21dW/F2afiq7+Cd/kJnCbMpppjCfuedd15G206mdQjEYxD48sNN57ezf/zjH9m000xjfYVWCrO33nqroX+g31XYZBICaYWwPucBUqkTAjWNgLp2K1+8OoK2ULaBcnblnHPOsdXCd99917aHigkJnL9YbtnlpOxgf1PhL0a7pjFqU+FyXEHXZ5Q/+eSTsOSSS5pmu110gffDDz9sWhnBm2sl9tpzzzC9toFRJ/zildY25aHOIoGZY839YyiRmWWWWQzL3XbbLbAyeO2119o9eXUGzRgproSUstU/x//pp582RUhzzD570IRHmE6rWGwxR4HHxBNPXKYh0+OMkQzWKFG24u6r1cFPPv00HK+rFHaV1lxN0FnbNzwpt1bBMBJgwnj56pZ/G+aR/hUIgJkbCYbhXp2FP/OsswLteNZZZ7UdG6wWskW3sr3auJljLMGy6LOdJm51cUTCAawTOwmEdVLRqZgJgXpDwAc5s1X4Z597zu5oGj58uAmEMBsXXHCBaQ9dZpllzA/lHLOL4UtCS/XWYgwBAoqYMZgCfieddJIxcNx91atXL9t2O+OMM5rmwD7aKsp9jeBJWGfe3K6eSnJ1BOI2jNubb74ZjjrqqLDgAguGGbrMYNhztrV///5hskknLRhmj5/s1iHgeHssa+/5y8cffxz69OkTmETacccdbYv5Tz/9ZBesz64t5S6sEDy1b0dw1LZhrmCIL3fdeafa99Fh2PBh1s7Zaj7llFOW8FS/4yJOjG9lnY06xfoJQZ/rmkV5RhMpV/9wtvA/330X1lxzTduiu9hiizWcPZbQjQDp5+UdLTAHa36+1TSuBw+X7I6LQBIIO27dpZwnBBICVRBgwIoNgxbnA7lc+tFHHhW3FozJ6KRA2iwTDjroILtgfoEFFrAZaY9PvDTgxUiWnmEsMDAan0mT3WqrrWZn2Eq+IXTv3t2umMAd7aziIIxZNuZEgqG/e/hkjwIB4UeLpi2+9NJLdh4Tza1oYdTWOjvPxopK165dR0EoebcGAW+v70sx0l13322C4KBBg0yRD8wy2C+33HLhvvvuKy5XJ07qN1qDMt1Bg1IuML3ttttM4J5s0snCaaefZspQXBEKq+PTTjttWb9M/NRPN8YcXPj5ZJwLcT/pPOwrUuZzyimn6Izh/aGbtBKzs2OPPfawcRFK7Ja5/vrrbVycHo266nswXlfQSpgbJLX1TxWcTEIgIZAQqCkExJgV5ZHSk0wrgfDUmQYx+/EspTF29g1/wvsZDJ79VxBJD4YAZ378HBD25Zdfnmm7XBm2M888s50JqgzrEMZ1427Jro4AGLrhWdtzs549exZtmPYs5ixbaqmlshNOOCEbNmyYB0/2aCAQt1Ep7skWX3xxw9n7EGxwl/bGTJpeM84Sel2lvqNtwHt/QWwJI3aeULsOMml8tjOFWh3P9ttvv0xCYdsSqLNYPp5ZsTWmefvknTbKeXopScq0AmttWauF2VNPPpVJGMzuufsec7vssstsXHRa8XdRZ3DWRXGR+JNJCCQEEgI1hYAPXAyCKCzQLKgx0TBxzkTrTrzsqaeeKgZK4hAe2381BUo7FgZ8ED623XbbglF2Zhl8V1555Uwq5S1FxzJm+NoxKzVNCuwwjiEC4VprrWUCOG3ZMWdy4+qrrzZmrqYBGdOFy799AW6KNhx3lCYtuOCCBe4+sXTLLbc06jO8zsZ0VmuFvgsqjhvvurJGk02XZbPPNns299xzZxdffHG2ySabWF8D5oXJv4/iPT0UCHjbNdvHNez8mYA6A5vpzHcmrbmZdnNk2t2R9evXL+vRo4e1dR0BMAU0Pi4WxPXg9RW7peeOjUDaMqoRNZmEQEKgthBQt2wF0ixo0ABnquI5FyFGzra9YHMonnvbUCc/qc5fEQd3DXSlM4TQyLfK1BY6bS+NYwSF53Qmc7PNNgufffqZzhSWcENd/Kqrrhp69Vo5rLLKqmG++eazxIgnAaaEMS4JV8OlNf/AUBoD7cyPmGKLihvbFs+SsgjOAU2MIqSEbWtgrRq26APkC8ZsZURxj7Q1BmkYzdvxeOGtt9+y62kg4n0Hm+s4Y5tMCxEQvpjS/1IcsGTbojS7SkHVIdZ3/CIFPr+qHvps0ycMunpQ0V9TP4RPpjECYIOR9GZtEpRwAa/CT2E4UsFW3VNPPTV88cUXNgYyXqJYTTsPwv59+4YJ8vsLjQaYpzYOtDVlkkBYU9WZCpMQSAjECNxxxx12xmqmGWcKXbt1DdNMM41pWONeQak5D3PMMYeEl152BiiOl56rI2DMl7z+EINx9tlnm6a62WadLWy62aamgZGLj1ECwfk2Y9ESo1YdyFa4OsOLkIISE22bswkOmDqEwUsvvdQEbwTuZMYgAmKCL9cdhDvvvLMx00x26Loa60/GYKr1S1p4P/3MM6bIZ+jQoYUASB/OWVr6bowLNkkoHL2mAo533XWXjZdoiHZcu3btapq4F9eEU5kQqPBp8mn0MB/XYieBcFyrkZSfhEBCYLQRYDDjh1p4BjdTbpJTNWFFzDS2m8RMOBLN2wglYMXvQV0836VLl6AtXYYlqvcddxTOJGaheSxb4utMmQvXXJCOEiSd3QxbbLGFzd53FcNGffgqQEvopjCtQ8DrgVUqVPeffPLJYYcddginnXaa7S5oHbUUuiUIcGH9gQceaNckxOFp69dptXaLLbdM/U0MzGg+o7Bnu+22C9oeXepPEPhyo7OytpOGK1b4FnwMcP9k1wYCSSCsjXpMpUgIJARiBHKBEKGEwcsMA1z+bAweYeSRVlZi4Jp/dsZYXIGtErLt1vF1RgEK8XPzFJNvcwiAIz9vo2yjQwhhO1dfbeNii26MP7T8vTm6ya/1CFibVrSvtb3uhONPCEsutaRpw2w9pRSjJQjce++9YeDAgeGRRx4JTISoZetXEkaYFDnuuOOKewpTm28Jos2HuU5XURx55JGBYxbgyeSfznJa/8OuD+piSwnhfv9g6uObx7Mj+iaBsCPWWspzQiAh0CQCDFQYBjV/ZvWkk4QXTOVApgPzxSBnAdK/FiPQ1KqU454YtRZDWTWgt03HEyaNMz4waPy8jcd2VULJsd0QoC44y4nh7s1kxgwCnNvkx/2PN954o51xe+2112wypOfyPbV99/IwzzzzNJz5HjPZqBuq0pZr2CJ8f/XVV0Hade28LNt133jjjdBVOxEQGDlukUxtIpAEwtqs11SqhEBCwBHIBURxz0iDZauESWBxkFpmuzCNoOKrVsS0NVjh61tKzQ28k2k3BFwoxAZ7Vgl927PVi1JiKiS16XaDvCAEvoZx1KYTzgU8Y/SBPoX2Lq3GdmbzsUcfCx99/FE4+uij7QxtZb2M0czUAXGfhKKoTPgxbvqEk7vRz/hKIW7J1AYCSSCsjXpMpUgIJAQqEHBGIbYJgpjijLP5mWMSXoBhlAbGWIGcQXCmGBzduB/v7u9+yW47Ar4aG7dZb9vGNCOsRAJL21NKMasioDauyyjK2nRq31WRajfHYoKJ/iUXTJgI0Z2EYYYZZrAVWuu5U7sfbcy9L8HmhxDubhD3usBGGIz9RjvxRGCcQCAJhONENaRMJATGPgLGRKKZMB9s4w6eZzOyY81iFgYPDcBx+FJgSJUzTLjHcTxc4V45kOd5IU8ueMRhC/oezunndEbl7+m3JU9NxYnz5/kmrK2g5fks8uUZqLSj8hg9Dbox7p4GdsGEKk6MEX6YamnFbvEz+Y3rMvazZwiCbUX+mkunFKVcwI7p4o+J3ao9u5vbpVgt/+/x3B5VzGrhyoSwyjYGwVHgRxCrrxbiB724TuM8xc+lpBt/a7hXmsp4lf6jeq8W393cdhrFe5XyephKuymMCVe09SiSh3esPJylrRfHL84LbhjoFe56L2jxrDx7ekXfmIeRR+Enp7KwvGPi+CWX0v+m3Is4PFS0rco4vJeClX9XZfmMnAXtewAAQABJREFU8k94fs7Ux3GJQzljLOL0msLEMhD9K4sTpa2ErTzu7zZR7ZkHyhuHczfsFphGNHP8WhB19ILkeS4jIjdvc7h7ncR5LAuvF/ww3t4qw/o7Nj8bS/J41gIi/IxQ/s/jxW7gHOfP/Ei/tZjlcaqmUZbg2HmJ22m8qun4j51c1FYqSSCsrfpMpUkItAqBap2nbwesHKx8IMDGxAwF704rDlcMXgSQKfPTgORx4kHLw3h4bMtLxYBk+ZAbgpPFKQUs0rD4uWDlNONw+GNsYFFefND0PBl9+VeWM3Y3AkakhIkNsp5Ppc2KQrNba+RPGGPcFJ745IfzjmV5jgbveCC09BXf817EyctdylrO6Mbh8rTKyiZ/Sx9bxjCXXdCUu9dnjBFunj7xzMRpES+uawWIaRLe8xE/W/rkBUxyGvi7iXEgPxjieB559zDEd8MzeBMnzpelp0BOKw7jfp4P6JIv3N1ND0VeSatRHMpQ8ijavcWVW3P4EcVNkZY75DbuGE8zd25kFfGjvI4qTiWRyrR4B7Px+Q7zwPaet2GcmkqDcODsDF1M2589vr87rfjd65mwjdxVR8pAyZ064JmAMkaL/OfuJdeG/Ma08GvyHU/SyY23D15Jw8sZx+e5WlkKGvjrpbJtxPEIG9P0uGW26HjeyAcm1gLs9BrRyeO5f0yzcFMYz18cP/Yn7dgPOu7vttP2cLw7Nu7ntsUpBTCnSho4VnPLAxdY2HtL/kX4ERzaTj/Oo7sZSQ+jtt2UsTaPP/ioXpodx8iDjKfnaZld8ihrY4TzMBaRf+RJltNwd8JhKt3df7Rt6Cs/laZR/vIALXLPadKeybfnnbj8bDwljIy/5+ST1QwCSSBsBpzklRCoVQS808XGeKdJB8vFyz/88INdDMw7ftjeyTKQTagrG37T1p0JdVntH7IZzPBHCcBEE01k1z1g/8lZs1yZi9PwMNgWX2EwCE7uhu2ClOeNdDkzhR+2v2MTxuOTLtuKyA8DBc+4oTHN0yO+l41whMHP04cmcb1M7jeB8ugCnOVZcbmwd/LJJw/TTD11mEQX3FuZ5e5MpuffCtnEP8Jgfv31V8P+u+++szKRHz0Y1uSZfGI7w+l597JzkXCBneJxXyDhoetlp1yEh5bb+Pk7uPgACw5edo9PPj093Jy21y/+xCMMflxHYWHAXHkiHHkyrGX/rrAwqFaWPB7xvbzQsTyJLvnyMpEO2IwvGqQxtfDnbknCVzPE9TyCN+9mQyaPgD+XNKNggetK3Dju3i48/6SFX4yf1w1x24IfrBOYQBuMvE6hRzuGJvk2XPSsguBVlC0uI+5eTm8r5N3wzOOVYRFhRFz3i2m6MOF+lN3xR9ENJsbaHJr45zTcm3ew57wY3+vvKj9tBuM4E8brg3TAaCLlgXBgAy7uTt5oI9bG9E0itNJvYdNnER7Dd027grbhqmfKDFaeHrR45geWerA4PEPHcYUe6Xt+rZ0rbtFPkue8zeDn8YjDj3S97vFzOqSBP/iTVy8n+aJdTDfddNYPWWtQGDfkF1PkW8/0UZQfA0383P5O1w/89/vvrQ8nTdIzzIQRxsvq373ni/yQV7fJl7/H7Y3w+BW45OXy9A3bPF+WYMW/SloePhaqvKxedqcNKX8GIZBpMiyYCCP/nolH2hh/pn4oL+Wh75l22mntOY5jESr+Gd5yI31oehnAhusf+Aa4Mgn83HhZquFHGPLhmHrdxLR9LIYm+YYO6cYTOZSr0pBuXI/E8biEbQ4/C6vyQZefl8HbsPclXqeEgTZlwXj+iVeZDv6E8zoAe67FcCwJ7+kSNplRI5AEwlFjlEIkBGoOAe8svSOmgAiCDz/8cHjsscfCs88+G0b8b4QYjxLDZANA3kl7h+02NDAMLDBeCIu/SBDoLCblt9/F8IxfYqoIR+dtg5X8YPYQpv78QwLleKWZUh+0YJ5g9DUKMPqKupiv33OBUH6k8afy1qlTaSXNB44//xCjNIGYu3yw8wGmUbqKDwZFnpSXCScU8/WbBkvZpGUDi9ImTww8xUDKAC73kn9QXia0+/hWXHHFsNpqq4WlllyyNKBZvg0aG5hKT43/kw8M2iOHDBkSHn/88fDcc89Z/hjgLZ8KU8qD8qn0yAvpUz7LFwyWMC+EYeoqLx8CudWVwjtOjgs0qSOjqXoYX3ji5+2jKHOOAe4wO6V4JUGI+izSjfIEkxT7EcfLavk2mjAX0FNZ9Gf+Sp/6p85In3bgbAr+XmdOCxxIf/nllw/LLrus1QH3I2Ks5SiOMXbYednMT8+OB+9vv/12ePTRR8MjUnP/wfvvhxGRQOjtycNT/4XQVuCndpKXn7xZGfNyWPy8TrJM7UfPpbYGYyz8Jmw8icG3QZ2Co9Wf4nj+oQ+euOOGoe13Eo7+DXn9g5/n2+vT3sFC8TyvHg+aCEjuF5fVw1qCxFc+CIswvvjii4devXqFlVZeSZMj0xT5srBN/PN80aa+lxDywosvhsfU/p/QD8aYtknfQDhvE5DyclD2X/l2VUZzz9up5ZlvBMzkYfirbmgr0MI4lgiSYAlejjNlt+9efQnt0gU3wyTvd6Dhgpn1ZcoDeECftmtxvE/Ru+dBCRd9igmGuR/9VvZnKb59X9Yn6Vv3+hDt2JB/yjaRJoG4rH255ZYLq6yyitmTaIKEdDCeJyujuTT8i+sTvJ/+99PhtttvC++9914YPny4BQQfE3D0Rpr+TZawor2VBBr8DA9h7OUqhYW5V17IP2Hyb9r71TgP/qwUDfeGnJY/ed0VmMob3Pn+SAM6ZXUtf9AjHqZIR+GsvmjvCmDp5vG9HrEx0KM82GBp45jqjjbGNzrvvN3V96xu+M8///yWlqdnBKJ/pI8xfz3zhjZV7l584IEHwltvvWUTsoQjfS+vHsrwI20yXupTGL9KY2rZWKD8Ev939e/083wvTKB4WaBhaViOqv8D56I/VnjDXX0NGTecbIzXhEpeJs83cWL8GFfH65RP/tEO8vryeuykb518elt1dy8/37VPEJFT3AnLPcP0PyuvvHJYddVVbTx2jD0cdjLNI5AEwubxSb4JgZpFgA6TDpVOF7XSJ510kqn25t2Nd8T2rrHUZpXV61tcdewwCoTBlNyYUWVYgDaDs3ngTWQ5l2bhLY7iNRW/5E/w0mBcGoxgfkvpjK8B6A8NHIxADNA2KJKEAjAAMXCQCwxu5M3ylw9iFtH8nEEsYUECpTyVtqESrjRLjE3iJFXKkxEvGB2Yzj/DXHPNFfrut1/Ye++9LV+kafkrBW70nzySX4TAgw8+KDz//PPKAgN4Kd/knUESwRx36GGg2ZAPAitfhpWYRKsXymNBS+XOMTKXvIw8O44ljLRSIqYURqHAVWEMN8Uhn4TjZxhbHnJc5UaecMcQBhPHsfzl7rBABa64FfmvzBPMeomZhqLnhWcYgxIOpTx4ntZbb71w7LHHhsUWW4wsFHnxuLj5M3GYib/rrrvCYYcdFlCxTt6dISEsBjfi+LOVU5loEj/iGOZ5WmXfCrSEZV4nnpdS/eZtC0xoa8ofebH0LPUSPc+HxzW75FiUjVfcvV68DF437u/vZbRIPzf4k76Hs28aPzCRO7AQmjoFj2233TYceughYpDnK5WT9pzTii1PD8GJVVn6n4suuqhUr6Lt3xuRy7CxpEsUjQaTQvnEleex5E5f5N8q7baERxyGnLt76blUN+STcNCxZ9q6+rWGsOZc+FFXIIAhr6X6Irxl3vLR8P3iXvqWvYz+LRdtPc8rE15MfDGp5pNzpEG+rO0rT1YHuRvutOPdd989zD777GXtOGaueaZdmZvy+KquczjxxBOt//e2BrNeYvFJMZ8As3TyOo/7GbDKsW7TN1EC1toSqYGl11PpveF/aXxpeOfJwlpDLLWLct/Gb9Y+SFOmwFLxY3cyY30UdHPjbcLD8e7fBv0/9bjQQguF008/Pay55ppl+DuN2IYOv6effjpwt+IzzzxTeFO/GPz9A2q6TymFq+xTVAB5lPcpcqBoUFYbKrWvprAmFKZU3tKY4xiQKRDEL+6HC1pyr8TPiOmf0aC9RHWAGz/Hk7CldKvXqdEgDYXz1X0+wfXWX8++ASZIPF+ETWbUCCSBcNQYpRAJgZpDwDtamLEXJITsJQHmlVdeCXPOOafNtG2yySa2BXLyfAueddRCwbtVxhOe3QYgDTNyE2NQ2BJc1BGTlhsP32CX4pTiV6PZ4Oazg4VNmgwIzXT27u82Q2Pb8lSez/HFDP0pZmzkyJ9ta+G7770vZurW8OLzL9j7AQccIAHv4DCjVqqsrE3kEfzvlDBykITBj4Z+FLprlnn11VcPPXuuoC1g0xojyJbBEoKOb3k9OB6l+vAw5fltuq5KeJhwpTxiE5afG6qvMvuOZzU/j+d2Q1jRzgmVylPZfpqua8+T0ypoi6n4QfdmcXfWfffdr9XtR8NHHwnH7t3DGWecEdZee22b2Y7jxc/M8l911VXhiCOOsG2KSy21lM0yY7MFjB+5aqr81p7ytlBeDw0Yxt+D41rpZm3EC0WKeV2UWMLIYxx5zFlMm5QZMeLn8MXnX4R77r07PP3M0+HLz78Ma4gZ7n/OOWG++eZVWaoLhBQFIeKzzz4LB4oZvuWWW2zLXc8VVgirrb6aTa6wkjGBVk9ZhXQDdkySlFYKytu514GHBe8YW2931d3LaVEHtBUolFhfp1puE8LTbajfhrZcSquBhufH20BMLabVKW9X+Dtdey7yFcIvWsX+SdsLP//88zB48ODw4IMPWv+z9dZbh3/+858mFFIGfuSxaMi4iRjM96uvvhr23Xff8NRTT1n/37NnT1tlmWnGmcJkU0xerLI24EEuSsbLwpuXp6wMeTsuYdBQjjheTqqwvI8o1W/hbA/QibEo9x37b6xyshuGLf7s6rj33nttchUNqKeeeqpNjjCZWc1QJ/T/Phn14Ycf2r2K9P8rrbSSbX9k5ZH+H0z+UHgvu+PnNvRj/Cvxxh8alf18KV4DptCrNJ5mS90rw42pd/BjQuOXX34N3377TXjyiSfD/Q/cbyutTIYM6D9A/dAatp2dsN6uxlR+aoKugEomIZAQqEMExAxk2hqUaUUlU2eZabtdds8992TDhw3LNFA1IKJwGP6X//6seMe/0q3yPaZRzc/d3I7D+3PJzzJV8Y8ymXG70l/vxC4vh9Ntys/Du9043I8//ZS998H72Qknnphpu1Y26aSTZgMGDMh0Dk08b54npa0BLM+eaMn9tddfz5busQyjVbbOeutmjzz6aDZs+PBMM57N5DHOb+O8lJetRKd5eo3TKmDL8x6XodKveI8fojKbc/xelK1xug15dz+3Y+INz5Yv6OmnLW7ZQw89lEkIzDQznK2wwgqZJjka8M/DEdZ/WpnNZph+hkyMV7bbbrtl2qqV/aS69Hpy29JpSLZ4KuW3IY8N+fc6cj+33b1l9QY9N03lwf3Hlt24jFn28y8js2++/Ta7/Y7bs8UWX9za84YbbZh98eWX1o6bypu2qRvu2jKcLTD/ApmE8+xLxRn56y95+6+Gm2MY+zU8l7f1BneeGvLekmdPpyV2TK8yfDU/d3O7Mg7vsV/8XAoLpt4mdN4yk2Cd/d///V+myRBrz5rksG/Csfe2HL8PHTo0kwBi/X+PHj2yu+68M9PW0Uy7BCxYA16en4Z8lONcylND+IZwDW4exv3cdveW2Z7/ccmWYJhpy3OmHR7ZjjvumGkCIZur21yZtoAW2fS68nrgXcJ4pskn66/WWmutTNvVDf8iUvTQgKPj5naMWzU396/mV83NwzdvR1n7yx9przp3nA1W/w+O9P+rrrqq4eu4/+WZ7AAZYOYomYRAQqAOEdBWuax///6Zzl9lWgnJnnzyyYIRrkM4WlXkaoMMblLGk+3fd38mWrNlllkmg+Fy43F0hqbAef/997fBS+ffLKwzYm573GQ3jQC4wmRhg5u2X2Vzzz13ppn5rF+/ftlICeW4exin9M3XX2dLLLGEhdt+++2zr/VutBTWaXrYZI8aAfDld99992Uzzzyz4TrwoovEVcLKVjc33HBjpq2LmVZUsmuvvdbqqnrI5NocArRXDO0coXBK9eeTTTaZ9elxPAQXN/T/WkXPdNbbvhetLpZPBHrAZI8SAe97aP9SCJNtuOGGNgZssMEGFtfrB383PB980MHW/9MPDf3ww2Jc8DDJbh0CYKqVWmvPCIVaJbe+3PFvHbX6C50Ewvqr81TihIAhwIqKthYZQwbjzGpWMq1HoHKw+eqrr7KuXbuaoH3NNdcYQcJ4OLdZnZ133nkzaWjMbrrppmLgcv/W56ROY+TYOsYwxTqLZqskOseTDY2EchCCKeb3mFZjmQzR9qIMZjjGHaHdwop2Mq1AQHhp+26mM7S26rTVVltl32rlsJrRNrtszz33VLhOmYX75ptiZapa+ORWHQEXMkzYE/7g3bt3b+vXDz/8cKuPuG1DhThMgGy22WYmkGh7e8YqI8bDOl1zTP+aRSDGCvxY6WOSg90iTFDh5rhiO/49NGk4cefO2Q033JCEwWYRboWn8L3sssusb+/Vq5e181bEruugSSCs6+pPha9XBBiU2K4CMzzrLLPZc71i0R7ljgd7jfyZlJoYQ7zHHnuUyMvNZ+cJy09npopBa6iEFmMqcj8XSNojb7VOw7F3poz3ocJTSmWymWaayVZJTAiUO36E09nBTGd8jBlmyzTbFHHnZ/QI68+1DmA7lc+xA7f777/fVkgWXnjh7LXXXquawrvvvGPb5XQ+MBs0aFAhDHp9Vo2UHJtFAOxo25deeqltW2fl6dNPP7U2HePK88svv5wtuOCCma4KyXR+0FZyPQyTKv7cbILJ0xDwti/Q7J3tu2xdZLLj3HMHFCiBK4bwgwcPtv6fre06A5rwLlBq+4O32Q+12soOHdr2kCFD2k6wzmImgbDOKjwVNyEAAgxIzFyyOsV2RZ8dTui0DwLM+LJlBaYArN0UjJYYB7ZrcXazzzZ9inMjDGiE94HN4yW7aQTAyoVtxw6c11lnHauD22+7vagDC6vwnBPceeedzf8f//iHbZWL6wnGzmmlumga+9gHnJzhhSFj2zRbR9mKXs1ImZVt7ZLSjEzaFS2Ix68WPrk1jYC3aw/Btt3pp58+m7HLTJk0SJuw5+3ZbPUx1Mukk0yS6YoE63+chodzWskeNQJgB24YJvN+1NGBXXbZxQTCAw880L4LwtCveNiLL77Y+p+ddtrJtpmOOpUUoiUIgC+7FLbcckvD98477kjjaUuAU5gkELYQqBQsIVBrCDz+2OPWYUo9czGY1VoZx0Z5GIBssM8T45ktiCgWQFEPxpgFuWM8vNTsm0CIMhPOHsYmphe7p+cKBISpM2KxD4JF795bG74333yzecWYjhgxIoMRo46k7t2YOPevRi+mnZ6rI+D4YaOYhDNsuiw6G9LEDD0CyRxzzGGrJCj/SbhXx7U5V8c8DoPbE088kekuThMKX3rpparYsq2RLdPzzTdf0X8Rl28HuxrtOJ30XIGAMHPDuWVpmrZt67qGxZx9ssPb+VlnnWX9k64IyeiPMAlzg6HN/8AWDMGTc+FMuF6m7aPJtAyBJBC2DKcUqhUIjK1OzdNxuxVZrPugYAZDQIepy9Qb8IgGtQbHv/4pruPieRzNK2jBBIMt21YwRZ7trfSPczuEYVspGupiUy187D9GnoVne6fbGnqtCdtk+WkTebvgHBX4XnnllUVwTwPFD8wgIxAeoXNWuLtfEXgMPozNtLwYYzNNZujR3DrVVFNlDz/8sGehzEZocYHw7bffHnP45+2BxMcmBmWFbeKlvfIDHaOVlxVhm+3SrBK++OKLlroLIp4VJq2oo8W1tRrTXnlx+vVkx9hTboQ/Jprof/7+978XfZJjQni2rLOKvs8++7TfCiH1n7eBDl2feRkcr9ba6EPYRTtAwBclS45Ja+nUW/gkENZbjbd3efXhVnY8le+VSZb5x/Fb0wlUxPNZzcq00nt1BKgDVDTDEKN4w5iF1uBfnWz7uOZ1W9ZOoEz+cr/Sa6ntNQpXkYtq/rgV7tCtMIVfhXtLXzkfgvZEVIobrSppHHrooTZg7bfffo0YgtFNv1o+K/PBu8+oxuF9+2Xs1tbnynIU7xEehVtbE2ki3jbbbGPtG+2VlQaBcIsttjD8jzrqqErvMfruuJNIUfYID0+8koEnrP88TKVd0JNHHD+OV/lcSaM93lnxpv1PM800NjlSjSYCoStfQiAc06Yod4R1jJfAbdcsVPapRfpVUinLRxX/1jpx3cEss8xiAuELL7xg0SvToI9iW/viuiYkmfZFgGubDjoQgbCTKW6rRh0NmAiMaJqmPxqt9qe26yuQpGV13UR79naAHT9Xy2N7u5Wll+fP81E5FnnYtuQBgXDXXXc1/DlPm0zLEEgCYctwSqFGgYB/vDETQhR392femwvjycTx3C223R/m1Z9j//TcPAJg9siQR4whXmftdSxwZb00T2HUvl4vnKkonlVfTRnCeDgPQ57igS5259mFlzhuJY3Kd6cR2x4mxiB+jsOO6hlaqL7m2oNiO5bcKs0hhxxi+KNp8SetqGDammYl7WrvXkabPMnrwd2wSdvfq8Vvi1u18pCGp2N2nna1em5Lmh6nxBCMl/3rX/8yJ9IiP6SDwLL55psb/sccc4xHGau24RBhbu/Ko9WP7Ni4H27xcxzGn2PMCYtxO65jd/N47WnDkLFlFC2LKJipZh577DFTaMW2xXekYMZNe+cLPGNMSIc0KtOp5uZ5aqtN/1SZdtHOlYdKv7amUxnPVwi5Y5MVwsqykodHpWUXgXCRRRapjJ7eW4lArATMsT78sMNM4EODLsbd85fstNNOs/6HFcLR0vAd9RWk4e2LZ08zfra8qF1irD/In81hLP7zvHoePWnLU5R3d2+NzZZdNB2zQnjuuee2Jmpdh00CYV1Xf/sU3jsb+7Cjzkm9UbMJNAofha7sJCKv4tE7PhxioaMIkB6aReDRfMsoik9agnezxKp4QtPpxs9VghZOHh4Hj+O2u1lg2pb/zKEhfP7ayIppN/KMHFzIjJxa/YjWPpitv/3tb6W4Vb4FFwj33XdfmyEu8qew7c0oOoaWhujHdpFuq0vZsgiedsE0RVhYOfN3D9cyqqMO1adPH2MIrr766qItWZtRVJTKsEJIHbFCOKYx8NwWZaTM+c/TdpuwzhRZvAivIr4TrLCdhofDLtpSNTqRWwWpNr16+qx4TKTtiGj5e1grUdUMW9ZROoNiq3iF0GlUi9NaN6eFza/AIifk7m63lv6owkPX25ynEefB/CHSzvXgAuF0OsPpK4SlZBra3T333JNWCEdVgS3093p221YIbcto6UoVI1NRx36GHKVWfC9FW2hhmpXBKvuMmJ63Oc8ftv+q5a2Sdru9K904n3EeeI7zyXtbDPHA05T6aAfUJZdc0hYydRknCYR1We3tU2j/YGPbnxng/OMmtcLdk84/dnf3sP7uwZqyK8N5/KbCJ/fGCNwvTXRsWVl77bWLWcXGodruEteRP7s9KqqEq/x5HK9rp9VUOMJ7mMpn2meln79D32l6mq2xmahg9SOefXfabkPPt4wyk4mAgvF043DmMZr/nF4Z/fwbdDwt/TEwW+xpg4s9O/Z5+u4/mkVsFB2lAswQX3XVVQWuHsgFQtr/0UcdXcqXe44FmzIb7mCRtzeSLeoixijCiXjN4eV+1Wi6H+kUzzlt3NrTgO+EE05gF6QPbkIg9DOEXIwerxC2Zz5UUCtro/Lm5Y6/9SJMu2agAWujr3THRpq+ZbRMIMyxcEweeOCBJBC2U13HbYdn+jrOiDMGcNdvNeNbRttLIIzT8DaGG/nhZ32Lt4E8sOfb/GICY+jZ04N8nEd/dn9sf25LVlAqYztEJBCizTWZliGQBMKW4ZRCNYMAH653KG+99Zaps+ZKg2effdauNvBnVIv7MwOWv7/55pvZyJEjLYWWrs4wA8QsKGmwJWbo0KH0fM3kMnnFCIDzkCFDjGFepdcqJa8xgZ9otrZz9/Dcp8WzrwS7QOFtzcvjK09uezj3L7PzMkLXTUEvSqtw80CttJ9VW2cr3MILLdzkwOYC4R67R0plony1Mskmg1NWyuNlcmEBnBzbJiO3g0dT9UF+vK7j+miHJI0E10ogEF5++eUFSccBpSd/xZZRK6/KbUb14nXDu2MAXl5XZXbeNjxciUj5f6Pv4aI6j7H2Om9pX1ueQsve2LI16aSTZpPoWgMEj2oGgZB7UIstozke1cK2h5tjKaCNXIxjU210dNJ1+kY7r4uy+snz4XUzOmlVxnWBcPrpG1YIPT+Epa/0Sat0hrASvda/x9+S1/Fh2jKKQIhyq2rGlcpwhnx0tox6vf6m8ZK27e/errzdm7v8/ft39zHR9quVFzfS9HQdM3/HJo+ev6ZotMQdPDmKQf9//vnntSRKCiMExgMFgZZMQqBNCNB8NMtucXWXXejbt2/QJcNBygSCOsOgrRPmLwUDQR88ExBBms3M3RPUOatw2623himnmsqcnJ77V7M1mAUdxg66UDpoy5Gl2XP55YMSqxZ83HbjE6zMd+QWY9xuBRH9x594Iqy88spBSmWC7q0K6o3DeKqz9jDU9dlnn22kNFMX/vvf/wYd7g5iAIOuWWg2CcorVelBW5rCzyNGhKmmnjpIU1vQ9jKLF+Phzx9//HGQ8pAgITL06NEjrLLKKkGMZlk6HhZHfyafmowIOmcWaL/aRhjExIYLLrggSENf0KASxgeTyvopo9z4RZMVYcUVVwzaMhqkUj9ooLPvIQ4phiGIKQjaMhpOOeWUIAaajFlanr84/Og+a6UsDB06NGzTu3eYdrrpgrbS2HeoFUr7XkkTU3x/eV6qpdva/OnMXrhV3zjpSxALuo4gSPubYS3lL0EKMKpiVC3tlrrRZrRd1PoGyhzXoSaUwg477BBuuummcPTRR4fjjzuuzL+labQlnC6tDueff36YddZZwsYbbxKGDx8erlafufDfFrZ3bbMstQMRv+zyy8NHQz8Ks88xW9hqy63CFFNM0eJ8Ukd8Q0OGDAmrrrqqfevXXXddIP0NN9wwLLrooqET7bqVbbslZdYKodUxbZp653usNNoyGqj77777LuiS9MA4YKaZdldJozXvpHfvvfeGpZdeOqy77rpBd4WGd99917DAje+cL6Bo/60hXi2sylH6ooK1bZ0rtvTBXZqdg1ZOgyZIwwYbbBB69uzZqH+oRrKlbvQ/fGdiroPOcAYJfWXlom3QLlZffXXz07bSlpJO4UaBANjS3x9++OHhjDPODFtuuUXgu6vsM085+eRwxJFHGh+j1cIwcefObfoWGbdpZ/BbjJt33HFH6N69e9hss82svWnCPCzbY9mwzrrrFG3g66++Ctdce034z/DvwpJLLhnWWnst64tHUbSSt3+fbrcoUsOYy3egq4DCvPPOG7R6arwH3wHfBLxIe3x/jOnwh1odDAMHDhwlz9HCItR+MDXSZBICbUbAV2UgwIoOl0Hrg7aZMX09xbO7adA1zX9iQ7LSc8i6de1WdjE3tJgp4qd/Dc945EaDqSktQEsm6aBCG+Nx8mCl9wp3C5O7xc/MUHl6xMfP6Xm42N/DxDbPlSaOi5+/V9rQttmxuMw8k692NqTNzD31Qp21SxpRvr/68stsjtnnyObq1i37/LPPTMkKs6WL5SrOmysOq7+aWLC8oaUN1eh+DoB8G26y3fDOmb2uXbtanGOlJIS2GBurWzlY3Nx2Whoc7XLmbsor522GDh1q55rIKyvXHiem19wz4R97tHzLKHVbaQ7JtYyiVMC3jFq4KmEr47bmnZT5bbTRxlnniTtbvVNGVmdYxdGkCsCUAv1ByBJO8Uyt44ftuLltEfI4jpX7uf3xRx9lK6ywgp0pkxCWvf/++xlbBcUUFGrxPa7TG117++23s75h0KDSltGYXrxl9IgjjlCZ2v8bi9PzZ8rIjgZWxeaee27bJQEe9GGbbLJJ9s0333hQs9EAzDcKdl988UXhV2Alev7stgei/rjjkvhsX5PgpRXrhawOrr/++naZife03CYP/MCXMkqANW3G7t9g/5k9addO5CuEY1DLqOfpzDPPtHGJe9/AYuONN7Kx6MILLzAsKvEjr9XcfJyIvwXC+jdSxMmx4F2TTdmAAQOsX+H+y6+//jpjBZs+UZNB7V4XDSuE0xdnCMmH5w2b60DoX5dY7K/VMur5inkJd/P8gi+m8r3kWv7fw3h9KJLFc5rlodv5LU+LtP1aIVcqE6dEXlAqQ/333a/vaK8Qepkv0517aPfVhI/dxXfggQda38IVGG4Y6zmzy8ow/Q7XHrFjAoOf0VL+7D23/dkxjNu+p00Yx9zdnB7vHueiiy7KOnfunK200krG9+2y8y6GA3j5mOPxodkaQ65V29kIrRDuuhtaRsfLJBC2hkRdh2XWIpmEwGgjwMfOQWoGOzo5NCxi80G6YIjwxg9BcAJ1Wi4UaoaqgSlVTrwz8M7FM+fv+D8yZIgxs6TBTzO/RWdC+LgDMnqK43Tddrr+ju3P3jF5moTl2fzzzs3jx2E8HLbTcttoKi6GZ3cnvtPwMPiZfx6eOB6e5/YwJYZgvGz55Zc3ckWarSQe58tpfP/f77Puc3fP5pxt9uyjoUOz1197zRjEUQmElJ9txz10f5+3HeoXFeqxcOZ4CRTLLVo9YbBpazD4ftF7kbccT5iOyrgw4YsuspjdicYW5KHKL4ouFhLzbPWR41HQagE+MGR8A9D9Xd+FSWSKF9MwgXA8DcjaMloMyHk+W5BEq4L8pnJvvsXmEggnzu68804rI8IYTDvlJX82KaD0wdQw4lnG84ztP/PI/+FG+CbDyV+rUibUcFG5ZsuzDz74wL5f8sDF2dXoxmm05XnnnXdU39BwMbGnQV7jLaNHHXWkyCMQlsrblrRaE4fyukBIu73tttus3a633nplQh9tTyt75odAWCksWpp5HRVtWo7eZnFDpT3fj19tAhOGkIaiHcJ5nbUm/y0Jy4QMkw2TNrll9M/s8Scey2abfVbDYkydIfTyYbNFDyx23233TDsWsvXXX8/6GK3WGhaOobUTYdeUMX/Rc9oWjnrI66Kw5QFNwiEQnnfeeYY9Z8q+iQRClIswdraneSq/h7CallGv98GaVB2/0/jZ4ovqHsKx0/SrFhHh+DIJMlwPwKQHwop2l2TaaWSCO5E8z2WYV1DDj7NjnBnWDg8bA+h3EAi4i5SJRozTcLuCTJtfoRf/SlpGI6UyFZRdqczoahn1NCFPOZlA3XTTTQ0LzicyJrJ9FeNlBmP4Lvx23HHH7L+aIHE/s/O2TPv178Lje3oeHve4z8Hd42B73Xn8Cy+80L55Fwj33msv+y6ZBPbvIKZNvJYamjG/n0dqy+jee1n5kpbRlqKnJd+WB00hEwLlCPiH7x8vNh0NM+DaJpe9JiEATXIoLTGhUJ3PYn9bJLv91luzN15/I3tFjNEbr7+eaduOEabjYGb5P//5jzE/2HTi3kkQiDT4sSLIpcfQRbh8SHfquR90iAfTBz1+0MDfDe8IDdqulX377bfGIPyqQRvj4bBhbJwONOngftGqEQwFDBoDu9O3uPLHeCeoLY9WHgY9wg9TWoT3DtPT4p08kR7nb7zMuHsYI9xO/6CL2nHwo35GJw2PG+eVFcK5u82VzaPft998mz0tAYnZaBc+myoGtFjRgZlEoOJyZZg4BDTU1+MPtnoo8ozbU0+WVggJ269fP2PAcOdHWItTkajPSH/6yScS3BYxgZK2q+2nxsgyYFaLV0Gm6uvjjz9uzKZpGSULebuw/OQxXCBkIHRmhbzyi8NVTaCVjjBKCBxcAzD4ocHZJyojV2KAM+2/JekRhjrGuF2ZDcfLbQ+LAOgrhNouZCuEfL/a2lQIhJW0Rve9Tx8upg8Z9xDGbRO6fINoGWXSoV+/o+WvNjUWuGIw9BXCeVV2nrXFy/LhK4RxW0F4ZoKDy5W9jUAj/jlO7sY7+NOfcSk23wQMIfW8xBJLWL/JqmQlJk6nrXacPvgW9xA+PKQKSU3qPfJwNvMsM+nb7lymZbRK4DY7OZZ8U75CyKopYwvfA2MH2Hp/S0KUo7DBOm/z0PB27WEcw/h7wM/dnQ4CIemzMgIDzljAygjt7+STT7bwlmg7/eN8Zuli+oYzhEbay6YyMYYyQbv0EkuOjabfZMn4BubTxBDt9DlNyF199SATGOh/abMx5jHO1Qh+pJ0I9LmcXWWshS9g8oUrUDyu29Xij66b1zt5ZnWO+m1qhdAnKAjHZOfo5ov4LhBuueWWhUBIHo48kkmvkiEc/Mg555xj/QLjKnyHf78+LjruxPJnb/c5qeJb4Z147u+0cK98RskL9YNASD/hiwjHHHNMEd/jYbfG8OXqi9UK4YhsB31ntCm+bxFuDZm6DZsEwrqt+vYruHcCUIyfeUfg6t17axt4GHxW0GoUK0bxIEsHxQB94403muZFne/Ill12WW3p2Tg74IADMp0vNAGMcN65MODBzNLZ8YvvumKAQaU/s+Iw2yeeeKLNPBIfwyzkFVdcke29197ZuuuuYx0T23cGDOhvwql3ftgoB9m/7/5Ghw4UBTjMPursizG4yy+3vOURAYDwnj8OeKP0BuFk/fXXz3SuzYShNddcy/LFiiaCJuGJhwDNVgpmq+nAXpaw7Pklz5W44ja6BoYAgZAto3FaraVreYs6XN6/FcMzX/d5s3nmmtvq25hgzVwuo5W/pgzxaAfbb7+9deSzzTZb1r9//0IopD59lTBOk2eUFbHlk7ZwTL9jjHn2MmETxuJUJI7bp59+aquBrDCysgdTgbp87ufytlARbZSvtE8GIwTNjG2Y0VZMj+wCYaFlNMpjtbx6vLbYYIDAgWDN6jrf4FxzzWXf0FfaMotxvPg2DS+3la8YQ/cjjj3LH+NheI7deWamntUucEUYeU+TQFNqpQqBkLYxJswOO2yn9hCMSXL65AWDcNVw7cSRyi99Q8nPAoyhf6T//PPPG5NK2XlGQKbdss2LuvA8gieCPJNKTBJ5/6IAljtnwAhv2Of1hSfvhN9LihVohygwYpukzqrZKtW1115jDFx7FtPzDU3wRfiBEYcpb2z+zJ544jFtW57VwjGROKaMt+czzjjDhFQEQib0UCoENvTn4OU/8kFZHNf43fPoZXXbwuT4O/Yen/RhuFmpYMyCAUbQYcxhkoytg23tZzw/lbZvGS3TMpoHIj/kkXqh/LZldMw3/cosFu8mEGpyCsGNfDMJQtthN8nnn39u4RyfGO+CQP6AH9vfUeSl89/WjzMhDeYzzzRz+dihOGDQnsbrG5rkt7RltPoKIWHZKsx3z7VDo6NUxssATRcI6dvoO8pWCOWPIRz5YywlXSYrcHM/7LgN4+f+Fkj/3K2aO2HcXw8Nz3nkSy652Oq6V69exgPtussutmuMSSuvZ6eRR2mxRSn4lbaMlrbLsyKZTMsQSAJhy3BKoZpBwDsFBho33iEw8NE5IXgw+Cwrwej9996jx7Af4ZitYtsEnTirQnSSpV9p6ykzncyisaqBIR06ephLwkHXBELRYnBhZhE6/Lp06WJbT1jVIy0Y0W233TabSnHxJ1/QmFDPMMvcycd5NDomOkUpHrABhZlkBI6VV17Z3kkTARebmXAEHQYzysXgf9ddd9mZtvLylMrFlg7ObyFg0mkTnk4L5onBa4YZZjBVyeTBcbRyi3Z7GhcImakjHfJu9mgkAmbQ+E6C3fzzzpfN1bVbxgrcKy+/bFtZqJvmzGuvvmpCAvXCPUIIZ1JIoToqXaD8qvw9j9j+jMZaBBzqkplGBjkf8AnDsxRXGPNNnVJ2GGT8aH//z955ANhVlHt8UkBK6AKCCSVA6DWoNAWijy79CSIIJKAQiiI+ioA0C0URpEgvKqiE3vUBoYs+FBWQImaxIL13SDjv+33n/M/OPXvv5u7u3ZLdmeTunDPzzTff/GfOzHxTV1llFV8yGu8hZMmoRktdZqO1AJ2JX/pRhshnlErnUSeY9hD6xfQ2Uhqnp2TUoocPTSHdcYcdfIaQ+8fAddlllvVyT6cL8d57/z0v+ygozFrRqXfsrBxieIb22muuzeygEFdmmFkRDTZllsGNyy+f4t8kI8C4MQjDfjhmBcGfPYSU9d7cQ7jnxD2sPAQf/EG2+Pdmccoo3/Dhhx9mfn2rEFLXMADhS0YNS8q7FMICbJeXJczXXnutz+ZTV5AGML1j6h2+7BOsyYO3La9YKscAGgNL5B1lnsEGvgncUYK0ZFSzpvpGPM4e/kE2GeInf/nxrXU07CG82xVCFAFfMlrkUUfanrmQRn7xDCFYUB6pv1nKyTdKOZ02bVp2/XXX++AkSipuGKWNdLGygsFL2py4Mw0decG3Rf3PN0I5hwd1PPU9M/S0P7SLfiy+5Q0zhPEMJXx6auophEoDNr+pU6d6+vtbIaTOp/5FCaT9vuyyy1xhYI8bA0luTF7lY2fYoBAyQ0gb+k9rdxiopZ/AlgPlVYxDZ7y67BeVX2S1w6oc30YzhOQ732apEFr4bpkoXlcIrS/DYDr1Bd89dcsh/3NIyZryyOootowwOEcdohlKLxsmuzCiXWX/Psot6dGguNMV8fIMTwa3qNspe5R34uecgiO+dUR28skne5zQwo9vnr4UbTB7evkOqwphKXAXHkCQH0tGv2J8wZcBH6WnC6yGJGlSCIdktvduouOPj4ZPI7FUTIxQt7W1lQJQkUwu1pC7kmUdf5YTMDtEZyJ3yxWvU045xSseKlsqevz54FG6OEIbRRP+hCEuFIQbbL8UcSATHSlkwY8f4VBC6ZTSGCkcSqHCqHFSGOKz08A8bio13FFWCGunink40mcnZhV+w1wxZHkI+3noBMKDcMwQQEvlqQMHcKfTbKdeOi8BFSvbcuuJDR5aMsoMIentqYnz/blnn8sWW+Rjvo8QJYLZUjAifxoZwrOvIsd0mF8pQl4fbQoebuQ3o8fVjgHh4kNloKfxl6GzddONN5blBcWbZSveCbOwdBxYskR5oUNCh464xttSKuLqjrn7rrtdZhRCb6GKGcKYl2YItb/L/UweTIylO/TgD2WH3xa2NJiDXKZaR7DNyh2H8NhpwNmLL75oE5j2fVhnd8cv2DJKyycGP5jllBzYlBGO8NZ3SadDSrVkRvFjaShlnCV5ygeWjNLpo3N29VVX+x5CBlJ6UyFkZQLlhm+4apidt1P43P/b1tGxMXH75dhXaVv6bjhSVqk7fIbQ9hCyVwq8tGQ0jo96hPrFToP0fMKPGe21117bB6LoVD5gPNSh5htj/xB1HeX7y1/+clk3MfDhS0YtD/iOWvHNx7LyrO+F+EkT5YvBu46GQ01us9n/ha2+Ly6mN2wwKnMdw3TfhbQec8wxjgUDTVoyioyqa6HhsB32WJI/0JMO4YRcKIkczEO5Amu2O7i8xfdBeWfmh7KNUiJlmA437Rd8yRNmgne3lRDET9vQasO3y2Ao7RuDXPUwRTbK1tq2jLgvin6jNFLnUg9QrzAAwoAU7TH1L/0H4W+JqJsO8SWN1OUM5DGITF1EGwdf2t2SjwL0ok2bzkEulJGdd9qpbkxSCFHatPKlLmEzjpZ2DKuLiJO6mcELHSqDQhcbyjF1AeX4QJuhZAUCRqsOwNFOYfZBcsoodPwoL+BJ/YHM5AmG+jSf8R6W2am5fg4Ae2XzMMO8vtIeaB0qwwwh3+HEifm5EyicPc0jpJlhg3tvvf1WNnEvZuDTPYSeQU3+SQphk0Alsi4iUFQUdDZjJYylk3QOVbmzbIVGi4qDWThmE/FndInZoPb9h3nnwmfhTBQUQjr2qnDOPfecjHXzmvVjfxQj5iyJoKGgoqGxV+VGg8HBCixpfeWVV23E9wrvCOBPo33JJRdbuBlW8f3CGyfcqWjXW299HwkjHMs+qRyRgR+zX3TC2Bfps1XFDCINA3IgAzMCjEwzikmnjhE4wjBqRmcZfoxmsqQVdzXksruYC52S32bYM0PS0z2EikQyonwwI/vNbxycHWQnqL3w3PM2S/gvb2BQmkVHOD1jgykzGGC97rrregcYd5RJ3PixVJdOWjxzBw3lAszJBxoWaHAHd0YtPT8sPNiedtqppb8ReWPGHgsUMxpKGilGLVlmR57BpysGeg51oLzQ6Lqpw0IKIQMizFghS/nrSoQzo3W+WXbyiSfZ/qWJPlMK1kceeaTnCd8o4vG78qqruEfGZefiZNLiCqXZfJMcgEO6wHlVU/DYJyx/xGCpM7PtfIfxiC+YsmSPzjj5SZycbseSpmnTphG0yzh7oE7+7LknHe58yWg1D+ksUV+Qlr4+VIb6jc4Ty9nb2tq8PmGvH3gzcyWDzCiClHsGUpj9wI1ZEymEdL74ZkgHPwar4E36oD3fDupgzxr1CR04lJWv7P0VV/Z72vmSnKVt8bkxm++PWVDqaClFJV1O5DOESyyZnzLKd9cbxhVUkwcsbrRBIe6Eo9OMfMwcoJQx0wcdNMjBQAmYf+6zn3PlG3cZZgZpH/DnG0CZVx0BHeVaAw0sedSKBmiYmSc+zeDSxjB7BM9W54VmCKUQIj/yKS3YzBBRZvp7hhCFkPaaFRUorygbYKwloy5zkQeSX/lRtflGVl5pZVeGp9l3phlC2laUdcKLh+wqj269F/IpLPlJ+wG+tFkWqbxK+/v2vVOG2JJC3dpTQ3pI76SJk3xGDqWUlQDUc/Rv4rQzI08dQvwsoX7ttdc8er4D6nRWK1DGlQ98C+z/Z7Aad75tVjWpnkEhZMab9LJaCmVQ3wk2fR7aAGSg3LF/9lvWF6BOop9G/advCUFiWbuCCyjzYw/hvtauIivfeTLNIZAUwuZwSlRdRaCoAKsKIXsD/27LaPTBn3LKD70hoGJacokls4dNmZKfVd0+mo7yxofNj0umqbToVDKSSzgqIUbbGZWFhgooVgahpzKi4y0+KJ6cZvnEE3+zmcW/28EWf/KRLRQkOpE77ri9KYrsa7y8HCUbPnyErdH/WYkElT4NOjLwQ+lgRJN9hsuMzU+8RDY6GHR+aehQCJkhYJkGFa8rNybfNOsU33LzLZndB5jd+r+3+tI85PZfN5SSUshGD5Y/+QjxsGxDW7pRYl7kW6NgzbrPmD4je906tyxlQ2EgHSxToeGIDe4yl5vCTkMDlixNwSAXGFFuyDvymf2C5pEHMxsa3BgFJiwj+xoIQOnX3kLKEXlAI0beEQ6DDMhFoyh3ySqaPLLm/hJGewhpdF3WIq6Y36GHHerKl5aMwh3/mKa5GGdCZcn80NL75htveto1Gg0OcUcANJ559plsbIHjDjbTpAYfmcCITgH5AM75bN9V5agyHRC+O/zoiHKaqdICrm9Y/oMrAx0YnuHvZaAX0i2FEGXIDXlQxENaNFB19NHfNu8+miG0mMCCmVXSDhbgRj6oLkBWlQMUPvBGIaRuwTDjTqcLd1ZToHwzG4SCz+wKS6Mdd0srHU3i4nvAEMfrFhdxKm/coxV/wLcwxMu3zABXI4XwnnvyPYTU171+yqh948iEwq26AQzAJsZC5QJsl7XvAGVFeYFNJxY//Vj+ST5i8KfuV0ebOp98Fc7EQ/x8f5R55KBdUt4U0LXEoo2hvtMpoyaE80UW4sa+zU8ZRSHs31NGUQJRCCnHKLIoMZQJlowyy4esqpeFZSOQXCG0GUL6Bm1tbT47TRmkPnKly3hhhEEjPl119zosCsR7jUIY+emRwRnqSgYi2SfcXeOYFOlC6aWM8Z3T7lLWXrN3DS5Dy69mhtDip5wiMxj9zzf/x/OCMs6gHoMaDELRbyNvWPWifo1m/wm/9165Qsh3z8AU7cO+9g0Qhn6PZEAmZORbw+g79FnKIh1xmrqCC7nLjxlCLRlFcXV+XWE0RGmTQjhEM77Xk1182FWFcIP1N8jarKLG0CFk/TyVC5XP9ttv57NE+FE5sYyNBpvlD9DwYwkElRajurFCSMUKD2waFjqm8FAFyHJSFB/8RENnisprzjnmMntOb4Scj91PvNb4NewkuOdsjf2UcoZw4YUXsQbmLsQrDQfWIBfhxtgVC1ScpJkZJtycX9GBoJGjcaLxYz8LHTsMjZ2bAjOekb2e7Y4t+AN/KnPk22zTnp0yWiNOlAavmU0xxK5WyHpXOmkkWKJCHtIR01UEwoaZDpargPW3Dv9WGaX86QAtscQSHv7444/3ThYjjrPbqDM8OVSAw1SgV5wwQY74Xf64ScYysiYfCMtILdj6KaMeUR445qk9hCwlVqfSIvV4Y7omo50pWZymaroJLH++STBjIAPlQuYPtkcEjMkDBl/4ljgenoaesBxdznJF/FEc2T8lQ+ckNtBjJIfyMabp6fMuu9hhVvYtMwjgaYtkUMefPDrmmKNNDuShK9F3RmmWrZj9vfiO/utz/+V5wdLRl6xewe/ftmSUlRaqW1az1QZ02viG4nLDM3mDIZywVjwxrdx6aitfUf4pQ50tGW0/ZbRYMtrTyOuEJ41xOvP9vHk+CxsF8zJi9NQbYEv5ZuWG8gdlg2Vu+Al7BptYCid8GYBSu8RAhOIXLrwrHrkRfyyj5OmJzYDUorZkP54hdH4WP4a4fUDQ0vKJ8QxauXO//GEQmBkklpqjqLD/kmWfn7fD2GhLmzVgyH51BmlZYYJShLLJ4An70Emz8rJZnl2hU94SBsWMvgp1IbNl9fL3uOOO82+EFUTlwFhXIixoVY48bZSvoj+hMknc1XS7QljcQ8hKBc2e/s4GVumjIDf7j6XESSz4sMeWbxsaVjUQP3253W32W98GK3G4TgdlT3EL/xILk6t8tgjwV1pid8XdjG0cvSgzQzjRD23Kl4Q3EzbRpGsnUhnoLQTsY8dUFUI6MrpmgmVrKE40vFQwzNrhRkj9qKhYcqEGmGUJjJSzZ5ARKMLhR+XEkhNVSCzf1HIdKpe/mUKokVtmAVHO6KzMO+98tgxiQbfht4AtiZh3vnmylVZc3katH6uZIRw3bvnsHrveoEiaV3TsA5BsNGLsP8OwX4clciy1YPSeSpZOtGiRmwYQGTFxZeiVoiIxP68co3cP0II/LN1AHpaMqiJuAVtn4TKzb84qec9Mc8WNeNyviIhnlAVGhhdbbLGyHFBuaEikbLCngX2l5B2nyOlkTNjAgxlC9qFQDr5pDTGjgmAOziwh0iyF4pbtYoAtv4IXzzX+7tP8H8KioCKL7yEEh4J/zOV/7CTcYLPRzBCioBCuJ/HGvONnYe68K3GosUY+lQE6tSz7BDsOKcBAxwm47O1hVoRlcfjTCdAsyLRp0zy9lHNm4+Uey8Kz0hmnVW5V2p68T5zIAEPwVQXiIyzogNFxJI8Os5laK6j2y8uAaHvDJp0x5sJANnEKC2z2FYKzzxCa4oFpnyHM9/OcdVZ+j57CwT/mp3wljzH+bs9OU7i5Rwv/MGjH98dP314te5a33en3EFKm6KD2thEmsolPzzEW4EtbQNmgfIvmt/ZNsy+QA8GY1YGGezVpi6ABVwb6qFOpq0iTwiouvYsed8KVeYRDC4zq07qnjBZ5P3XqVL+HcA27K7UPin7DVIEF7T4KnL4NZk1RMvQuuyET84APP82QgSnh4MX3Ln94xM+d8WzWL84/ePPODCHf7i67fLEuG06XpawwAOezl3WpmnMkPuIVTjzLSLbYzRVC287AIKufumuDecbAyu8PXCa+Wwb0yBOw48ezfiy9Jm1r2uwybTV1PX05+NEP+8ZB3yhnHYm3jLt4lpySWzQlnYTvok2q+TFD6EtGrb9Au5VMcwikGcLmcEpUXUWgqJCqCqEvGbW1/RiWCLAEhzg+q+IAAEAASURBVIaXjj6jhM8+Z8eu2z82BjNDSOM8YeMJXvlQAbEsigqeBo9Lj3HjN9buu2OJjkZnUfjYn+SdUqssOYiBw2JEj5J5le2X4jTFa6+93pZa5c8sc7vuumvtSO7/tbCv2HKHy3wWEfmWtjjuuefeHAnSZz9mo8ST5YychIoSg9KK0kLFS4eIu/Wo+FdYYQVPLw0B6WZ5IwqRKkSYx++qIFWp55G35i+zrMjB6KniIU0tMV4z2x9XhnKOZRyVCGgMaRzJMzChE8whMOTPjTZazIgxp6FpVgS6ePQdvrp2gvSwdJSRcZ7JGxTvtra2EmPoXZbCllzYNFTxe0XUpl7JP2YIScuaa6yZY1AnpCuEJiMjsTS4YN/TuOtE407w9SwpCKrlCX+5sUyO/TuUeQ48QDb82P9Hg0+ZpezQ8K+00kp+kAO4sdyZZWrkT3yQi8ddTRvvxpM0K91Ke6M0dNVd106wWkAyiIdmCEnjUUcdaf59pxBKhqpMVTyg48AnlWEGmcgH6kR9C+QTS88dx4Kx8lH8na/5Ob5FPviz3IpwrbT4plH02EPIEviOpjhldInRXl5685RRpVUyCBfe9QxmoqO8f9X2VYE7+FKXgyF70CnbHOBD/cSgI++nnvojrzcoUxooYdCE2ZHYOP/oO5CfZNB7K2zaR2ZpYoVQ6SMtpPdWa5eG2/c8fs3+PVRGcnm5LeoDMKji4nT4NzD4q+xDoueYj/NoEL4nzuIrm/qQq6+oL1Ge5B7HwewabRQrRHqiEMK7+lM8cuc9fi4VQqv/UAg1IDlx4kSv91k5Rf8J2WKb2UTaBPoxfB8M/rVZ20p4LRlloJ1+FfG5ieQDlzhfcoL8r9zlVoaXQxM2MdLSMUOoJaNnn312GWcTLIY0SVIIh3T292Lii8qgqhAy0t1mFQiGCoB75jRDSOfhzrvvyqbPsE65+fOjk0mjS+XDj+VfGDqk3GOGG5UqSgMXinOHIZUU7iiH3GGIYdRwf+t4S0nYwjpajHYRSSGqdeLv8VMuv/e979pBJL809xmmKF7h+3ToOC67zLgahRD5Y4WQ5UOkl5PSOOGQyvUbVqmyD4KKkPhYgrfEmCVKOehAwIcKmo4rHWls3gmDcPhTOfq7p6bnf+CnU0ZRlImj5QZgyUTNkPFuJq7oeUZZJ9/AmHyjI0mjwgZ2fozE80MBwR86ZpO52oLwdHDYU8rIvQ8uQGM/zciyNJj9GvXidkf74+kv5CsI5dVlG5mQB1l8ySjJzpNek3YdKsNAgSuExFTIEGPUZQEqAfLoaSb5V+AfpbWMi3wyw2i99sbS6eWqFpZCs9SZ/KBjzKAMM998mxyMxHJFZstJMx1m9lIpLaXt3Nv/eN4pvb1Q/hiZ53tnxrNqmH1Q5x2F0EqA/YpMqhK3+D1Ot75tRcF7XBaZvae8M2jjionhhULIMjiwZgkj9R6mzEd7dh7u2vGPlpR19Om5i2SgPPP9UV6mTp1ah7FOGV2kPGVUYRuVlzpMmnYSpmUcRUjc5YatZ+phyo4OxaHu5rCqEYY5WxhQzrWVQQM6zKiQXuobBrMwzrMSR+lexAdNZ/nljLr4hyWjDM5oyajSFbPxewhNYVm7nxXCMr8NB5kSk8gNv3rpiMPAK6Zp5lnhW2ErPgaFWQrKN/ClL32pLuv8lNHhPptG/dkjUwcnyQJfnlXWeaZ/4YN+1k5+zQ5+QyHlm2WVjbexVi6oXxr91I/CnyW/KISuTBo/zoLQybalDHXkK9NbkU3ykpddNYSglUMh3HPinv4Nc4hUMs0hkBTC5nBKVF1EQA3ciza6qsMbqERYtknD6f72wbNXjIbLKxirXNZYc43sOpulu89GOFH+mIFQ5cP+JSoyzF133uWNdV55DfMDWXCnkYsVRUbSFYY17Wx2phKDJyN499oS0D/84Y/ZTy/5abnEcMSI4RkHTcwwxVRHYAfrlI0du4wtBfytV66q6DgyHF78UAjb2tp89pLRWUYH6RxAQyeb/ZCM3LKcCHrk+K7tQWQkmeWlvJMewvBebSQ00k86W2G0hxCFsK8N+PGjHNxmhxugzIEXI5Ms26VjFf+kIGopI8rI1KKjCR+UcGYGwZABBkboOV00z4f8VDSwV7lU/sludfqZsUQWTuL0hq1O23aobdjnRM94yWhOW4e4hwLmDWVzTDjggPJHXtChnGpLi1lezDIivkcUQHBjJpdyfLRd84GCxTJR3jnVDoVRWDcXa+upJk3a08pUvmS0ms9vv/1OqfQeY3sI6UYMRMOqCTBl7zVKCEYKIXUFSi172/ob6yp2HCalJaPcRdbR5DOEvX3KaMd4m3Npa2vzQ01QxjmyH8y32WYb/15/eMoPs3dtK4O2C6CsP/UPu3vwxhvcf4y1U+RJfxlKMu0ndZ8UQmSpfgNTb2fJaP+fMtpfOLUyXmErm++RA1lo03beuf61E1xDwjfMgAL1ZV8aDtTj0B7aKJZ6sv+btoe9l9Q3DIQws8npn9TnXJ3xRdsLib2Tve9qSu4u5s+P/pWWjMKPQUQdDhinSdjEbq1+VjuHQriPbcUgLb5k1NKWzMwRSArhzDFKFN1EgAqAUW0UQlfcrHGlwuE4aGa78Od31llnlh136GjEWJJAh8JnjSwcjRszE1S0hGGPlpaMUgmhHOBOxcQl91QE8MKPpaSc5sYoL8sd6OiKLweYrMAJZzaSBy0jetyfxkwf/BgpZsYKehQ+OsMY/JCFQ2UUFworMyl0HrTGHhmY3YInsy5aMkpcKEGkg9FEKi3kghczmxdddFG50VvxecQt+oP8t9zya8dowoQJ5TLVFrHvlA1xG4BlJ/Yw22sB7mDFTB4dSK70YHaYo9pvvulmPzKed5b6ovCB1UmmaPvMmvHSKaPwYFaFQQfiOP300/P8NncOOpk2bVpZhpBDv04F7qInPLVk1K+dsPd6+sYhh+Z7COkQ+Gw18RQydTHKlpIjP8rzgjZLyzfGfkxm8sGWJYx0dqHhzkjKMSdh0gGgI8AsLgdx6DttqWBdZLb77ruZzMFn3GuCWna88fqb5QwhHbeBarZk5txw39AOxNK+2aetjmGgC+y5UsLdB0C5AUPKBYbvktlj6jIGfDqaYsnomGjJaEeiPneR/AxwgK3XJ3boFjP+a6093hW+226/zT/nO2zv4Nyj5s6WWHLJ7K577s5239P2rJInEyfaxdg9nPHpZspBnx/tysdsT3Z5yij8ijLCt8mPfKEM9fcpo4g2qxuVG9n0bxhIoPxwqEzVQJfPEA7zZZl9rRCixEkhpL/EtUfIvF9xEjt9HdokBrL5Pf/sc1ZnvmEHW9l78WN7TFtbm/dT+F647oby9ClbveBXi1mihQdlry+Myv/bpmDvXSz75pqXUo6+EGIWjiMphLNw5s0KonMCGyNMVIwoO2uzBM0OeKFBklJI54GjidlfSIUCreix6cgzUwcdHza/22+73Uc3RYfiID+WaLJsTYoao12cUsnMBwoqJyOiYLq/KXqM4vFMB4ZDBLgSQhWIn1Rp7vijwLEUR/Fgs3EcP34ostOm5QoHaeTUTFdqi7RLVtLITAsKLmlCITz55JNd0YEPM4R0qrUHRfG1Mr/BnxlCFF3uOlN6WxlHI17ku0ybNShgATbLj1u+PGY8TrNkIxx7d+YzBRsMmdnUSDwKzFJLLeV8mLFiCQz0dJY1k0X+xncUwhccWm6Mr66dYFmO99DqtIc6VKZ6MX2c9pbL1iRDZqNYjoiiztI4Osc8c3Ie1xZguCaF8s3BGueee65/Pwx4KE+Ub01G2XKyXXfdxU8ZZVCH2fVSHsuLN954M9uRg3Gs/H/7qG+3+7Vcip4x5NtksIpZKCmEDDppyehEUz504XPPYmpBaCv3MiwhY+CGWX5mlzsalqxPtXr4YzZg0zeHynSUoaOL6gTqXg0m0VYcdvhhfsIuVwvR2WV/+5tvvWmH4ozxAadTfnSKr3Sh7uYgpl6pVzqK28GFHOB3jymwi0ZLRmNC1S9+yqjVu5+wC+A9UEyUnruEgDDVKh4tGaVvwUAwpqx/Cs4MqNHuxfu0C69etZADhZABPPob7CGkH4JBeaJtpc80tViB4x7tn7bXpeefd3725S9/2WdBUQY5VZi6iLCsAuMbESYevo/+5OVfS0bz/ZAsGa1i30fizHLRJIVwlsuygS8wH58aRJY90jnm8l2W8NE5YBYPE1cYPLOX7Grb83eyHTDCqBUXiKMI4o4RT2yUPvYNolRx4IjTGA9j6ooABy3gjj88mEGikiYs9iOPPOJ7i75t+0JY688SuWuvvdZnBj0y+4NCQcVGeORnhurZaCkQ/pyYih8Xv6KU+kgfcpghHtLODMu3vvUtXxpy7LHHukzIp/QjE4cqkHZkJl3McBEeA11vGE7Ho0Hg2glh2xvxNOIJfiwLplGkIUEpxg1Dw9phr5PhQGeYkzulgLMMGHy0ZBR3jvPmdFoZ9kpqmS42OJfGwrYaX/hx7xKzZVII1VGI48r3EA7zJTs0qvi5v9n9bZCDcku+kA4UPxRqGleVS5YdkT4wZ7AEWi40xvRHeapittde1iGwGcILL7yw9EKu6dM/tMGhd33kHtm//e1vl/4D7YElocjIygoUP/KFFQjMEPLdMGP+vCnvXm5MeNn9nQ4ODKNTiYLUaMnoXZwyOnoxX4GhZf39LTfx61v9iw0M5odnDPdtCHwHDPKp8wwdy73JH7Y9UP5Ztk5d1F/ln5qD332/vc9PbY4PlSFtsWEVw8gRI7PVV1k1DxR7pucuIRDnt77BfMmozRAWCmHMEHr6HJQdZuV6cg9hzLfZZ80QEj8rqNjOgtz0d3R9E6emMwtIm8wPf+SeNm1atoRdsTXMwqLs4kf7RZ+NbyDephPLI1xit1Y/q/xzyuj+tjef9P34x6dZ+cYnmZkhkBTCmSGU/LuNgCrJsiKIP0p7lntMhxs/Khl3Vxhs/KxCwsRhoS3doLGfeMpd9LJxVxxUxjzjV4a1Z4UtHtwSX2xo47jFGxljOXFnxJklGIrTmdkfD1PEhQLEu/Mu0gkdbs6voFPYntrMtlFhMguhdPWUZzPhFRcdXO5Xo2PLnkCWZVli8/QXafW0R88o3JxyScPjjakttwRbZgh1MT0dfJ3aRnhwZ2aQePhxgI1mW2L+zcjeDA08UUKR8ZOf/FQeRO1RkRYcdQ9hfKgMYTGy/aWf/rDsjP244AxuKIXxRd1gyOE+pBN/Ov8MjgwU8+XddjW52g+VKTE1iH2G0Jayk7ajbUa59Bsowhdy8G2CL7O1zNoip/YQ4s6BFS8UiuJAEp1vjgEElss3XDJ67z3W+YyWjFra+jsfFD91FIOOLJFW+QdvzTaoDuO0Y9yhwWY1jOqW/sgPag9+v73/t9nHbfArVgjjtNHWcDAb3+3aaYawx1klbGUzaMaSUcoE20eqBjrtQeXkTto1ha3S9sY7g3lsZ6DcsodQgxwMpLINhm0y+G2+2eY+aMuAOnU/A9ac2k26mP1nwB0TnzKKQuhbNszdv5Piu+6L9FkN4uX/LevTfXUfrsEY5rOeLmT6M1MEkkI4U4gSQXcQ0MePreeYT+zmz5VKo/Q39xpTvOPPjwpHypfTFe7m2R6vPcsP99iIT6wQ4q/4ZdfwKxjIT50D0YhnlY/cFa6Rv7OP5HT66L2IvsfWnXfc6ZU+SlmZhh5zbYKBpYU00SHJ9w7ml/cySun5aX6SR1hJWead2TcOmaGyZ2aK0U6Ul6WXWtobKpQ/KYSaZaQzrSP8iZPrS2gExb8JqZsnMRm5s4xG02cICVlb7JyXThllZFUNMmXIjez8rc//8k0x6quTOMGahh5lRIMTzP6DNenEn2Xaj1te1HyPfS55e4S77volL99c+VJjDGLtIaTTwwDDQDUcKgO2UgiRM14yyqEPWjKqwan+TIu+J8ozM2qdKYR+Mf1ii/qSS75hhe1P+YkbOfjROda9gpRx7kn15a98m8X3idx5XZSfyMj1OQxQ9VdaqD34sWQ0PmVU8pI+mduLPYTj7XCRevWT6JLdBAJFeRAl36IUQi0ZreZBfO0EM+p9aeIZQvaw016q3DNLyDJSDXLMbYOCS9mewuWWH5ctYNsDOHRv5Gwjs28dcYSfzUC6aCu0h5Dl7CiE/g0U30pffQ8q/yiE8R7CvsR2Vo4rKYSzcu4l2RMCPUCAJUNU+n19yiiNAyOKKGXEz8zTCXZlQbzMs5osKYq4Q8cpouz/orN81lln+TItrkWAHzM+OqFVDRENNCOc7HdTQ4dCKv9qfN1+LzoGHD5EJ3JVlmM1MJohZMmOlozSuPqvQZi+cAYT/VjGK4Xv6G/nuAoz8oRl1uQfNBwexR5dTJxffSFzvTj23nuS5zWzOhiliWdOGeWwB8oCS8aVJvwGktH+18985jOl4hcrhOzbAXMNoPSn7BoIAEsUQsoFhxI1WjJ6jx3EssQSY3wmkQ7qQDSsPKCM8OM+XN8f699oLu1LdvjYZyfkqxw4AZk69cPi+pb+SI86xPf/7n4/VIZ97dR7MvE3wJYB6tC11kgKofDpru31B+WiMLwfbodVUS8yaywTf6cc1EW5asXF9OLfjI1sfG/MECLf5H0n+5JRwqre5hA+9sKyZJqTsIOttHB7+LDsY7an9lK7n/n1N98o6fne95u8n/Nj4HDatGntohS4xGlv92ztk8r/O+++4xfTg++Pf/zjfm9TW5vK3uOWFMLewzZxTggMWARoFFgyikLFLERfVNYxGMRHo9PW1uadrM5OWVNHE0VJDRazif+2vaXcwcbyNBokZq/oLPOO0YyJN9bFOx06loLRYMX7PT1Ai/4Q31TbkE9jy0luyF1vBF4zhAfsX3sPIeElc4tE6jIbxc9+XzB+6qmnylFkmMkfDMEdTFFq4zzydHc55tYF8ENl6iwZJTtetxPztt9+eyv/XDFzdOsibTEnlVdOPVbZp1yzLJE84Rsqv48Wx90ddioXfI9+qIwtGW10qMy9rhBGS0YtQoXvTtwtCxN9f2ANztQ1L79kWE+3LQt8zoXNCgSUwn//81/Z0//6t7nb9gXz97tXWyZQ84yImh97CEfbCa4MgD3wwAPOwLH1uiivXzhUxi+mTwph8wA3SUm5YaCJ9lWnjJb4Gw+edWUVF79rRUuT7HtERtwsaWXVDO2l6haYUsfwo+6GhvrncTsn4UY79ft6u1bloUcezp62uj4vZ/zNDTw5jRR+1E0+IGtuagM87SLuRVtyce3ERDv1FPw58CyZ5hBICmFzOCWqhMCgQoAKWqeMcoIhpq8qbW9wIjSJt+oWeedyGY3ki2ml9OHm/jRCGNHLdqe8gVIHugzjAVr3Bzl0MT3LKL1zWIpVPFh0UgirS0Zr0tE6sXrGSbgaF+Sr/mAOri67PfcWtsTTrNl9jy9bhyBknBQs43Jbf4c9hP9d7CFk2avkFt1AsoW1y0Q+FHmh72CgyB7LiULIna/sQeVu2I6m/ZRR9isNtBnCOC3xsy9dZwYwygdmBFWn5D3l9jzqmO7edaF24Xc3F9Mvll9ML4XQYy6+XeRPCmHr8sK/QWFrbGmXDin2EHLwE8Zp/Cl/Zskog4Zf//rX+/wewmrdEZdxykbsLz/sGR/mdbyXM3uXidPmdX+hVNbzl1tv2Hn5z08ZnbTXXo4vCmEsX2/EO1h4JoVwsORkSkdCoIsI3H1X+5JRNQBdZNFt8riRmSmTqKFVx4sGtx4Pr/hpqKIwjfirkZDdiK477uxz5NLn1VdbI59NKJaRxXHlCuEwP+WNJbT4uT/yDwBTLROSTWnAFo3cEJtn92O2pB8NF9MPtyVOF110kUshuYD37bfyi+npkHEC8EA17TK3Y42suMvwrIGR2F3+fW1TJpq5mP6uu+6wg08G1imjMX7xc4yhsCadVRre9U3EYfrqmVLB79772vcQxktGYznusoOvuNJkzdWLq3Fiz/TcJQTULhFI+905ZZT6RQohfl5eim8XhZAZrMl2Um1fzxCaIIhTll+V47LsFv7Q4acy74Eqfwij9rjiVRNOcVRpWvmu8s89hPva6a3lktFWRjKIeSWFcBBnbkpaQqAhAlbJX3fddV5hcpJY2RA0DNA6j+42DI3Cxe56xo7TxHPsFzdwcm9dCrPsNpsVoTOwul2RUayvcfZxXNpDyClzdKAx8o87GO7RD38kizo4sQjyw618NsxrTPW9xrP3X770pS/6DCF3nGLa5cxnCDkwhzziVNqBgHc9RCRzaVs5bmj6GW9klJwMcHB4U2f3EN7LKaNL5nsIuXbHApfhG6axjzxUX6gOidMmEZRWLzsV7PurPKlD/Lv/+73ftRvvIUReT5eVIeybb7rZ9xCmQ2WUoz2z4zLCcst8yWh+YFq1HEGri+m527W3ti80SpHKgvx5x8S2lxVzj8ty2RZ4QavU9xaedMffMfycZ8HfI+nFP3n5tz3Mdu3EpL0mef3Onc7JNIdAUgibwylRJQQGHQIsGWUEbeONNi4bAirzvjBlQ2GRxc/14vYGJfKo0sf+Vb8oWId4OqONw3X1Gb5324ENdIjXHr+2N5CuFFYYacnoZBvJ9H2PYN9H+FdE6fAqTGVLLnUSCFCDXyG7/Gv8OnDvG4fdd8+XjHIxvUwuV64QcggO5X8gzxAit7CMbbljq7MpG7f+MsiIYckoS0HnaWLJKBfTczqtylh/ya54SYMPGJmt9CBbFX/Ru41/Megkuhr/PnrJO8R1LqY3+WSUJup/BkTSoTJCpnU25QeFEHy5wF2YxzFwgi0zhD4gaKdi9pVROaVMY1Re68mYEzhR/n0W5Twf5GwPH9f7PMd1kfjKdp699EflnxnCvb+yt+PLfbp9EXcvJalP2SaFsE/hTpElBAYOAr6H0BokTjCcpSvMqLPTl+jGmPHs74WtewjH20luMlX6444/PhtmSxo5ZZTDWzDiEzeoCp/szhEQdrJ32WVnnyG85JKLawLaNhg/9IA7/OiQHXLIIWVnB0KNiItPTeD00ikCYIbRklEONaGe6Whs0OTuu7KlllzCTxn9s10CLyMeek928wh8YIoIOaCL6evNEMINjO+xfYaz29UgK62wYlH+a+NJ+VCLRzNvYMaPmTIGmlAIv/jFnfO2ocAdPtCceeaZXv9w7UNnh6o1E2+v0kjLcsFd+Dy6/FPv1ai7ynwG+Ns/Zgj32ntvH/C78MILu8pmyNInhXDIZn1K+FBGgAaJI9LpEHNMNA0YbvbHYeHZ34cySJ2kXdg0wonrGOgMcImvZhvEjncUPpYqMkPFnU9vFCd0VmkVJtnNIRDnB6f7Ub6vuuqqfMQ6KtssaeTCaPCvdw+h8pd8koLYnARDl8rLriUfzKZNm+bYc3cf9Uw9w8FL3CM6p11N8Yc//KFmv1E9+uTWEQGVU2zhzzMnuy6yyCJ+F+Ff/vKXsl6HA/78braTI+eYY45szTVsn7O9e1kvbNF1jDG51ENA2MuPGXIufKf+2c9WgICvjJ5PP/1096f+hz6Z7iEAnsJUHMDT79C1a1W4PiOZ5hBICmFzOCWqhMCgQoAKlINPWNLFfUR+fH3UaA2qxPZSYsBQnSg1SuoYcBk6CiGNkrVWeYNV4CtalrJAs+222/oR4HJHXPHpJdEHHVvlg7BjCe6GG27oMyA33HCD4+80pqxgGJHXsfDc5aerSpQH2BjZ/pL+dIpAjB1KCEtGl1xiyez++++vG45ZQe4OnX322bPb7JJ0DHmUTNcQUBl128otdcc1V1+dzWtXfoA/J7g6rkU9pHyi/l/c7pRbeOGF/XqBGPv4W+maNEObWnlAe8pSUa61OcIucFcegY6eL730UlcIuf7mFaN3U9Q7+Uv62x0EKP/gv/XWW2ez2Qz4tddcm+qVJoFMCmGTQCWyhMBgQ+Dvf/97tt5662Vzzz23z6KoobIWq2y0BluaW5ke4RV3tuCPO7NTKHtHHnlk2RiJXjQs2WJ2hE4xR8Pj7zR0Cvgl0xQCVVwJhBLCcrlll1kme+ihh0pshTGdBpYScVceM+SPPvpoDY0ijnnLLdn1EVDZxQZbZkfWWWed7Mknn6wbgDvLNt10U99re8zRx7iSHisldQMlxxoEVJ7lSLlmcIPVB3SGt9pqqw7KnsJQ/6+77rqukHM1i9zhFT+Ld7JnjoAr0lb+UcLHjx/v38CUKVNKPOPyff9vf+sK+dJLL5396U9/KtuJmceSKKoIUF5jw8m6DHYwIMJz1T+mTc/tCCSFsB2L9JQQGFIIvG771rgDiWVzjKbRkYgrzvh5SAHThcSqA0AQOmO80wChDDLyft999zm3mA5c+b366qu+pJTDZ0444YQuxJpIqwioowWuHOG+2267+ej8JLucWPsz4zDkFZ02ZrEYELngggt82bTnofnBh+dkmkdAS2u5zHr99df3b+DrdoLue++9V5cJl1ejCKI4brTRRn4BfPyd1A2UHGsQULnHkWfKLIMb4A+uZ599ds3gkuix+S72srvahtmyuq222tLu5nyjnbeVf9G2O6anzhCgzsCAG3ffMfNN3fLSiy+6u/z9xf5Q/idMmODt70knnSTnZHcRgSqu9GMOOOAAr3+48gOck2kOgaQQNodTokoIDCoEaLToPLDXjX0+dB5OPvnk7KWXXkodgSZyWo2QbPB8//33faSXfYMohBxa8mLRGYClaN0uOg8XX3yRzxKyvIvrEdQpE20Togx5ErAXXq++8krGUlyWQi+wwALZJZdcUh6FLqBET34ddNBBnlerrrpqxkFALCUVL+h5jt/FI9l1EDCsnjVl8KijjvK9aczQcvl5Z4aZ8XHjxvl9eAceeKDPZnVGn/wiBCIFBGWc+vzpp5/O9t1n32w2m/mmHuI6Dy+/RqsBDmhVpn/zm9/4PkMGRr77ne9kL7zwQhRBeuwqAuxdu9WuHFrGViYwQ6uBPuUB/HimDsKwbJSrWcD/Zz/7WfZmrJQ7RfrTLAJgytJbView8ob6nzYVvDVY1SyvoUqXFMKhmvMp3QkBQ+B1O8yEZY0ohFSgdJDpxKHI+J1CCaWGCKhTxUxfW1tbdpFdgD5h4wm+BG655ZbzwzSkfDgTa5iq5vnnnsu4doLR5NGjR3te/M6WO9IxQ2FRHI3CV/nN9L2ODDMN09sEPZSJcvrss8/6nthDDz3UD9Ng1hsFI1bIlQzvIFic2Mxmbbnlllb+h2cohRwFz/ItFHPRKVyP7R6msyb+VvHqJp+4XIL/07b8E4V677329r1rlOdTTjllphduE5ZOG8rjHNYp/sIXvpDddNNN2T/+8Q8/aCOOxzKkBoKmXroTph7jVvGpx7urbpEs4IMSAl7sleUqFRSRMaPHZJdffnnOuUIfl2vq/+OOO84HRaj/95u8n58+ynJeKZDOpOBRkx9dlXsQ0ccKBvU0OFJvcLcgdT8DgjvY3kDqF5kqdrQN4Mws7QijZ4kjS31ZVcLALHzrGvIiytPyuZ4bDGL3KsNGfnKXLT7xe8wL99hPz7IVXmFid7nJbuQn98IWntQh4MUWDE525aAqVt1wejftQjLNIzAMUms8k0kIJASGGAJWoQZTBMPLL70UTv7BD8KJJ54YrCINdlR8WGmllYJVrGGuueZi0MjpgCd+tpccMeMReDSroWngX8MvDtyAviSJ/ZEDGczU8IvcZypfydiZlPxiZ09vEY815sE6vcGWJwbrkAVT4MLvf//7YMvjwqKLLhpstDfYoSbBOgb+q+ETvSCvdebCYYceGn51+eXO0zoGYe3x48N8880fRs420tNEEM8vHgoZeIwNeVnPEIdMDT5yrNi2hKxhXopXDZ84L6q8WiQTbElfTbzmxrt1nII1/OHBBx8MppwH6yAEOygmfO973wsLLbRQsM6WYwYtP/IEGzwp77bEN3zjG98Id911l+M/+uOjw2qrr2b4zxds5N7pFD82YZs1niNgUAejrvAhvmr+El5uXeFV5m83ZSIu23vpuNgJ7+G1119z3O0gmfDC88+Hj8wxR/jOd74T9t13X8evnuwxfnwzNpgS7PCNYMu9wtxzzhlWW2ONsPTSS3v+QGtKTuCba8YIk5JW6TS5m8+5drxjnMWzK3gTpoNMBaNm+RBecrhdhLduuNc/bW1twZaKBhvICPPPP3847bRTww477BjsFNEybso7ZR8DlpR9jCkz4bhjjw2nn3GGv48aNSrYQWPBBqj8e7CISYD7SQZ/qf4Rzrg3ChO513wTcdgq3wq/Gu+YX+xRj1/sFoWrSVPkXiNfzNueCSNjirNjCP62XzbwvtlmmwVbcRNWXHHFEn/RY6vt5Zn6/xvfOChcd931nj9LLrGE1z/zzDOvl3vyqaQvoqU82JBWzrtwU+mulhXyvAxv8SH78GHmZuFVFzoGCFOUMx4xKrcxRh6+4Ck+0FFCKI8KA371ZKJsDKvIBC1FjPCSSeGVHpcnF4q/ZR68+8474UXrwzzxxBPhX//6V1n/f9/qfxtogk1Z7j1g+tMYAcvcZBICCYEhiAAjlLG5/FeX+yEDjNYzwm8Vs/+sQqZO9VlEbNzlxrt+uFmzUL7H7jxXw+hd9szonYfxr9KLd1fdxU/xik9sy0+8Y5tnsOBgElOcs6WWWsqvkGBvGsYa4RrbX+r9MbrnbKaQ/T6miPsSIpZ8WUegBkvi068qYz3cJbtoFTa2RYOb6OTWyI7DV8OV73XKQZVflY/eRVfyaiCb/MkDjs9n2a0p0n6/F/vWhD/l3J+L/IizQH6M1DO7uPTSS/tyU8q/+Jd2VPZwk7vklV31q0cnt6otHthVP71XaZT3+NejEa/YL34WP7lVbfmLD3jLTeWfJW9cc8Detct/9SuftaqZYYpBj57JF2Zb2PfJyoSNbC8hfFjyxawJM7czS19VXr1LRsmtd/zr0YhOfk5XpxzH/goj3rK7QiMeCiMe7k6Zq5Q7+bt8ho/qH1YYbLLJJtktt/za921qaSgYq653vMG8+BZU/t+374WZ2nXXWTfj7kjKP/WPsFec9exYvtg/l69+e1A3rfrOK5iLVrbi0Lvs0r0IX3XHH7cuu1fkUTyywR+8qH/Gjh2bHX300dl//vOfqJQ3flR+MMvLNRRrr7228+F74tsCW7cLbIhT35/sanr0HudLTFv6W9lxTCyOdrfa/JJ7Tfg6+MpftsIJI71j6zmm7cxNflVeCo9N/c8MN/ideeYZfsooqMflvnEuJB8hkGYIrZQlkxAYaghYBVAmmWerVH2mxZa4+EjbY489Gp5//gUfsbcK2Uf/CMKo4ojhNmJpNuF4xuZ95Ih81sAZMylCADPQWMVso4Lto8y4M7o448N8pJqZBv4RF4Z3jYzKHX5IgqyEc6kYVSxGvnlHDuchWW101eVAFMlkzyNGFjIpvkJW583oOeniXxEnYYkHmZDNn40H79Z5DWOXHhvWGr9WWMJGdxlhx93TUfBVutyx+gcakwOMnrKR/kceeSQ8+thjjr3tabP4PrR0GY39sIaPyEd8kRU5xJv0I3Ns3I1w9g86T0/FJh8wZd4WPOvxEr4lLhYOOsnieU3eFLg2ksn5AGqRJzWyGb7wi2VSOZlho+/4gYOXD8vvuQz/RRZZNJgyF9ZYc41ge2I9fvGAD/y9nJB252x/jAkj1eAOLVibYhhs6VeYNm1aiT/k0MRlIpch5xRjCq38cNe7x+1ym5v9h0bxCncv0wVuhIXmwxk2ik9+F7bztPB8S6Wb4aU8kD/vJaYGsvKDuEqZxNPCkw/+PYJFFF9cviST5HZG9sc6wmHhhT8aVltt9bDC8suHBWyFgWYQFa9shanaprxYvCPCK6+8EphpfOThR8Izzz4T3nv3Pf/WXQ7SQbqjMo9MKnM+W2F+Xi7MJk3EK+yxMbjJXe/wkYzuZ9gQF/88fPHNlWGVL8bT41W9YwxjmaCP6zKXCZ5Gr/z1eCNZiZP/pUwqL/Zd6Vv178HqKOox0r/scsuGlVdeOdiJxT5DqHTl5da+lyLd8JSfpwt8irTzzkoH29cZ7ARSf/b6x/w9HMWEOtzsuHzBT3kg2Z23lV/HT9hYOC/r1KEFT087/OydfKt+A/DWtxJ/f3E8hKtpPwr5nJ+VK4zywfO0KBM1POL63vxJYykr34czMefiW8kdcr6sIrA9y2GFFVYIq6++us+sMqON3DMzpNtlM3u6rWz499NP+4oF6h9mblmBoroHbMh/6JX/02dML9tdvlvlE+XH6wfqEMtXygnvXrRIvz1X8QYPfV+O+XSr84p2ssxfC+vxUx8a7orD4yMe8jAOV+QN/pi8zLXL5HUJ7U8hr/JM5czzi3CGTywTs7DQDjd5wHrxxT8ell56qbDKqqs6/tQ/tJsmrGPSTF5YNEPeJIVwyBeBBMBQRYAKk6bOK9qiggcLKm0aFiprfmVjWlSueQPmdS1NiPOw+TBvrOgoULtT/+fP+Zt3gArFozP3nJ9R0AAYfd4UW6Np//KOS84vjgfeNpOA6GZyWp4UZxwf/MQ7D9eMrEVqIplIL42k8zDZZpvdOgBFw4YfDZFFZA1s3vg1bJA8gfbH6Qki7Om8muJZNOIA0Z4O4+my5B1L8gOTpwQ6TDsO+Tv+uV9sxxgZS29giaedVx66/b2dD7HkvKApGl6TRbjm/rls7bLrHV+Fr7Xry2R5bP9sri+MoFyYDbYkVp2H2T8ye85Uf00W8rqmA2Nlm7xwd6NTRyOmQ8L3rXOmzgns5I+Nccz9MUcA2XKfduygE5ayccsN9Hma5Ccbfz1X7dxPeOVxiSbn65A4h1ymQl6TT0b07XbOD/92t4685Tcjs46pMDSMwYJluSOsE8ZzXawUeWTHdI5n4Uene7p1Kh1rw1uYqxMsOSDXc61NXZCnux4NbhjCkPI8B/Nn3PN3nvTcGIvaeHOMq275O3UZfHLTkaY9rkYyFUHd8m+EPOCfYWQzVI59nC8Q4if8VAfJTbS8x37U/2oDXAEyaHI0cxycr6dlZnUy2FLO28PF3zZ8cv9cTupP1R3teZLTKJziztEinNqd3EfxWZKK9oN6FNe8PaCciSZ3lXtt+0F623nzllOTltg4N8q8TayhhMAf7Kg7MHG5jsPR9lJ/KW+g0zPhMbS9ygfJKluYys7xYRAzDwud/NptuNaW5dhPZVO8ZnxoSpcryjnaSrnyJo4j51zLewY4ePiZyURoTG34XLbcXfX0DFdki/pbeUmbMHI2Dz+ysA14xy7Pb/LSeBveyXSOQFIIO8cn+SYEBjUCVJRxA+YVp1WmGJ75YbzDoBbBXdIfOktSRsBQI7TAB1TqHIAdjbs6CR2QM2LvIBDQA5tDkQeWAfWfOzDpxMGFKfzj506CNPRSeGxM3jvI7dylub/iA3X83FzoWqqijMbYfcgsZdHh8k6B4Vkt2xIdZnFeiTmzVvCArswPecoWDnofInbZcS9w9WRbPoAX30IN5niqPFfwUZ7ILr3zPmT5mmdC+2t6KhCwwul1T4R7jD9U5AWGOoi6SO8Kh1+soOCvel8KCDTJNEDA6gBXomyGDlPizEuDcq96Xe0CePOTYk5QDG7kk7cdfBN5Vrqf/+ms7pSf7PZQ7XVuPb+YrtGzwsmO6eq5yV9+suWOLbeqHdMUzyqvdbzyvLBy7gZc7UFlvh59cmtHICmE7Vikp4TAkEOABqduZWnuasxKGmrW2Oi92kjFNL30/P577/sszkdsZJzZuX4z3toUsfNs7VDc0cKnxK8g62AJx7JF9FB5A8ljtVOhOKt2B8Z1HBQm9ord4ueYJnqe/sH0YHc7+Yg4h1bUdFIUXnYUruFjPdrYLX6ux4Syyk+dAHCsYKY8kF2PjfOgM4xCU/KqS9nuiGzNGmi7863UC1fPrVk5Yrpu8sm7WcDcMUFgjJFiUY9GIpT5UYTxfMuDi6RndjfT1yHSenzquXUIWMehO+HqhekIfc3AU4mtiRDXSbF7jXRxHsiDeAe6qYdNb8ksPIS94i7eY5xnKgJ4U9+YXX4jhZvqopKH4pVNfIpbRNV33OUme2ZuDXjZJJzViTk/F7HQt5wc3phmZcqp22XjXfLJFk2NXcfT6uqy3kcwW9Jc4iksa3ikl84QSAphZ+gkv4RAQqD/ESjagXL/hjWiN95wY7jwwguCXRkQJu45sb1BNWmdXA12/0s/qCSgjb3yyivDL3/xCz+J9tDDDgtzzz3XoErjgEoMhdkMnRweh9PhcQfKuXUk7dlncdQZwy+VfVBouQF3BgteeOHFYIewBDvEwvcLJ7xbDvVMGdqZOHnZL/Y0eoBU7meKW3cIaHc5yfm555+zun6U7VGdz/f74k59lMzgQSAphIMnL1NKEgKDEoF41JW9BCyzOefcc8MB++8f9ps8OZxhx6VrVFD2oARigCSK60kOP/xb4bMTJoTLp1zuh1iUI9wDRMbBJIaWlZGmD+wwhWee+Y9f88Ds7DJjl7FOWT5cn/Kgd3O90M3DdttuG2688cZg9/yF7bbbrncjTdw7IMBBK3/729/8So1lxo61q3lmK+v/DsTJoSUIXHrppWGPPfYIW33+8+Hss39ih0gtbIOwxXL6lsSQmAwEBJJCOBByIcmQEEgIzBQBFEPfs2djw6eedlo42O6Om2x3naEQyiSFUEj0jg2+3K912GGHh0032SRcedWVfldl78SWuEoZVLl+x5bqHnPMMeGkk04M+1jZ/8mZZzlI/m3YzLmP19dZxpmQ7BkCuTJoc7JW/jfffIvwv7/5X7s37lpfoZAU8Z5h29XQ3Ddq1wvYqbarhTvuuMNPuU150FUUm6enzF9zzTV+r+U222wdzjnv3LDwRxc2BszSphnC5pEc+JRJIRz4eZQkTAgMaQTUGcamY0Z/9ydnn22zg/uFAw84wC5hPi1fUmf+mi0Z0oD1ZuIN45NMITz88MPDxhtvHK644gq/wD11yHoT9HzJKBhzDcCxxx0XTjzxhPDVffYpFUJ9I0iR8qL1eaHZQU6e3G7b7UwZvC7ccMMNYYsttkh4tx7uTjlyLcmaa64ZPvGJT4Tf/OY3fuWDNQDN7/vtlHvyrCJA3WJ3VIZdd901bGOz4+eaQvjRhRZysqQQVtGatd+TQjhr51+SPiEw6BFQZxfbtUFL8RlnnunKIArhj370I++UaXZEsyqDHph+SCB5cNJJJ4WjjjoqbLjhhmHKlCnlvWf9IM6gj1JlXyeevmd7eY477tjw/e9/Pxx44NfCqVb2ZZIiKCRab+dDUfAdFrbeemvbw3yD76Xd1jrICffW490Zx4ceeshnB9daa60wdepU29c2d+MTnDtjlPyaRoCBv5122ilstdWWphCeb/e+LuL7adMAbNMQzhKESSGcJbIpCZkQGNoISMljDyEdsFN+dEr45sHfLPcQgo4rjGanDlrvlhWWjB566GHhs5+dEK6yA2bmsYvJk+ldBKQYsn/qu9/7bvieKYSTbf/smae375/tXQkS9/yqjeHh87aPCoWQGUIOtUqmbxFghnCNNdYI6627Xrj5lpt9hlDfR99KMnRiYw/hbrvuFj6/9efDeRecHxZacCFfjZMWjA6uMpAUwsGVnyk1CYFBjYAUwjPPOtMPlTlg/wPCj3/840Gd5oGWOCmE//Vfn/Mlo/PMM89AE3HQyaPBDq77ONZmCDnYZz87VOmMH5/uaU0d4t7Nci0ZJRZmCG+4/vpwle2f3daWj6YBqN7FvsqdGcLVV1s9fPJTnwy//vWvfcl6lSa9txaBK664MnzhC/9tZX+bcO752kPIfHkygwmBpBAOptxMaUkIDHIE1DE7/YzTw9dsyRwnjSaFsG8znSWjHCqDQsgVFKNGjepbAYZYbFIGUTw4VOY73zk+fO9730sKYR+WA9U7RMmyuZtvvDlMuWKKHbSxQx9KkaICgUceeSSsuuqqvo+QJaPz2gqFNCDSu2XjqquuCjvuuKMPhpx7/nnpUJnehbvfuCeFsN+gTxEnBBICXUHAO8acKGOGU0a/cdBBHRTC1DHoCqLdo5VCyJJRKYRpL0n3sGw2lK5eeefdd8LRRx/tJ72mGcJm0WsNHfsIyYcdd/zvcM3VV4ebb7opbLb55q1hnrg0jcAjDz8cVjGF8DOf+Ywv29WAVJqpbRrCLhFS5i+77LKw2267hf+2WcIzzzrLDpX5qPNIM4RdgnLAEyeFcMBnURIwIZAQAIF2hTDLFcKvH2QHaxzop4wmhPoIAQ6VKa6dkELICH0yvYiAYa4ZqnftQvTj7JTRE074fpoh7EXI67HO8yDzZXMsGb3alEKWj6bBkHpo9Z7bn//8Z58d5FCZ22+/Pc0Q9h7UJWdmCJkN3+rzW4ULLrjA7yHEM50yWkI0KB6SQjgosjElIiEwNBAoLp4IvmT0gAPDAXbKaM2SUes826aeoQFGP6VSewgnTNjYZwjnm2++fpJkCERLeTYjhfC993OFkFNG0wxh3+a/cmLbbbYN1193fbj+huvDlnbtRKpv+jYfdKjM+LXGh1tvuzXtIewD+FkJoiWjHCqz8EeZIUzqYB9A36dRJIWwT+FOkSUEEgLdQUBLQXWozFk/+UnYf7/2ewjFU3R6T3brEeBAk8MP/5afMkpHIc0Qth5jcayW53yGkGsnTjCFcL90qIyA6gMbhfDDD2eE7bfb3u8hvOXmW8Kmm23aBzGnKGIE/FCZ1VcP661np4zenE4ZjbHpjWeWjOoewh1sH+HZ55ztp4wSVxp67Q3E+49nUgj7D/sUc0IgIdAFBDhy/8233gojR44MPzGF8Mgjjwh777W3n7g4/YMPwtx2uMkcc8yRlnB1AdNGpFJEMusMVGdAfvCDH9ihMoeFz32u/ZRR0cOPZ35pKV0jdLvmLmzpmL1v9xByMf0JJ5yQXztxxhklM9GVDumhWwiAM2XX8TQOKILsT8PGbbtttzGF8PryHkLREm4E4Qp6s5LpAQJgLeP42zv2Q3btxOp27cRadjn97elQGUHUUlvYC3eWRzNDuI2V/XPOsVNGF7YZQsse0Q0vvg/RYycz6yGQFMJZL8+SxAmBIYnAX//613DWmWeFl195OTz44IPhscceC2OXHhs+tc6nXBH8yt57h0988pPpkuIWlA4aem/UzaZb9uqrr4Zp06aF2WefPVx00UW+b/OThvWP7GL0j3zkI2GhhRYKY8aMyTvORUcudQpakBERC+7i/MAGPo49trh2wmbITz/99LJTljpjEVg9fFRHV5j++9//Di+++GKYa665wqRJk8J9990XfvjDH4ZNNtnEY1p88cXD/PPP78+p3PcQ/CI4ecBPA0uqk6j3V1pppTB+/Phw+223hVHFtTcJ957jHpf7d955Jzz55JOeB1zvccghh4SNNtrIB6NGjBjh+whHjx7t7S2DIfpWlF89lyZx6GsEkkLY14in+BICCYEuI0Bn+KWXXgr77rtvuPbaa8OHM5i5KkburdMwYcKEcN5554WllloqV2S6HEMKUEUAzDX78be//S188YtfDP/4xz8CM7Xv2eEmdAp8uajhf86554btttvOZ0gsA4JmFlMnrYpq996ZGQRvcD/qqKPCKaecEvabbEtGzzwjkE/8ZptttpoOdPdiGtqhpHSAgjrH9hCusKXR4P7aa6+5Yjh9+vQw99xzhzlsMGS99df3fczUPQqXyr1D0eM/yg/NjjP49LCdMrraaqv5ktFbbrnF84Hyz8qRhHvPINfsOFwYAOFk0QceeMDrfOr92WefLcwzap4wjx0kxvfwhS98oebaIeVXz6RIofsLgaQQ9hfyKd6EQEKgaQRQMNg/iDK42667hrdt9BJDB4CO8Kmnnhr22GMPnyn0pVvWeU6mewioI6zOlRr5448/PvBjlsr9fG1cCMwU3njjjbavZEGfTUz4dw/3RqHAk4M0rrvuOp+hpRN85513hrXXXttP/iMvOO1yxRVXbMQiuXcRAS/zhDFsMcyU7LXXXuGuO+8Kw4bnbtCghBxxxBHh0EMP9bzR7Ii+GQ+c/nQLATBEGR9my3CZrWIf23PPPReeffZZnxlnVQKHirFqYSUr+5tutpmvVuhWZCmQY63yjoLNABQnik6ePNmXqqs9oJJfdrllw/V20u7yyy/vyFFH8VWQV6nsz7qFKSmEs27eJckTAkMDAesUoHtgXnjhhfDVr37VO8c0QnTAUEguufjiMG7cOFca1SnLQ6S/3UUgbth5ZqnWnnvuGX7/+9+7QogbI/ZXTJkStthyS+8IaC8JceKf8qK76LeHo3PGDO22224bHn/88fxsP+t9KX9YtnjJJZeERRZZJFfU24Omp24gIFzLoFaO33n33fDTn/7UFRBmB1W2mRXkCooVTCEpwxk9HeuyA10ySg9dQcCVjEIhf9fw5/7T73znOwH8wZYfNAxEsad8u+23dwW9K3Ek2nYEVH5j+4knngj77LNPuPOOO30gROWek70nTZwYPmJ79kt6lEJrj5OZhRGwzEwmIZAQSAgMeAQ+nDEjs85xduutt2bWGchM2UBPzGwUM7MldTaJaHOIZmQP+AQNZAErWIK7zQxm1inLbETecbcuWWZLhjJbylumRNiTV3ouPdNDlxEAQ37WCc5OO+20EnfKPeV/nnnm8fKPvxF2mX8KUAeBAnN8KPcY8sCU8swuQ88o92BPHfTDH/4gs2W8TgP+KvOyc4/0tzsIxBiSD/fff39mM1L+DQj/YcOGZ3Y/XmZ7PLsTRQpTQUCYU39jTBH3eoc6n/IO3htttFH2zDPP1JZ16h5+GNn5W/o7CyGQZghnYWU+iZ4QGBIIFCPuVq/6qPBbdtLowQcfbKednRMmbDwh/PzSn4dFF120HDUeEpj0UyJZurirLdl9+KGHw5xzzelLt3bffXdfXtRPIg3qaK2DVs6yslTOOmPhicefsBnzfPb1M5/+TLjgwgvC2LFjBzUOAyVxzETtv//+Piuy8MILh9/97ndhKZslTKZ3EFCdz3fA76CDDgpnRCfrsmSXmVv2NyfTOwg8aasTtvr85311AstIzz33nLD77nukOr934O5Xrkkh7Ff4U+QJgYRAMwjYCLE3QOogcOrZV77yFT/xjI3tNmJcLiFiKRG/ZFqPAAcLsGyLqyc22GAD74x9/OMfT3i3HuqSI2UeQ5nWnh72cdIZZu8s3wEdtVTmS8ha/2B5QC68/PLLYZdddgm32emWnPC6jy1fT8vkWg93PY58Bw8/9FBYZ511yj3k1P0MDM4333yp/NcDrQVu1DVnnnmmD8JyeNu5doDY0ksvzZp1XxrdgigSiwGCQFIIB0hGJDESAgmB+gi4EmhedMjo9KIccg3C1VdfFTbffIuAQiJFEQ7xM+/JtBYBLoZe305WpJPAyDyKSTK9g4DKMja//zz9dNhjjz39/rW11lozXHHFFWHJJZf0yJNC2Dt5AFewx4DxZZddaor5hd4xXoaZ2TT45Nj0yp9I6WCGkNN2TzzxRL96hWs+rrn6mrDBpzfwfEnlv1dywJly7QqnSLM6ZF/bUzi77R1PZvAhkBTCwZenKUUJgUGFgDrFcaJwo4PAzGBsUqcgRqN3nsH9yiuvshnC9X2pLnnBDFUyvYMAeKtcc6AGS+YOO+ywcPbZZ5tyuIef7perK7nC0jtSJK6mFYYZlhcMRnEnKodZcahSMr2DQKyEe13PYKDhz9U3n/jEJ/yqIQ5T4m7IZHoPAbW/99xzT1hiiSX8vlm5qV7qvdgT575EICmEfYl2iishkBDoMQJqjJyRddI0c8i7lpb2OJLEoC4CcSdNzxCmjkFduFriKJzBmI4xyghKIXcRxp3hmK4lEScmNQiAL3kgnLGrA1I1AdJLjxEQ1ir74M03cNZZZ4Vll1kmbLLppmXdk+qgHsPdKQOV/06JkucsjUBSCGfp7EvCJwSGBgJxY+SjxdYxcDeSXyzZijsPQwOV/klliXvLnupbAABAAElEQVSBfZw3/SPR4I61xLtQRpgl5PqVxRZbrOwMg0DKh94tB3Z6otc17E7WIFTCvPcwB9uq8Z3h9h28/NJLvmxx7rnnrvkGqvTpvXUIpLLeOiwHKqekEA7UnElyJQR6GQF1cIgmHl2NG2KNiLs/DTTKl+w68sGTQxaqM3VS4mQrqOgUTo2O6CSL5JCshNNBMuIVh4W+GsZ5NZC9Sus8jZYlSloOGcuiOGUjL7gMt6WTkkN+1Xe5V23lhzo98oe30iM3bPjyq85SxPH5M8SFMuHpRNYIH9wcb2ic1CUIpTzyZ3muxecGWnsWbtiYevmmPJatcCU9YYvwsZ8ztD8qG+V7IQNxKW/ES3LIrsfP+cAjihM3pcWfcwf+ulG6OrxHfGI/eDk/8g7czNhR7p5XBYI5ORgW/rmDnAsq/IdpWXQhs3vleV/6GYTZh/DK8wEuSrtklx37KU88Xws88Ie2TIPLUPAt0itenqZoubDySv7wkkEeDHxlyvjlULGVBpzrhZc7PCUzbmUMUVy4Y+rxxF1yxf64yzRyx79Mb5FGl9XihifP+FNWSx4FnRG0uxURicZ54m/uks3xorwU4QgiP549LDYvZuRXypc7d/hLOAy4xfHhJnl4xtTkscmBLDMz4iE59K54CS9Zq7xE6+4mZ1W+Kn3NO9jbz+vIBmGrMoFx3LYoftnw1zNhkZsfbhhPB88FLqKVDY3i5BkT++kZGyPezrdCi7/oedb3JDv2U5yyY3qeYxOHw513fmprYh64x6Yqp5cXsOAHbYFLlYfCxXVKLEdd+ohfTFtTRuvUr7G86bkdgaQQtmORnhICQwoBNRpU0sw6jCgOB7F7tcI///nPcPvtt4c//vGPvkSNqx7eeeedMGrUqGD3znnDMOecc4a333rblKDhgeeXX3o5zDPvPN6AQc9yNir51197PSy40IIenkod2vctjg8+mO7ur7zySphtttnC7PZ7y06x5Jm9OZzoN++883pDpMaCBonfjOkzvPOLO6eg2T1Jzp/T5t544w1/xx1aOmLvvP2OnUQ3r59OxzvpxU+NGXGS7jnsol1kx0ZW/PHjMAPSg58rIeZOM8iBKsgAPXFzwAenb2688cbhYx/7WJiDPUZFA9iocBEHP8lDHE8++WT47W9/G6ZOnep4gwXpUXqFBzIiH37IQNoZNUdeaJCPS53tvjqXHZzI9+lGz6XCHxgdNmlXOrGhwfAsXOCjPVOUBfCAjp/4EgZsoUM2wpDf0y2vZ599tvCuxYNMhIEGf/Kdi7+Rm3fSAX/8scH1HSsX4E06oSMO+MML7HDjt+qqq4YNN9wwrL322o4/8gsr6HjGxsSYiwaer7/+upd5sOdaAco7p6sqrcRNvBjS/dprr+VpNHcwQVaUPPgrDXw35CvyEJ5w5AF0YPOROT7i/PEjHP6Y6e9bPhkOuBE/8eaykgYOWAKHzDADq3cdI0qmcCE9/IiX8kU69Mw7cVM8pZRC69+HyTabyfCu4T+npYnyhLvKGbJAi5GspJEDnsaPHx822WSTsIwt6aPcycTY46Z3xYntMhkGHGJB3WN3joZp06YF6oj33n0/vPe+pbHAR2UWzMCId9KNjKQRmSlLvGPgDx028uM+l5VNlStokInyShmgXDIgpO+esPA0ARwb1YfYhHnzjTcNC8O5wAk38pzwxEXaMMgZl3XKPHLPsHSQGTyr3L/55pteh7z3nsVr+QTWhIc3NMjk6bA4cFtuueV8f92nrQ5aZtllPf3ES7pIs9ddLkXHP+AKHfzZp8eesXvvvdfrIsoNaX/b0sOBIvDCgDNlZK7i2/V0mB+8eIaX6h5kVfkmXJwO8ikum6QJN7BRGpENnviRDtIFBnNb2qlXRK+8HzX3KKtX3nE6FATyBUN4DLzggRzwG2HP5DcGd5Ur1UluWxreMxyQiXfyQ5gS/0ILLRSWNdw322yzsOaaa4ZFFlnE/YUtZY90yOhZ/rhTZijztL9292L417/+5diA80jDjTq7LGMW53TDG76kK64blQfwJL9IE3SUx9etzprDygthwEHfisorYWjb55lnVPjAyiV0lC/o4Msz3wjP5O9rr75m5WJ2xwV38AEb2i3qbwzu81l7joLO80c/+lHHEPyhIW4wB0P26YKNy2q05ClxUtfihszPPfec72nkuwEDVkysvPLK3v5yEi1XUREOGfmR/mQ6RyAphJ3jk3wTAoMbASpLSyGVL5WxXTgb2Kj/q1/9KthFzN4QMPOA0kelSkWsxkVh1CCqwyF3aGmA+PFMeGhmg4e50UijhOKPH3zwp7mkg4o7lTh+9sflVGYQh/gid0lXpMX5WVgaCvnhRjgMbpIXe7i5g0MsB/LAu5Q3klF+8NNP6aARomP2VTuSnlM4afiQ3wg97uofT18RN5hfdNFF4dJLL/UGj/gxyCvbMSp4ERY/YaEGHhrRy6/EyXBFFmEo3MUHWzLxPN2U79lmG+lY8E44YQdv3BxDs/Ue8yZe4YXtvMHS8r6UKUoH/pKJciMa0gN/+ckmLsIobjoiKISTJk0K22+/vQ8q4KdypbSRJ1Lc4A2f+00Jv9jK/3XXXReefeZZc8Qnxz+WizQTns6NZJQ8+CkO3JAfGuWNZMWP0fAYB+RUfDxT9lDa6ABCi4z2n6hzTE0hzOkN1w+tI24vsXKHLJ52AhVG+RXLpPyDbMaM/HtFXpcR7KLwyESnmHL+gSmsqhsUD2EWWGCBsPPOO4dJEyeGVUxJV3ikQMYYI/zABD86fFdfc41/Aw888IAruYTI092eBs8LSxv1yEiLj05rB1mNp7CFhrqg5AOAFi8yx+Gpk5APXmCivJW8hBd+oqHuQA7cMVI+lO/km9Ls8UVlWph5OJNJ8UkmbHgTL/HBs4y3KGdgQXLAiWd4MDC14447hn3sRMil7Nm9jQI+9Yzw/4/V/z+18j/FTq/lzlEG3lTzIgvlnfjjcuuyWhkdMTL/tj1vkNvSDSZKI3HzLPk72KTHhBNGcflDZvEifeKJDf4YLwsFtvDmuxlp9RY0LlMhC9+SZMMdozyFt75TwmEkN+mkDEluz28LDyaxIRyK2ac3+HTYd/K+PjjIYAkGXo51IbPiJwXI39bWFs477zw7Qfvq8NRTT3l+E444oXWsrQwIC/iV8hWyQ+u4WHrx83JcyE76UOo02MFgkup2/FTXEh6Z1A6XuBgf5JRM8He8kM8ciQt+8IUH4VDY8Iv5Iz9xEV7P1CukEYyh5Tnnlw9QevoLGYnf6x+ro6qGsAxK7bvvvmHbbbf1QWziSWbmCCSFcOYYJYqEwKBEgAoWo8oSZfDII48MP/vZz9x9lVVWCdzztMIKK3ilSkPDyJ8qcW+UrPKudkDxV8cFRtXGyRs3ayyIHVqqahpVV8rMljthXUbkNDrJSyMBDwzhcUcWOmLQ4abGSA0cNCWdPePvcsA7MtDgTjg1YIrLeeJXxK800iAyus2oJiPrKNQc/MGI5p52CuSJJ53ko5pRNDWP8EXmp+1KAe6U444zGm1OMfzyl3cLo0eP8fCMjNIIKv3IKiO58XMs8ONnfLHVCarBy9z1Lj7CDhujdzBATowwlRv5RoccI8xo3HFzea1TSWeRcMgJjfAHO+/QGQ/JjZKhGTPckF+YK5xkIE7SzEwKswUP2qzSpZdd5h0rlJKvfe1r4Zvf/KbnBXELJ2HOO3Hw/uc//9nvmEMpR/4NPv1pf190kUXDfPPP52Ep/8RH/KSD8KSR/IKPpwGcLD244YfBvSb9pnShSOGGAqs8xQZzl8meXV7ks3j4Uj4wBXDk8Lzsw/fDLC87yO8dVmyTCx7ETx7xDB+5EZ/TGx34Q4N/nCblI+5KlxF5ugiLu/wIR+f7rbff8kGM66+/Ptx0000eB6dBcmfluuuu6/TCgrAyko/8O+644/zAkDfffMtmeBcNkydPDsuPWz4s9NGFnJ/POBZyUELhwswO5QM+GNnIqXQqL4Qz73yfXv4sPO4ql6SHfBMfhcEdN5V7nnGjc0384MN3RtrgxcwH2GHk5nJQbswNPrxjeMYQDjfyko638oYVFczke3yWf/CWLIRjtgpl+j//+Y8P5jGzhzzr20whp9GOGzeuTA/0VQNOzLhweu0vf/lLj2ettdbyDjWz7pqVmdNkMEbuL9mwkYs08t2ABbNl5CfpkVF+KK3YpJV0xD94EQ5+uGPjFn9L5AnYkm6+SQx5Sfx8K5Rx/DDQwUd5Ah8UWvIKA39o5CbetCeK3x6cJv5eeP4IeWFpIDzpZUbswQcfDBdffHF4/vnnw4ILLuj393396193mZROj9j+gInHbTarcg488MBwyy23uCzk3c477xQWX/zjrmCSJtIaY4HsGGT32UPqU9JSyA7GlBV987yrPBOWH26EJ43yi/OKr4o2Hj8wJN3w4530xGlAFuKPeWvmWzOwhOGZ9gHamAfPwhhe8IEGI9lwI059d9CDPasIuBLppz/9qc2q/ttnN7958MHhYKv/Kb/JNIGAgZtMQiAhMMQQsMq1JsXWyGRHHXVUZpVvZo1OdsIJJ2TWuDmNVb41tIVjBo/YL36GRu+yxaR8r/At3UUY2fJDTmNc+uCuH46iswauhkYvMa0wkF2GLXgqTOwvGvxid9Fim2LnWFqniNY6O/zwwzPr+MQk5TP84GNLaDJbZppZ45wtvPDCmd2v5WkhvYrT7SLtPCusPfhzDV0Rg+h4df8iPgmgMJ6WOn7yl004zwMxKGz5x7jjJXeRu7/FI+P+0bvckacmrNHw7j/zE/ZVeuscZI8//ni22267ZdZpyUwpzKZMmVK/rBbxwpMwyy+/vONvHeHsjjvuKNMpOSRTKQfhC5mEn2jlLvnkLjt2Fz/c4ueYhmdwr6a7Si/+2NYRc37YMtXwuItH7Cc35afexUfh9K6w0CGn3Y+Y2TIwL/9bbLFFZspKLkv0XRJW4azTmtlF75l1OL3+2W+//TIboPIwigPeMvFz7AY/ySoa2aLDFk3sRth64SVjNZx4iL9/F+AepdH9KnKLXnHrHZuf5MA/5hU/SxanIX+jOMDaTuHMxowZ4/X57rvvntkhRF4eoK9nbLme11PgT71lirnjT5z63iUf4eMyJX5Kh/sX+VCli2kUrlG64vhU9svwRXp5bxQe/iV98QwtbvXSFNNKNtz0k5ts8eJdYWU/8cQT2Q477OD1iS0bzW644YaaOAkrGQgP/jb46t+LLX3MLrzwwsyUnBq+cXyEicPzjqnKKnly3/a/8MKIvnwv3FV3iKaeXYYp8kI0ilN21Z330hT4lu/RQxw+ci4x8fQXcSsduLW1tWW77LKL1/+mCGamYDdsf2O+6TkfIUg4JAQSAkMYASpTG1HOllpqKe/EnXbaqZmNrpaNhSpbc/DGt3w3zHjGvZ5xvzoeNe5R2Br3SjjF06lNGOMnPth6zr3qyEn8EV1M7yIUfqU79Gaq73LDnZ/NGGYnn3xyZrMQruBNnToVkrqGhvX8889z2tGjR2eXX365rf4rFKKCHwHLOOtyaexYhitkd8r4uXHQWp9IFjyU1phIcbldxCG6OE0exvy9UxHRia/8sUUj3jUdkSKsCVMEyW3b95fZ7KArGCuttFJme9Jy/GK64hll/Oijj/YOxGqrrZbdduttGQoKppTdaPWMuzq6kgm3qonp6ajU0Bb8SAs/0YpG7/CMn5V23OPnmA568bTAZbwxb9zVoZQ7PDBSAsVD8cRyVJ/zkAQucLI02ZJPV7JtRiazy8RzOWLZikDwtxn1bP3113cFZv/9989eeP55p5dssa24m3EjCqXHnyWf2XqP04f8encC+1N9l3s9WzLhRzjJynvs58+RDMQbm5jW4zd/hZEftuIQf8nKwIjNlGQ2Q5WhYDAo0pn5wx/+kI0dOzajA33qqaeWCrzCEJd+igPbnyM5StnMjzQpjPgobElX0MTuyq84rJ7dhreMhZeJw+EWx4EsxCE+ClO14zCibeQmfiWPOL32TJ1jy3Zdydt0003LAQ7xUzi+Q1tVktnsa7b44otntlzUveL49Vzvm5UfgZCplCuWx/wUr/zLcHXo5KcwsU148BQN8eo5tuu6F3kX0/FclUn+co/jw0+85S836DAMihx00EE+uEG5fuyxx9w9/ekcAaZkk0kIJASGGAJlBWrpZvbqkEMO8YbL9rxlL774Yg0aMW2NxwB4qStb0SiocSjFlHvp0IOHerwKN28wjXVbW1tmS+Vc0bCluD4KjLyxzNA+++yz2eabb+6jybbvIbODYWpoSikL/uX7EH+IcawHxZ/+9KfM9hJ6ubY9sTWjxHFY8umzEz7rdHa3n4/Ml/yEuezSoxsP9XjUc6vHuqCL5e5QvuuF6w83kxU5qVfAkxUHtuwws+XUZbmO00En15ap+4CI7bet6bzFdNWkyK9qV+n69L3Z/IyEkvyRU4lT7NbwuUGctow6syWIXq5tP7PXP5SZOD6eGbxiRYgt18tsz1VZ/8R09eKu+lffmwnjNA3kx68ZnvXi6bFbJFMpQ+TWqWwR3aOPPuqDrLbUObvxxhtdLBTXkqe5MHu75ZZb+mAI+UX9LyM62XLvil0vbD23zniW9FHanL763jmTznzb/So8y7jbKfKnmK54Fi22HUqVrbHGGl6uL7jggnIATGw0gKD3ZKcZwlQGEgJDHoE26xDbiYAZnbGf//znXnFqBgRwVMkOeaCaBAC8aGxQ9li6xTJcls3ZHpF2DtDYD2OnifrsLKPzdrKfu8nPX9KfbiGgUWKW4e6xxx4ZHeR4hB2MyaNrr702W3SRj2XMJLLUCyOlvlsRD9FAYKZyK9v29GTMurJ895abby79hS90zGZNnDjRO26237CkGaIwtizZYMzSZ5ZN237w7KmnnipnduJIWOJuJ2JmdhBKxsCJ8lF5GNOm564hQH1z4AEHeBvALLnqH7gIZztJ1Gdyx4wek9nJou4uv5i+azEPXWphx8qPgw8+2OsVlk2zaiQ2SSGM0cif0wxhR0ySS0JgSCCgxsZOk8tY1sWS0bvvvts7ZHFnIH4eEsD0IJHCCpvfVFsqyj5CZqq0bEU0RuAdtOuvu95Hkem4/f3vf0/KSA/wj4NSvs8//3xfNmQH9GR2yEOpbCh/oGdpHeXfrkqoWSoa80rPzSFAZ0wGjNkHCK7MPp1zzjle3vHXgBM07J9iwITv5GZTGpPpOQLeKba8oMyj7DFLi3IuE+dTmw0Ism+Z+t+uWXESr6Oon5LpMQJ2aqgrhNttt53XP1JYpJDYica+VHfccst1aCM8H3oswdBkAHZgb3e1ZhMmTPC6aGgi0Xyqk0LYPFaJMiEwaBBQQ4PN0go6Y3aaqD/j5v6pQ9Ct/I6xZR+VnaHns08PFx0y+cOc5yuvvNJH55mhtVMC3S2m6ZYQKZAjYNd3+FJEZkjiQ0rUKYMo7zQMy3baaadSGU/4d68AxbjxzMFULENklpzZv3qG/coMmKA0opDEPOrRJ7eZIwCGKBwsR/zUpz7l2P7f//1fGdAxLup3u/PU/e0k0lJp9PCFfxkoPXQLAfZvUrYZ9MCofEspx5/9g3aHni+rNoIaOn9Jf7qEgDBmxpu6Z7311svsPscSezETnd6Hup0UwqFeAlL6hzQCNEoohCyro0Gyo/cdD41epgqz68VDmGEzKyhlW9jCUZ0Bnu2Ydx8htovsM7v4GadkWoQAnS2W4jLYIYUwVgaJhmW9jCLvueeeZazKw9IhPTSNANjpZ0fBZ3YXpH8Dxx9/vPNQ3SKGlHm7N8xp4lks+Se7ewiQB+wH33DDDX1QiqXp9cyTf/ubY8+SaQ73wRA2rqPqhUtuzSHAgB9KyWc/+1nfV1vFlv2znOxK+8u2AvyT6T4Cwg/7F7/4RakQsmQ69ut+DIM3ZFIIB2/eppQlBBoiEDf27GGgwaJDYHco1YShAlUlWuORXuojILyKRt3utPPOFlcasDS3xLPwhwmjmBw6sMjCi3gHLs6b+pEk12YQYMkoJ7aiEC5ny7F8D2eEu8r1T37yE88jrqrALcZfNM3El2hyBGLM7G5OP36fQZFjjjnGCWJ/njnURAohgyYx/gnT7iEAhmDLvimWy1G/33fffTXMUMyhYdAKfxQSDkHRVoIa4vTSLQTIB7uT02cIOWCsxhj24M++fZb0srRXy9pxl4mf5ZbsxggIL2yuv6Fsr7POOvnsaxGsrGMinBtzHDo+SSEcInmtj6S3k9tX8fQkHbGM8bPVzuUel5nyN1qFdXsWrljoKNBhi2cISb/SV30WNrG/3OrRik52TOvPnWDXMEzBZGb+cVxV2uo7tKVbJFPpFvvHjIvnmA4n3hlxZ8nouOXHZZx6Wc8wiqnrKdhPZQHrkbXczeVtMq5q2iRMI3f5y+5KXArTClsKIcvhWI4rI7mx8xnCYT5D2KrOsPgTX/zs8UeYx37xs+TsEL4I24hW4eQvW+6d2V2h7YyP/OD3uh3/ztH7fANc7REbxceSUZ0G+PDDD3fEKw7UwmfF35ClyT9TmiJwTBc/N+TdBx7IwZLdjTbayBUSrhZyU5Qh6hloqKOo/+MZwj4Qb6aKP7LVw7LqVn1vJHvMz8MIBwvQLI9GvDtzl0JIPsTxzijSJ4WQk3hZxRCbVsslfrIVV/Ud93puom9kx2EaKl0F7jFtI349cYe/ZmdZNt02bVqHtrWUsScRDaKwSSEcRJnJBxB/ZPEzyay+10u6aMoPpfh469HKjU6UwtlD+7MIBohdymjyxM+xeLg38usOXRxmoD4zQ1hPIazKG5cJx6goG8JLnWnZcodP9Zl3uelZ/Hmv8pCf7Fg23PhV+SnemjDIXMgd86g+i594yj9+dxkrvGJ/njm1EmzH2Qzhn4rluOIlG4WQWSwuMHaFUB59YCOjpzXCj/f4B43oJBKzC8KodCvooMWUYQp33DhMhHB9YUzq7FdTLs/mNGyZoa12tpABGVEIyaNJkybaO+WovSx1R06lO8ZBcdWzq3ioXBFeyyv9ucBVMnGtA0bhFZ/84zDKK6cp8kP0sgnHs/iJT3dteHHSKwoho/RcbdCBv9FwATcKIXnw+OOPN/V9dlcmhVOaseNn+av+0bsR+aPkVxgc5abn0i/i7YH7+A9yMEPI/Y7sYWPgj1TkKckfPpzxoQ9Ugf1KNkP4yKN/raXppswqbwquMlViQ/QVfErMzV304C5eopct3ryLHh7uX9RnPJd8izj1jp9MzIM4W2WQi1OMwXeDDTaoYau88CWjxQzhsxWFsCZAd1+K9CCLfjGrGAfceZeb7Bgz3Bxvs+Ue89NzDZ8Gdb74y1b84tFTG4VwmNU9nzSFcFpbm7OrkavApqfxDJbwSSEcBDlZ/Zj4WPWh4ucfb5ROfRD1bJGJp2y5d2aLX2c0A8Gvigcy4ebunVQQHdJntHLrCk4DAYNSBktDoxnCkiZ6ACOlWc5Ku2zcYzrH1dzicN7RLbAWrcJhY5xe+ZI7+V/R41+PdxmW/LHw8bueUUwkr/jJL/52cNO7/D0cvAv55Y5dNZwaGoaFbDlmCBsohJrF4lAZRvQxSleVXyvfkV9pU1rqxVv6RZghh9yrtnhWeVXfW5mWerzocKEQzmXH6bNktM06BJJV9LxLIdx770nmTHnhZ2Wrkl6FadaO49IzdhWH2A/e/m50sXschufYz+Up6OUuPrzHYXGP3/k+oInpYn/n3c0/8KQ877DDDt4hPuKIIzpyMhpmCFkuh9LCksU+MRavjNIuG3dhLDv24xmjcu4v9gf3+Cd37DJ8FG/s3/LnQhbw55RXFJIahZAkIIsphE8WddSKLVIIhYuw8LQRl/3k52UMNxejtqyLXmVTNNhx2YS/+MU0cbw8l+HsWe+y4RefeBvz8YAt+PPrX//ayvZw38vp/ImTQSd74fezn//Ml4xyPUu9QavuiiBsZNfwMSyEJbZouAIGE+OjcKLRu2iw9YwfdHrHVjz4OW0Fc3czOjcVXrlj1/4qbkJJIfzUuutkT9k9qJiqPO6Y/jgCw/hrlUUygwQBstMaVhR9TxHP9oEEG6GdaQqhkyGcTPwst9K2eJz/iBEeZ1fiK3n08YOwqUaL7DF+naVbdPCIn6s8B/o7stvJfsH2NwRbMhRstipYw1RfbMpUgZF14oLd8xNsj1CwBiDYHVZhwQUXDPPOO2+H8qbyR1yYD95/P7z62mvBDjwI1uiHUfPMExZaaCHnQTkVXVUI3OFlF/cGOz0vvGcyLGBxzj/ffMFmgYIdjENmBGKh9NqSnA7l3g65cLlt5iKMGjUq2FUPYf7553c6+KsMwIe0Yko3e4aGNNsl28Fm9cKYMWPchk7heZYxhTAsN25cWHa5ZcOUy6eE1etga4fKhEmTJoX5LB2P/vWvYT6Tpy8NcutnMwqePvLXDjoIdhy95+lww8JGWkt8wYd3a+EdH7CyvWDhheefD2+ZbY2ulwewpWwIG9l9kT7KwZQrpoQ9dt8jjBk9OkydOjUsvvjiNVEjz9lnnx0mT54c9txzj2DXVLi/deAKu70erAk4kxel0/EBNzO4gRHl3jrqXm7IcxsIKMsp5T/+XlT2sHHHRiLSRjlsa2sLowzf0UU5JD7ygrhU5/Nss3BlvLY82csaeWN7l8o8LVNKHPZrheFbtZnXMGXKFeHYY48NRx11VDtvkwtZ33vvvWCnAIYH//hg+PNf/hzsRNh2mlYI0YAHuPDDgBVl1mboHSc76MbLN3mzkNUxXrdEmMT5Ih7wee655wJ1C3iDr+0NdtvzrYW4EldnBpnIwZetvrPrDoJdJxTuvfeesI7V8wa65/kwkm4yPfrYo2GllVcKK660crjCvpcVV1jRWXenBHi8xhNbz/D5wNoIyjz1L+60Ewta3Usd4/WK0ajsErm+AZ7JF8JRNxGW+kTtBf7mmNf5Ubwq+7RNr1i84EA5I07qV/IlNpJVduzXk2f42YX0Yeuttw42UxvuvusulxXcc5OFSy+9LOy9117BDr4Kdu1KsMPFehJlTVjVP8KWckm7DZaUafKBNpA6QZgjM8YlNDnBkO8YemjwHzly5P+3dyfwviVVfeh3N7dBRiGoyNgDY0MAgYCJCTIaQBrBfISG7g4NLc0QASEKiiIQBIwQJo0xTLaAEAUDiDJK00wBBEkCCBg196CBJ+8FIipT0+B561t7//ap87//c8dzb+TeXff+T+1dtdaqVauqVtWqabdwcHmmS9BpumMqk0anaNB7f1vp/lXpLPjSVAZXrj60uansdkPvoB86r3vd64Yfuf/9h9vf4Q7Db1U/e+qpN6h8RfaqzhbsyMiJ/XcxCI+D8t9WqauCGwh/vZTfe9/3vuGvqwFSPhpIBhQ7ZVn89WrgVAdwW+NHl7KNwl6HB2dj797hI//1v7ZoCv6fVud+zepI/145eSkZ9K62Jw110UcL0oHc6pa3HGolYfhqDYbrtrs26O/h83zKnlOG617vuk1xMwjIIB1QYL4V/NSb+jTCUN9pG84888zh1a9+9XDrW996X/Yn+cGpcz4NjozqXFarW1f/9qsPN7zRDYf73ve+Q11iMNSHqAdGRC9zuAyk//irvzr8r898ZqjrzptCZkieccYZw73uda/hB+t3BYMEuAU/dk0jO3urnr3sZS8b+OjoqHSeyuBud7vr8IM/eO/WySRfvW/wXDdODvXh32ZM4lunNOLebaibENsgQ0qtllT66UQjDDzp2C666KLhxS968XCb2952+Lf/9heG2uo5l3/ShOO5towONzvzZs0o3MkgZIQ/rAYEjAN1cnWwkvSPhq/ucp+p8qjZ1CYfAzfyMhi+9rW/e7j73X9geMADHtAGYm1gPDEif37qfm07rg73t9rgsma5GwTjyyCnLmtpbWvPKac0+HTWE5mj5qk7vUH47ne/e5/BFv57g1D9GqvekRlF6Mpn6hAD+/Wvf/1QH2cf/vIvPzd85rOfaYYCGZmAOfecc2rS4MajLsGAX1zRqvnzRk+oZwPk+q7f8PJff/lwxzvecfjFZ//iWH8rTr7B4eHrl1021BmmwcCoLqwY/qImMgyIlW1t0ywj+KHDGaefPg+oJXnY5VPpbeO7aBl8muyQ/jOe8Yzhp3/6pyWxLY0YhHXGdqhLrXaekGqYu/MnOjvlZMBbt3AOtX2vtQUD5vo2ZdX/a4/lc+65TT+u8t5kVfmu1YehVvpbO6jr7YcvfelLbUJEf3LWWfcpo+x+w+WqnazKZ3dysy+V5EtbppNrdbAZhf/k+yaD8O/UpxHvjz7xieGWt7rlrhmETUb1Bw8S+dCHPjTUxVlD3fLYJjDIzEQT3XDBBRc0n6xT7+A13KIB14SZiQ/GNhj6sc67D/evgb6xCkcvBUfZev904bz4xS9pOulzn/tcM/avfe3rNKPgPve5z3CPe9yj9VPwmiiKdnsuf7ccem99y1uHs+5zVpv0eE8ZhM2NCbbH+jTO8LBqI7eoCdk3l3641rWutSvJRx5kpq9817ve1dohHfDZ6v+u+G1XHK58lSuXbr7V8ICzHzDctvoz5VBCmOspY5xu/6Vf+qU2eUSutVV9lrc06H8yVx5nnXXWXI7SFf6B939geN3rX9f6Qv2usQH9c+oNTh3OOfecNvZYTfdIBNCXYW8QvqYZhKceCenjH7eEt7jjQALV8GrsMS27V36+Wje35dtOVYvbGY5quG1bDn/dD9xDHvKQzerMZlo9zXVisq3DHvgrXP7yjWbNFrXPGKyD/fsSljzVakC7zCPyed7zntfy7RzXT/7kT+4oK/Cl1Dave53rte/buAihBjV/X7J30HxEDgd7hlBZV4fWbgQsZd/Ku1ZS2icrvPspf1vD0M4PQ56rQ2pnuapT2SZbeGTq6u1HP/rR87bJ6sTmvLzjHe/YvN1tb9vwwCb9lF11KJs/8zM/s7m65UW6NRBp35jr8eDjI+3gLne5y6bvcVUH2NLkw8178lCDknYmCi3fNipDauax5bfD824LXPWQ+98yWreM5gxhDaAJa6Z5tB+UaQ2W5psIexmRjXdlWjPc7TtO4SdyUUaus7/BDW7QLg5JucBNud7whjfcLEO8yVJ6x8qRYs4QulRm3ZXuyihbRs8++wF1LfzXSvzj9nFxR+IiozLeNp/4xCc2WZLnKJtRB2s/3m1pLYN13rqVtEMjfHgX9/u///uNHhnf5c53abcTBibtpoyBdrPnt9X5JHApm5SLdMvg2dS21LmaRGy0k3boHay/Dk/e89mJtVtGi7gto7bL4edjta16HZ2D5eFQ4OgKaTmLiTf1fCybUbdFTykz9fv3fu/39tkOJz3f+nvgAx84lwcacP3g0mtPqP7kWJ8Pxps6YMtoTW9svu9972tbFIVzrS1W/um9sog2d2vLKNq2YSrXmmBsuo0c/FIHRzmf3L6/9+IXv7h9bif1Nry5jIXu6OsuvJRRTSRups9uaU66RZle/I6LN0877bRtuKGDD/13TVBs0repb2lbaO2WQ1O9kead6vMfnPTahTKe69e2jBY/2gBdvNtOes7vlhHe+Ohl6BlvNTG1+ZY3v2XkrXiO3lFnf/EXf7HJa9/y29Ip4p75zGe2thT+pVuTbZvKKemkDFIPyjBst6xuK/vCOxKX8kRj3ZbRI6F9vOOaEVnccSYBjdlh/lzlrfGlMTe/Ogf+6g/ceeed1w75t0alYfaNM8/xS27gXNuu00OPYejWsr5RbqMxyfpA8btVJH06q8816zV3UDrMf/fvntP4pgRdhNDLapZhwc3PNZiDd5Mb32Tz3//7f986/D4NeVh9X83X/uL7uP55lcbhvqPp52yJPLllbqebMKWxd+/ezVrJa3JhwNRsYOtoXvCCF9SFHD+6WVurGp3awrb51re+dR7cwvVR2JqRbbiXL+OtVgM3/+0v/ELVnf+wWbOjm7VS13BrC0t1EK+cDWx12XcSdVjKQ7q1Bap1Pjqqc885d1OnohwMfF/+8l9v9VeaXM38bz75yU9uHZo83uiGN2pGJyPgx3/8x9vNqjorA4Ravdg0gI2spW3QaGBjYOWTHLWSNw/0DLRiEPYd2pjy+Lfd4FeDrf2dIcwtoy6VMRlTDPQkjuqzAVGt/jXZk4MLKGpb3+aLXvQfN59at0Le5ntuM3fmDO7GX3FkMCnPJgh89J388U8+BgE+Qu6D5OSq3JRZZHVUM9QRJ8XeIPzsZz/bxY6PyjoGoUtlaig7/cYySF3YB/EgAxgbBrzaBPn6HuJjHv2YJiPy9W2yGCJktLGxsUW5eEv6fPWR3LXR6HayrRX5Vj/BBF69NRi/xrd/eyub008/fa73Pv/gI9kmUbQJ7dLlR3HS2S2nH8oZwtoyuo1s+P1aXSpD98jLJz7xiW0wR/tF+aiv6ilZ1A6Zzcc//vEV9qubz372szdrJalNGqrfd65bIlfrkAmiRz3qUU2Wypcs6SU0H/OYxzR6wmv1vxkGmbA62vlCn3xrpXPz+7//+1vetp8hrPrtf5W1T33spkGo/vi9/e1v35Z/RvMvlM73M8FEl5O5yZBLasIoDt/vefd7Nm9w/ZpkqvjaIrp5zjnnbD7rWc9qP/qqVglbfWHkvPGNbxz7i6mNMHCbEVy4ylX+1b1fLKPIhHftDGl09SlveMMbkmzz0362BR7BC3q1DbTxio/o9hJ9iX/898r67ITxk4uVdvMMIbbV79pJ0NInSxMbj/6xH9t8znOe0/Q7PZC6Tze51GmWQfGu/T7ykY9sfR55PehBD2p9/fnnn79Zq7ut737IQx66WVte2+c10g9K1/d11X0/39gF99znPrdNUhk7+NSGNs9w9/3RhltphkZkdQTin28ZvcM/Hi+VmfMWopXe4rYksBiEW7L41n9Sueun0ru57UfqML/b9SgagzbKoLatNGVIOWiQtU2ydcbizcZR1nU2q8libpiTZNBtg5IpjbxbaTMY1/ApNo1bXPA9x7XnFfw+vimBik862/A6PjzuSL/i+nQmtH08BiGFlJ+BITwGIWVnECBPUaRm8HReOvcMdOGK10HV9oQx3S4l9JK/PIdvYH1cQyt4LvnXYXOBay+79Cc031/XkcuDDmH1O4RJCs8GkuRxxSpjHazBEMWPDsNLx5PZQINAgxFxfr/+678+TxoYKBlYZYZep9PqUNFF/8EPfnAb4JIBQ+wRj3hE48+nGfCQTlM8g6a2+TWDEa7OZWNjY5ZXbYdtbUD+1G+DFOUrbW3kbW97exn0N25lrWz7jzeL/7Vf+7W2WqwjrC01c11R7ne76922DRCT18ismBg/TF98HcggzAohg/RYune/693zgMBg1mAq5UK+db50s7YTN/l/53d856bVcE5elYOBGrkbtCn/2qLe4tQXn3kwcCD7K1XZZQb6WOVPSzoUg/CCCx5avHcGYeXxcB35cNoIQ4KM6vzS5jsvfuc8cURGvk1pUEZGBk1WE3qXOhVfe3jc4x436x94VretUnFJ1wfJTbpIl2763d/93c0vVRvlpLt37962qkXH0We1nbrF+YOGsj9Sh47PTtRWssaHFYSedng14ZJLZXwT71g6dZjRR44mNOgp+gFvqcN1vrTFM6ANcmdXMPRDDBuTqRule9J+0EHPJJdyMFlyLNu3PKgv+xiEFd4cr37jLobdXSGU7r8seVglNeFhwlR/QKbqlpUwq7Lkrg7S8akP2gzjUTjZPu95z21yg8up6z//8z/f4uhhsMoRPtkzxlMmVqfprPRTtRV+81d+5VeaHkdf3aTnU9/DQ0tol/5kNd8K4ZxO0Z7Ev/kKO6xq/LTbBiF50S/okrPJ3Nq23mRhBRcvdk3YlZPJIRO7djuRg59yGtvHyZv/+l//603yI0sw/Py8S6/Jr/AYlneq/ErXZK9JT+1cmuCUl/LPOMpkGBri/ZL+kRbBa17z2tb2+ltGj5Tm8Yy/GITHUem2xlj54Wt0ZvM1YD+DbltGzIBSojooH2LWYQeGrxPTIDlK3coOpcGnONc1VJ0ehYYm5W+Wt/Ey8cFYyM8AntKelUdLabPxQIlsbGxsbVktfC5KAq488dGTBiVDuRhIBBdtLnJoL9Of5E0cQ6LfFmRmVzgZ6KBi7FFqbgqLrKTj20EUbWDk3ba0umykpSSd5BG/ZGgWfm8NxGxhrLNoPVuYneWeCLzExTDM+5H6aId+ndNoitssvdnidU79MTMrnyYP8gHpmU7R+2IZMxQ7GINM+QzfOhodsFlGA4OUQ0urcMnnrLPu3fhgmHgnEzLzDSFlwCBrKwgV3jvlZUueuqc83Nqpc+GUE36EWylM3RCXMjJbmnK0MsDJlzL6R7e73VRHRhoNrvKBH4ZSVgxS1sGNbNuH6WuF8CY32/mzE7ll1Gw32XDb5NNCjs6fzB4bEBjc9vKRItlaGRRvkPW2WvlVLvJn5daWQ7J4+MMf3mDDJf79rCDW2ZiGayDGRTaBPVp+cdkMwjon0yZytM3Ux6SJl6wQnn32/YtnumMckATmsPxJRgaj2oI6+FM/9VNNvn3ZevbxZPXK4MgkFddkVDQCG75dYa8sTPT9WBkq8O5+97s3Xd3LVV6vc+1xVd0Mv3KdaU106TR8KT+rLxkk9nQOK+8TEjr6kKwQGgCuc/qV2xi0Vruyon5MXPHG6TfoF3L04XAfBo+cwodJEcYiOZmQkq/A3POe92y4dH9dqBSUBgNOvyn/jHKrItEXM+BRfJB+XahSq2XjzoxtK4TSrRtGud3eMirdjY2NtgWSzMh3Nd+Nt+ov0ofWWcDWv6qnH/7wh5sRDZfB9vlpsgOv8DhyjexN9NFF4kxInX322a1em/xmjCmr6DUw6qS+TJmb5NL/hS7agfW8G+533vA7re4wzJMO3SQnfq945SuafvQd4Nbv7UaiRUO+GYBWRPWNVr5NSLS6W3IILxt797YPt5MHWWbSDxtuyXY0QpydQNFDYTE08h5Zm3g1wUVX1TnlZsS3dCdAeMYHaNNB2pcy5Fb5m1AOyQtfdGvdgbHZ3zKauEMieIIALwbhcVDQO1Xw1XCrPwxCilbnaxC36ihDM4Zm4My8URAGfRQ2hWL7A2OMQ9/Plqgs/9u+98lp2w9jzYwqY4DxabaOEWaQydkq9KHqbG1R02nZIsIo0YGiuVGdSpSzAT7D89xzz23bWm1TtXXqsbXaRJFaobTaafDKaICX/PMpmfAbxfTCF75wlgV5NIVXsPjLygZZUYZzp1HxcdKn9MTDdx7IbKaBlbTM0r/85S9vRpLVJ4qZ4jPwsD3RalRmJxnjZGWvP9lbMcusZ/IRvpP+kfg9zRiEqx+m7+nrGO5UM35W6ZRltg6CiVzlwTZBsmBoU/gV2eqL86zqiPLrywK+d7PCVjTIUl3TKaFrEsN2N+GP6IyO8N/wS94Gytf6rrEsDLwZczqvlKOVy7mjK7rhmS88uDqv1B1l85SnPKVtH9YWbE99YA02lCF+DEjmgc5EM2UU+lbLD3SGMOdstLNMdPT5k8ej4cjHFh71ljHivEVLt/KSdqectU/xVvkueeclY4ddDMHV4YvLgEx5NzfJo26UbauMDMONas/cschbS6eGW1khZECtO5+DlxiEF174sEKjJ0yIjfk4XF5TD5StFSLtJjKKjPEIjk7VZgyM6I+Ez2lPsvzIRz7StkfTI694xSuaLqWfrEDSNb2zZRucNufsLlr5BU66BopoPP3pT0/w3D7ngCN4MBl2/2n7vTNbkQuSyZ92FsMg7f4IkjxoVPVfmdgZQfYmovAbl8Ev/ZhVvqc99WmJbrjKFa6+RH6iO5I3/Rajk2FCF8jr0XZ9OZtgMuhWxj5Mr1Y7v9Zcefoq/dhubhlFW3s3FiAbff6Y3piuOoBHusVkBd70PfoY4baA2mmkbpqoiMzmfBWMvua8c89r9K1AyVsht37EB97RNB5g/MHj4nuuS24aDDgTYYkjj9106MqP/mK7QagcatKs4m0Z1U5vW59e0Q/ulnOPBPnR0eRJF835rDLglIU6/7gff1zrs036Meai/z0bAyrH17/u9S3cuE7/mon98Bva4o2ltA3jsro0Z9YpgZEuODuNjBXk3ypi9EPqSGgfkl8yTTr6tMtdrr5DOG0ZbXSm+uA5cIdE/zgGXgzC47BwVfLVnwZm+1xWCCnCh1/48H3gDB4MMMaBwtb2UvAGLZSvwQNFy0nnJS95SdtGCMbg8OO1TYFR9dKXvmQ8GzYNdmw9+MOa/WuXFxQ/rymlbPaQsgl9itM7Ombx/mdtYUs6tkqJx8dNb3LTtkLTcOsdfosr3wdg07nAjZLpZVKMt7OPc9o1KDbABaOjYhgkDl2zxD2+wYJ3yk580rYdkjI1QMNvtq6IN0uMZn5W2i5+x8Utf2amnSeSN3kxSMm5np7/BrwLf/DO8dsZwkpXp2yLyTpnYCGvFP3FF188dxiBJQ8yykF+AzwyCO9Won75l3+54cIRHh7I6+K62MKWZnJyftN2Q85AysoZmf3ET/wEhlt4/wetd13yrmack9+9733vVj91OOoyeTIIDCySZvDh2vaizoDTaRtspHzRUB90mmZXGelmoMGiHYMwdJPfvCvDum71oLaMymc/IA2PR9N3oYjOmHwZz8rZIKX9SjZ/8qd/snkvWxor/jvLEK7PAkyDym9u3u+H79eMXdtxyPYLVd5WeAwGP1iTHVb8yYuLPHZ7wLU/2agpv/ma32ofps+lMqvw+IpB+NCHPqSi1cvxtwp7KO/JL4PDqrMzmRmciovhIOyxj31sq/d0hRXt3oWOenb/+/9I08sXXnhhWzWx4qoeOkMYg7DBF32Xszifa6te2qG40FPPGPqZDHjJS17ckg1M4HpeDudZOvkwfTM6i4diYhspdceWUW3/WJ4hlEd6xs4E9Z/uotuy5ROf+DdoFW9grXyiu57//Oe3cIa3Og/Papt+9pJLLmkTTVayhMftllxDbyc/5ag9Rwe+//0MwqkOKAIrhPWfwbpbBmHSfe9739cutdPuTHwm33zy87Py5yyhOmzCsK3OVl9A56sPdmAY0K/KDw35MkmnXEwYmixB04SCdzRthaTbwWtv4jk+AzJGvgnExIH12y2HVt0s3Oq2voVrabSSaOJvK4RH4wyhdmXnDBkxzmxHzyRH+OAz7rTNU8oAN+7ST0cG6ju9ZOKbcXhJ1WuT9XbVMOD0+cqi5WmSm3RjiErXDpjE88mar0xe8ILnz+lmS3lg8HakLiuE2wzCIyV6HOMvBuFxXLgta9XwNDDO4OT617t+U06UhJW7NvCtBqpx6vzcWGeQQKFSDow4Zx8oBDg6bbM+/fYyM4DOlYk3uDTjaDYql32g5ZC37XNRSJ51FqF5+mmntwEpJY+GdMwcGXxTMJwBjHD04DFaKVnbSpxhYgyIF05hRfE05OlPZOGVkYJO6Jnl5RizBl1NDhNN5+y4dBzxwepYkrYOziCDojSAQNuPDM1KumzjjNPPmNN0/oczaCMj/PsxFvvLeXq+G8KR/pkUMzJ4bWmWQajs1jn1w9lSBpJnDk+Mp42NjXaLJKOKPG2Rc2YpMgIHT+cMV7if+magW9dyt0ELXEaz1dFs+WRYOPtAvla04XDwIxPP9a2ntv2HrMnUapC0xstqtj4KXEgYH/PgeXL3qe1cZGBQyIjp8wheGpwBvFVO6civi1LwkXrd6E80eX9S9dwK4U3KwN/pw/TqhU5Xe2mr7z29jtbReDQYsOIrP9odGV9cFzz8t//+3zbf8773bp79oAduXr7Cfdz9Wb9Qs/Vf++rmN8i+/t32H92u5e3Ha+KDblHHrYRb6TTx5AIfqy7qgjbc5CRv9TsWTipZIcRX28K8kjZeYhCec86DqtwN3pX1kfGYPKpH6nLOZcs3WdARVozsCNBe6Dqr69ky1urbxKsysp1d+ZCtLXXqG2NPm7FldPUMoXTT5tRJ73SVdOkV9KLT4TNkuPA91+cWenB/gttD0w92fKhfVtvXOfLI+dw/Kpng91g4/JKLiS59HVkynpw7YpgyZAxStc09VT76mbaCM/H3Y3U5B71kx4cbYul2E2Hqvl0E9LwJTzdh0kfSWyejo5LXiUf6qk00lvzHW0a13Kmcpy2ju2kQJi8m0RjD2py63+dd3VK/7Q5Sp9UNu0OiY9VT7QA+OgnnR34MQGf66Ww7SvbW6mJFbl5SBktWJrNqi6eGN8kEnF1QZ5ZOhu94SHgEq07spqP/pOPCrrhWBvWiNH7jVb/RDDZ9vjzvlqM3TOAyNsnZDqR17Vqf44I19d/vKT/3lFnm8JUPHYV/O2m0B4aeMDetk18mkk32M+CNCcFpV/rzXqapC9q9Ldh0n3QZr+ASn7I+ZHlU+abO9CuEG3YslTtsuofMyLcewmIQfuuV2cFzHAUIo54N2nRWGh8F5XY0Lo3HdkuNX5zZIjPQBhWcmTedJVwwZvCswnH9llG36dkaZGCNDuOMkdcrOkre7F34MBjQKXEaq62hjCn4FI+tTcIdapZ2eDSzblZRHJjeAHMRQK+EJuLNyx8DKh166MkvWjokxrL0E9c604qLi8x0uLaogJUfndPGxkZTiMmfPNSHgdtMHKPIFhIDBz+z5xS3AYMzJpQsA5PyJTP8HE2Hvrzh/x+WQbjTGcKeBzh+tlIZ7Cm/lJdVPkqYW8t74ZGdwZZLGBj0wWUM6kjUuaShXrhRkSxtJ1aHEycNZcxI1CmlY7nT99+pGXXkaqJA3s6v1a/gha/UD52k2+fUBYOJ1cF14PFtldBFKuqFgbQB9qoLPH/cMnrgW0Z1ngaR6t6xdHg0w+vSnMjvctVmr3HNf7B5uT31eZCS+1WqPr64OnWrhuNApsrw7765+d3XubaPUG3+0H1/aDYuDDzkxQ89spcvbdoWcelFPkc7n/hlEDJmTT5ltbJPFy8xCB924Y9WFGPQb3fa3eqKqLO4Lu5iKDNSycdPO8puiOiWyOndtWuDPnU7rxt4I8OsUN39bndvq7NJSzwawZdfgz5GIF2sD4heo9O1sbQFsD2e9yNxMQjlsd+W2mgWn1wMQjzpZ4qBFn4s/sirrXVWRQxeUx5XK12kDuOJ7mEM9n0Y+dIp4MnT5JBn/Wbqf/oj+LZGfmYXB/sHIxt5M9GY3Q85Qzjjlpj/rozC3b5lFP25Dq2UpXCy27t3b+vvyFf/mPPFrewnnEajew6uOkVfkzfZuh1cv8q5NRQ9urxfmRLXtwm7F/JZLruBjqbefd3r/nOrR8ohjiYd/219dsKYaje3jDLMfBLMeMI4zGTfut0CZJFttuSZc7J0Qpv0qDJK3UaLLnUXQJPzFEeWjGxlBM8YJ4b5BRdc0HSvuFamkxA2Njbm87v4e8ITnjBP/je4qewjs8Pxs0L4vTUu+/Sf72sQ9vwcDv3jDWcxCI+3El2TnzTEtkJYWz4zGLAKljjKw8pKDCTbkAyo02DEX3TRRfMA23k/Ro54M0BmodJ5piP1TsnZQpMBB3irgwZD4v0MFBgI+Tn/coub32JS+A7yP7Vm2b9WWwYZhOMA6kpXumLN4jpnNg7eLrvs62WwutVqNOIoecZacxRLlEv8inAOkQLEA4X3vOeNW0Z1Ds1AaPyN8fMZwsi36MiLi1Ry6BoNBo7ZdkZR8ifcdkxbSClotHz7zyw0WAaQQZGVOttl/HTeDOfIf+Y/6e+Sjz5+8HrzM29WgwMrhJ28unRmXkAUnnN7BlFZHZZPg3+KfaOUPZiGM/medcrqwn/6T69uqx06GHjS18GYqTQoBONnAG0brnhlpVxth2MEKicrdLaduMExdBjTwtVZZwfhOr+6zYW3KS/oglN3GQ497z2eOsUglJYOPltGA9Py66Xoc//jELaMkt2xvIUQfwZS2l22X8kXOSvXk06udqFcSib14eLND1c7vqzKRM7ICL+2moHZc8qeNmHkhr83/s4bZy1ofgAAQABJREFU29Y6Z3yUL7ky5tVv5e93LBw+s0JoELOT8R6D8CEPOb+KbXcMwtSD+MlvJn7UM8ZD6rXtcb9Tg9l+RQQOObuF1ArVhQ+7sNX50DShpbysAJkY4xLHOGzPUz03iLYFX7oxfJQz/Ww3h3pnYgROP3BuRA/zD1raKWNKWs5GC2s/vLaatNn0n8+b1Le6Nz/BIDyGjo5xAY9PTLQ6X3VVmTDm8Jz2YPLOpEbO+DIi2+2wZXiA8bPi+jNPelK7JIhuNDGa84kmSqw2Kt9j5ciZvsqW0ZwhHDVTcVHxto1aMd6tLaPJm7Tj+vbuOfqGvMlYvaSv19W7ub4UPX2klcHcbKycHA/Yu3dvq1PSe9PvvWkeo9jS2PMhPu8bG6MxgoZdSK3+VxqJB7tbTn+ufmTLKLqkk1/OEFrxXDdpddh8VAL/oyZ7bn2r8ZZRutinNz5XOoUstc1PfPITmxfU5PeeNgHv7P+euofhZ1vfS6eYuCIjE9XGLxfXlupPfuoTtSL40TZ5a3U8beTxFY8uF/mKM9Fr2zX9q/20dGvs406KftIE/a9Un97Xl8PJe1+Gbn5Xx763zhB++tMbI7mjVM6Hw+vfN5zFIPz7ViK7zE9rHNUAuGYQTltGNdRHPPwRNGRTghSRlR4GoQaU2dw0Lr6tSjo4CsIAnMI1oLyoDMVs/YhySGdq9tRtdhp5FD5Dsu98daT2/fs5wAxnK36oMzaPrq2Jf7X55J/72eJNh21L5c1rW0ndYlkDOD9bvc4990EtLkrebBiXPPTPwhiyVjHA49vWHjwyNGx/i3Es/pJLLtlGJ3mxuhKjQ56t8hn0UX65YCUycesZWMYw49uMfQyK0DNAiQvf/Dwnbjd8aXIfLoMQ77e4xZm1ZdRNX2N9aZHeKv3ehZ+NjY1mVBtQm1XMioeyM0i17afhdvjepWt12YU7zpnaCnyHO4xnSeFaNc3qM3jbUUw44NEqicEZo9MA05Zmg1z1z+o0Gd+pLr9Rnxna6pbyUxarLvkXHoOQUZoyabyvIDWDsFbT0LQaDDZwzS9++QlrZwgLdn+3jGbLqDOEmcQI/kryu/76ntrqps1lNe9e97xXG8iaLNGJZ3WB7K3UMuoY2iYyxno/DpoNDOgXceSqHmsHaKT+tw6/m2Ta9cysELSKGYNQ3exXeAJKzjEIz6kto9/8pvanXWyv84E/GL+Vf8kg9Wsuy0rLJJuzPC972cs2rfCdXYNhdZ58rQK+4hUvn+uP+vuT9UFzZWOSg8y5Rr9oWVWBd9e73HXbLX5Jr/cN1N40pfvLv/xLbUU9k3jqnXPg4PEcvg8mr/uDQc9AO1tGn/rUpzZw4aQbCcvnbBDaMnoMHT1hYjSrHfoeO1HU/+c+9981YyX9g/pOTrYAa6cGy+q2n8G2Gx192oP85FE/8sYyDK2moKH9HOszkviki/GYFcLIXQFYIbRCtFsGYepQK+OSwezq2c4LlyHR31aEyMQxCSuU9AWc+jP6E2LoqL/aDD0DDz6DvB1D6XB+r7ZnZhJK/95ortDy+umNjaa/yYVBasKE6/vfFnCEf6T/5je/uclfG+Zankr4pOOvD9Orf7aMpu9pgEf6pxK49GuXbr74RS+e6ynDzmVo2iKD7LZVJ03mXfXbrSKaBNlTW0af2uSg7mgHzlg6IkRGGW/Rk1+r4wOM++/6zvEGXmdp20VyxbdxoYkm+omM9dG2BevrbQ11eze9ZwdPJl/oOv3Hkbq+zE3M48GEW9tWvEK8h12JOiFfF4PwBCj2KFuN1wBZA6VUzThzGoXlfucLnZsT7wxeXAYItr9le6RZH50jRe0sXjrU0EY/ysCnCLIND03bCcT7GeyAo+ApBu/xx7A9pbB/pGbAP1eK5CcLB+9m2/5ZbX8wK24AYyXprzYf/C/PmxWfFT4dcvbMNyVc+eSiBOyPx29+/RnCbElJPlZXCEPP2ZExL6PcGCpxBhsuqjELL1/Jq/TyPUiySWcUvMjbe3iNH5gj9Wd6JZNLytjFEyP74x/32YntckpawWn+JEtxCbeylyvc0bOVWMeQ+PjBSb30bqBkFbXJpmRl4JCBVRFog2gzqGRI3uBisOtUzMYzXoTreKwsKn/1VBjDMa7nA23uX/yLH250T73BqQ0XzDo4naTtlXgwIGmrTpFF+XPZTfjjDX77v1RGx6nDNHBsdTb0wvBR8uWlTVpUXrRBK7Hp0JOkMm07BwpGnm2l9vkVxn5uZhWeb3BGbvHlR7mCMRBklM3lmkSOkq9kGYQ+O+FSIe1xW5lWvPcYhI98ZE2QlT4x6NmpDVTEIbmsukUeST8+/UnXkj8ZmWRQd8nIhJsJEAMtxkbkZtCk7YRvhgk64v36Qe38rG5Ok03SZpjS30nXRF8/CYPObjh5yS2jtsqGrrKxpZfrDcI/+tixMwjxQsa2h9IRzirbPt8PStVfkxoZtNInf1Y7XMg7qydk2C68qrw0eU/5Imdw+TyIvlc5Hm0n3cjZhKU6pV+3QhiZt36xjEHuaGwZJYfUN/I0mUFvkhVZ0+MMEvoTr2kP+OmfxTH6TCpk0hnuox75qHmCp4c3tshEx6vqbF5zKY+uTpvYoo+0OccNtIe0lZ7eSODI/r65zrfL97xCWPyQvL/+/UadYZU344R+nHRkqY5ylCd1mI4ZDeVR/srAT/7t3nAJzHd/97XLSLtC9dsmh7aXA1705bj2G89aj/XniU94YqtfxoDtRuNJzo4I5KyyMkuaZOFnAUC8fs9Yz3gssl+tE9I/WBca4GMQGpdsbGwcLIkTFm4xCE+AotdA/Hx2wiUbUQQP+9G6Zr3COR23GUwKIkoyeOI10Le97e3zbKdZZdszhJu5ixLW0ClvP886IoNds+E6BjSt+NhfHj4cxrf6qDP2sy1E58XYes973t22hlJAP/uzP1M08Tds3rEMwr/8y/+n6Bm4fLNtKf2XZRCGf9uUdIbSw2NctlIJ7wdE8PozhPbbCwuPbXa1cBq9UrKUowFUZAbOoMF3xChhq5O2Im2UEjIDK09WxB760AvaSkCMGWk4/4hH8jE4Qttz+JZmc/GTmSP0G/2iafuqsrrpTW9cqzwfKapTehN96etUdN5+ZsiF5Rc+5duAx1ZC+bJN03ehbJOCZ/azXRbT4cJBBw0rJ5ndZXiQxewKxlknncb5dXbHlmYz384hOidgUKNDlY/zz39IS5MMbRVUB51xSH7DN9qewdl6hOebFny/6jenPz34rpctS2DXrRCix8U3ELKl8mA+TK9N2YJ8rBwjvO0KKP7MoKqnq7Lxrk2aLCJb5yZzttUFJ+TAIM+WReXJkTVcvrPK2ocBgzI8Vs4K4W/WDXe2vKoHtqUVU9uSx2MMKxNKdAmd0urKNshDe0neDfDUp35Lmrj2m2Sk/uUmTnKygwJOq5O1Y+P0005vusmNfyZKXILi53IjZWJVS7twaYRVWmUgPfll9HNJM+XT+Cu4du1/paEcXe4U2PawC39sD5M39PtLZZRCSuL/hkEo/2SRb2ySu3rQ5FLlwkVm+BuPENTEZQ1sHWkQl10FBruvfe1rG86E2OLrT6tvjE75V1b6nGPl8KgPpCulv22FsPFWnJSvTe7WCmGvY+WT/lcv6WZ6WB9Jb6vL+hQ84iE+nDaJUmXASOtvIjfGMLB37KI/C9dwJhrGDVmRZcijgT6XNo2+/tjOCHKhn/q+pvHSMHbhT6W9z6UyeC3S+WWF0GT7Z+moXXJ9W6dj3CjtW6AmoW0jpst9/orOUEbGad/2bVesSZLfbMylTPiRSZ7JMpNd+ge4ZJkbSgOPh/fWDbx2EJl8lK7yt1vEJLs+38q71UILC1yfxuGIImnDjUGorzYe4/r4/rlFnuB/FoPweK8AXWPW8A0eNFwdYL9CqGHktkGK2+BUR5EGY6Yz25fgG2AZhIu3nSCzd2Z6NHQrI+12yCkthuh73v2eBm+QYuuHDhIt2zOjkBls9pm7qt0MIsXhSm/pSD+8G+DbktZmOqsMzUYxFMT7eXYNfjqBItBKOvnx4rxTeCAPhql4HVU6+0avBkwXXXRRM2QZ1Tod77a7NHwDqvo5S2h/PqPHNe4UrllkW1GlTzkyvJ2fIy9pwkeL0WTgoBOzFdJWjWxxSx6Th5aRXfgjr35WjvFihfCjH53OEHb08U3pP/CBZ7fBnSvFg8vvOx7l7nIa9ORdWcNlRPmRX3OFlxlk7+jI7zhwOKl1GmTSpwNOB49mjFPPYJrRUnWMPHVy4HwDr53zqfpgkMBoAbvq0LL6qKxtp8k5oVU479KLQbh6hjC89nhtO1ZNYuxvy6hBD6PKCoK6x63js6e7G88GiOMtrCe12XvG7pwHcqqfuqcj1ZGTrY7VjL0yjzGJd/qhwU/yzcSL9udcaOr6TrfY7kZ+VmmMW0Zf2wxCW0abQbgCJL8xCOk/uw36FcIV8IN+jd5RF61Ou02UjiIjLuXLB2siKbrGKseflHHOSCdzgyWrhN9e2xJNmFil4htcR64GZLaDOaemLMz4277OCKNbU65JFw/SfeUrXzHTMSjkGszEZws4yD897aDY/TBuGT256baEk0JaIv6yZfRYrhCaeDOhRMbkmP4uZaes5Ml7f+mMs4ScVUFlpnwM+jnw/U9YzjGBVdeOhUtZ0FfjzeFb3yFs6StfK4Tl76ZBmLyRmbLX9/n4O/kaezy1tiru3bt3nBicgMH6hWc6x7uJ5hh3zqnrG513jG6JnJMmn266We0GIGsTEekf0JNXzrNjLMoNX/rbFl9x62g2pMP9U2mufnYCKZzkxyBk7O72GcI+L57JzfiDTOhCOyZM2GgHyok+oUeceQT//9b4ykqqXSJgQo9Pls2vfBgPmewz9rMLIHAtnwWnr9CXS9fOEunig5GadmU8lEuAlEUbG0jnMFz4gtobhNn90sf3z4eR1HGHshiEx12R7pChalwat1l9SpABwyCMItTADRAz00OhUlC2XVj1sZ2MAhUO3wfhzT5yDCsKTbjBoQ4GXVvhwDMwpWdmSKMUd1EZQTpi8WZYrQhRRNKzsiQt2yr5Vgo5BuJIb+t7ccI1agPpzETj49wyPsySt/hKb9XByaUMaOKl3zJ6fmdcijPYMnj2IyN8ZSABX/4pfo6isyIaumbAXGUexWhw2PJeMqFIlQslyYCUZ/JgGM1n8Irm0VRcVmetut78zJvWpxEYbFvKXn6Ulxlw+cb3858/Grg9T6lHJgPMvCoDA0GdgHKFR0aMXg6uX/CEOW/nllL1xZYghpmf1ZDHlVFhVjkdPHgODZ1VLoWQ7tumGXzxbrNV9wygzZDG9bybcFCecN1OO8cV7d4Jl74LWMDaAmQlJy54vX8wt4xmdtbAyaH6Y+VMEGXSxgqIvMUlD8rHSnguTrLaoF5y+X4e2W5sbGzJTWQnOzPS5GVwl0kOIEfbKb2cIcyW0dU05TMG4YXrbhnt8rGKu9M7mpFfDGntWT1ddYGzdYqM6AwTNHtr0Hzve/9g09eMQRN0BtT0hWd6/Er13PRI4WibtmBpByaksuJIHyeNpN2/z4Zo0fDpFnF9fHAO16eD6XN5y7l0tJRN+1V6/zcMQnmkj/VrZIg/A9/GW2RQPgeOPjdgBmslFb6VKnh0R4zEyK+XoX4FnDKK0d0IH+U/eLCS5uyaerW1Qlj5kjf/q33TA7u1QihL0iUzZ6Mz3rBt/JJLLml1M7KJHzG0vqBwhZsUIS9yu1H1J7Yirk5szPgTDjp0mMlmeNqJSWNuhm1v45iFTMDhs3ersH3coT6j5ft90tFfhHblcm4DDMJsGd3NW0bV3j/b+z83n14Gr6Ms737Xu9vYJHkILwy/e9fxB3Vb320soiwYU3Zy3b4m3+0iAh+c+Gjl8136dx+v5xicDHhHOYzfjIni0ucrqyxC6PfbuLHqTdw8EZ6Ag/R73jIZYyKzNwh7mIMke0KALQbhcVzMqfR8P4p/nHEbDTGH6SuiSSCwzryZgY4xoxPU4eXdLJBtkga6nMZthTAw4m1FQ88qjcFgBi1XKDo6VuEGvgahzsig7Ueh6AQ8U6CeHUBuqw+Vlu0OibtTXRzStgBMeaNw8n04uM4rNIN1im/M1p8mi+IZ31bx8Jv07bMXbzYrn51Aa90PTvJltfSiMnDx0Ga2Kh3bYhnUYOBLx4DNt6mCx/AjH8YsXhnMYBkwcPNtn5RN/OTlSP3QY8RJ9+a36G4ZXSHum1GMB3AuHsm2QfUHHcrbgNfKZurPU2s2WNkxmoTJt/NoVqI4eOkcwOlY1BGyNYgSbxDAuIdrUM94bulVXBwDxWotPNtVdWgF1KLf/KY3z+cOrdTohOBz0sbLuB1snJhg+BrMcHM6BR8c+Fkh1MnIW+Jm+AkXDTPWB/owvZlRdd0Axqp2EYR61J2V0dQ5Azb1YNWRhctIrF4qA8YwGXC/253XsQro5kUu8oB7SX3T0GSKOm0btxnplHkDPop/SDEG4Y1ufMN5y1CfJF5jEBqcZAt65aIHO6xn+X/yk5/c5KbdMCAyMIoMpK/+phzoh71797Y6SFYGtLad+qnXZJ9nE0voGvCrZwaTdBdHzyov8fKXdPuM+DD4fe5zVms3ysiODy7l18MezjM6f1t5UO7apm1j6rZw0s15Nm38du1Cs2Hz4x/92G6I/qDYVT7OOafPYZTjpbniEa+cnQVtsrHqsH7OdkNx5E2nm8DSH/W6BZ58Om+YsnVO0+TTsXLSx1O2jFrJIfm5Zstf/d/tS2X0BeqqFero5HeWHkidj2zw1z+3elFhdCp50hl0PoOKvAPf4zQC9Sdx+tKH17hG3fez8kUvJR4PDH9loW3YOeD+hDhwPZ8JP1wfPRMt8mJHSVzKgQToBQZh2zLaTTAG9nB9tD/xqU9u3ugmN26yMKbJLhl8NZkUkIvFvqsmI/FoR1ZWA/W1xijKkH7Pjh38NNzyGX7Z1XPNmvj+6PQdY5OIOTuu3812TbiF3Lx+h4odWTmKMoKMMA3wCP7stEIY/o+A9HGJuhiEx2WxjplS6aPcPDMIKcAs71s9ScPg++lAXlq3c9mSSUllWxJjzYDVqkC2ikoFDoVmJlpnabWAgpWuOI3e4W20xHvWMXHOVz21tjTpVMVRPpQ4I/FWtZ/eoKbfQmf7FTi0zLy3LaMT3wY8lIp4xpcbVBlZeKg/zW/PlW54awZI0ZI3NK0YgjEQYywLW/eLLMxEOpBuBmz+sO2UlsGGvDNSKUo4yR/5k5M02jalkhVF7aP2Sc+KzN69e5uc/Anvc8ARPvT08NlWCPdjEJJ1BnYGULZLKT+GXIw+8lSWypBhZ0WOgSz+/FpxFa4+mZXXKetgDMD+orYkwnVJCRizyraAKif4VjF03soWHfUPTfjo2PalzOGa0EiHRkQbG+NtcuGJ0U/W8NWPrCzq9NT5DA7Ixy/tp17aMwMyEw/qYH/mIzhg26/Sb9uxasvojWtgs9OH6a2kt5Wf6pRts+rL5giLeb/oZGBLIdmSj8kJBhwexFndMZhh+Ionf2egstL1p7Wia/bYQEKZKScTBdos3HfUyrDBAlz13az/Npnul7sjj1R2DMJ8h7BfzQ11/BwNgzBlaGXjtNNOazJweYOdAuqdeq/+mnnPLLk6SG81nVd8hQZe8xxfWPg2yZJtzvQOGIM5g2myl/5FNWHFgKGnpGvrtokQZe93Xukp4c2pv7vg8KEe5Dx5VgiFSyGp2Eo7bhk9afMT7cP0u5D4AUhEjuSfHQ0+pWS3C2Mm+sWknH5lz56xb7LaqX3E6Q/TNsjTlmjlp3zteLCrJbrfeU3967Fy8ii9dilUtVF6vsk95cuv/01H1Q6RM2tSiAHRYI6ASXXQFlqTgOqWWyoZBFZoNjY22nPvu/EzfblkDeLJjKFtxwY8ZUK3eNaOe3pWQTPhIW0rfm6+lLaJVWf0lYmJaFuxs01Yf6xMouObXzJJ3TgCEcyoaDWDsNp2DEJhkTG/bRmtsYaxkXzuljPh8v99/n9v3rsMc+fYjd+eXZMeZK1+qxt09G0r3ZMrnn43Kdj4K1wTT8Y49JI+3zb0vXv3zrK0KEBfidcGlBUdAh/tsZ8cdb/J4aRLJ+jfQ9uuKBMGSTf59364LrgxCNsto8X7qgvcaviJ+r4YhMdxybfKXo3KjJ1n+7Z958lgwM8KweqyPDgDPnG2Er7mt17TOkkzmwwANIpYoxfR6SDt7acgzDZmlhUtinpjY6MZozpXcJRFeKKodUi2SRm0WGGyxRAOpcVF2ZuNYgAwbCkm4ToATlo6CR3yJ2uFssVXPoQnPs/45xgGVjPxhS6FxekYdDqR06r/30t2eNZByXs6ErjSyA9vBn8GZ6973X9uF0MYxBkYk8OMW3i9nORPHvoLWEKbv9vu/f+FQXhSO0P4sY/te4ZQevKkXNLJ6zysGDqfYsChM9OJZ4Apn+pBZP7xkrFZ2QyeTEzYIquTZDRkVRENW00Y5Q230t2ouiANtBl+tpf88A/fr+HjAU38m4m32qI8slKrLhvk6dDg8xkxbiJ1QcFVr3rlhm9CA8/qY3iuhybqVr6jENoA1wohWmioAzN8wfSwwtWtA18qMxqEDGLpt6QqD8fCaee2MskPOdoiZHbehSYMQe/CxZthzmUOeCNbKyyMWYM3smVUw0UzlwsZePnAcWv3JZNeXkczj5VSXSozns/MltHVtL3HsLrwwocVb3Ql2W/pjcPhMekYINnZYCJEHXUOUP1T79X/617nem2iiHyF9ZNpobFT+vnshNVxeiZ1nt6hO50n1E7RZpCr70nX9tNMUCkzOq4yPpfNar+wEw8HCtdfWF3DA37SPkjXgFU6DMIzb3Zmm1j40//xJwciuSvxka3yMdCNLNRhKzXOHpPrDc+44axf2sVL07n65EOfSPfJn3bC+LYiZ9XWWerI3y4Sxmf6q13JxA5E5C3lp16YXFT3xhXCUe4NtQpBnVH2u71l9Cen85XSZYiQkZ9zxyZGyJjeP7P6BM/uESAb5fHzT//5ub3YLn2rW96q9R3g4Fp5Qsu784ImHKyQc8rFxIdJFuWhv7C7QXnQS/qg7EraaVdEI7SLf373jb/b5I+H5pRPPTjjzM93CG9TeTIm2S2HPnlc/M6LW99MHnQ12Vm9pQuu5QK4qe7+m6f9m22TqfiwxTnGtclqn8ag2/URLmDLRCzdYtzSxnWVprJk9NE76gBcOli6JlKz48RkokmVNtYrufQ66EjkkPbNINS28bexsXEkJE8I3MUgPM6LebUDSkNpHVo1wPjgWkeiUZYLXC+ehAUu743GhLMtbqKVNPh+4Sn4/NBIen2csLwnPv628I5OwlfTCw+NZvESF3i8gcl74tf5fT7Cf+Q4w08yyHvg0M/z7FfavYshnPg+bjeeQzdbRm9xi/WXyiQt8IxCA1kdC0Xrp1Mwg07p5wprsJGhTkJerBjqhLIKqoMKvhVFHfRTfu4pzXBImkWkPZptt/WE4Sg9eME3iDMI0wFx0vVL+RiUuoVRJ2Rg3vONF4M4W/sMnjKQaoS6P6HJqDHDzHDNd6OSzw58zvvevXvbYGvHW0aLz3yHkPFlVvZYOjIymDq/Vl51/GTjg+l8eSQv28zdxMf4bW4qE8+MfiuDVobBpkyUkcGwAYGVfYO0uHXyStxu+quXylhdWE3bewzCc855UCVPJ9BT29vi4fCV9uWiKSuxtmWSSeTkxkrP6i/jw6RbmwSqxFb5lP62sOKb3MnZ4GyuNxUeOPWZsWPyRTrSUz5wki5cF2wox77NHk5+1+GY2PHZCQM/N3rGadVjy646VAbhLf/hLdvA9FOf+KSMBuzo+VMaZBWjkJyUj7ofX1tQPi6bovuikzEWXWELKf1Dl5CrFY/ImZ48qwyRZowdi3x1EpM3+irb6a0QNiN8gvm7b1RdL1EzanfbIHRkgyxSz9S51DthjLLml7zJ2mqRVW4GkZWltBPyh9e/exYWed+ijETGSPQ93+SxCSxll7SVCVw/BoIt7ya10k4jutDJ+5H6zrSbMGBIca2dleDVcn9f/oqXNz71J/9rOp/dAHfpj3pqEtrkaZPdpAdSR/U7JuzaKm3BcngkB9ttTfpZaR3l7e4EeoseG78jyNA28Zn2AL/poKp/b3j9G5rhry9RDtJM/+tb1lbf6eVVB7/RWI04xHc3kEvT5Ga2rfZ0++dDJH1cgp8kV1VZF3ccSiBFWzM0DP9aqKi5oHJ5rsYwVGMZ+OJ6uAYTmUz4XsGUsmh47b3+tHQmGPQ4YaGbsBZeaRWRRidw/LhGq16C0/iYaIc/sOuehW1zqvYUtkoncKV12p4p6TUYEYUT2QRu1Qfrt45P4dxMc6I38we34r33+YCT9xlW4OQaf1N+EnYkfuj94R/+4XD7299+qDOEw3969W8OpfyL7IosKyTlWdtahne965Lhz//8L4ZaMRqqUx1qNWgog2uojn0488wzW95RSD6TVq1IDXVt+1ADlcL/8zped9JwjX/wD4Za9RtqBnWomfQmA/lKepFFDXqH2p471LmcSvcLw6Vfv3S42lWvNtzszJsNd7zjHYdTTz11xJ3kWwU0nJRyrXRqhn6oVe8BHXxc61rXGmqr41ArJMM//t7vbbxKd1sZKMtJ5vJQM5mN/1pBbjzXQHCo1cVWF6qjG9QnacbVivlw5s1vPtz4JjcearV9uHWTbWJHvy7aGWrwMpTBMNTZi6EuC5nlth1y99/kiavB2FAG9VAr5kMNyoavffVrw1WuepWhVpKGW9/61k1GNZhosol8yJds6ANyrYmFoYzGoYyaVvDXu/71hjpv3HCvfvWrj22q4GsgNLeb3c/RFkXp/PZ//u3hIec/ZLjB9a8/XHLJJa28tyBGPVUryENtdxoe+tCHDLVdfs7jujbQ4+7vOfUdjHpcKzHDB6r+1WrMUIbaUAZyqzd1SdVw2mmnDXe+850HMiLbWfdM8t0pnQ+XvN/7vvcW/ulDrVYPZXy0ergKr31/8IMfGD7/vz8//OXnPjdcverZNb/jO1pb026uec1rjq290ubm9FcJHeC9z3NAazKm1e26mGyo2xyHn3nSk8Z2NqUlRW3q+4uPMqyGOoM03LLq27Fwaavh+2Mf/ejwwT/44PCZz3y2yeqKV7riUJMhQ61wDWUQDjVw3qbT1f+x9QxNl6lfe/fuHWpL3FCD6SbXm9/8zCrbuwzXve5157JRxkfbJU94qev+h7oZutr3e4d/8n3fp9K35EcuTho+9cefKt1/89JTtxh++7dfO9RqbRd/aJyqO9+47LLh9W94w6CfkFd6kY7A0ymn7Kn6NY5FyIhO0X+QT60kDzWBMFx88cVNnvA4eGVMDGWMUzeFc4V6/nqVxeVaXVV///kP/MDwHVVOvVOv6vzhUBNew/+pNvfFqov0mfKsHSdDTQA02uhz+uvDrft9uv0z2rVldTjrrPtU//Z9VQ7vbWlODa6Bvuo3fmOoFdKhVtBa36JP2g2XfKElX/qimhQYPr3x6eGrX/tqKxP9dq3UDjVRO1y19D03iaOVHRrqyZ+UDN/+9rdVv/3F6j8/33TVd33ndwynn3H6UBPEQxl8DRcyvdvXcf18bQkdNjY2hjpTXHAnVVl9R+tXpHsNfUPhzOMllBR0hTV/pHxYf8sgHM4+++yhVveHWu1sY4SWp6kN9s+HlcDxhlQCWdxxLoFSBi2H8asjNIUzh7Xwep/jxUzxDWh6N2s0Pm7h92HB5+/3uaM9w0443tFs+BPcDDMx07+39OFMq2sNr+BCw3t4hJ7Zv8DFD4z3/Kbk1ntr4BqtLjy0e3+mXXBc0k0igW3vE63E7ao/pS89s9el1/Z7qYy0w1tkaDXDCoAVODOtiQ+f7b1Lx3tgzLTDM4PdthhPcH06PXxPS1pmk+HPt3J2tLelP/Hd07I9xTkGZ0rm8I7Pnof5uaPfeJnoiiePuRzR6WjZklz9336/Q5gzhLZYzltGJxroHwuH/8zwWjGxnRkvyVfk1Oe9hU1t1TM5wCHb1InGe8X1+KFxtPNVqY5nCGuV4CY3vUk7n7OatvesEF5wwUOLz3GFsApxZO9wy2EFr6U7yUH9U+/JqOmtCTa8KYc8b5NRByc+v3qY9R/4htvF5z31XttRVjP+tkS22vlK8GG9qgu5ZdRW8DjSnSTctovVRElbIfyjj9dNn9MH0wN7tPzkP37SoY/Uf+UTObW4Tv7eZ7xO1mQc3P3pl6R1VP3iyyqxlakaoM9nCFuaKYCCyU3Iu3GGcJbJlDHvXB/eh1XEtvgZrgsH08JX2kXTWT3clM5qePSSctF3cI2Hie4MP703gF384wyh/tXumLhR/DTUeIbQ6psttLt5hrARr7ZkJThy5dPRdIC+++vVD4eXsUV6owP528cn9NKlX7u0cL9UNHzfcZJjg+yelYlfuV7OVhv1LS3dabzQ4ie4PDfE4OblMP1+hTArkdJZTeswyR93aGYrFrdIYJHACSoBinHbltEdzhCeoOI54mz/Wd22ViuGmzeu8xb//aPOZ46dZN8h5ZMePk+ym2dIjpj5b3EChiSvqVtjr3yVK7eLQzY2NuaBSp81BqEtjeedd24NFLYGQz3M8nxgCfR1GrR3A8Cz6/ulBsRPqYsl5gmGis+zAeptb3PbZhC2S2UOnNQCcZASMPFw97vdfdsZwhm1yoezHZ+OukVtWfxkXQgntG0tneIb0PLnsCXggh36ZT5DOFEa5VzfAq3PKTEInYl0pvtYOjzkt/Uk5Fvf0T/57IQtwr1B+K2fu6OTg8UgPDpyXaguEviWkIBBmbMlbYWwzmK4MGdxRyaBDIz5Lh+qrTDtQH2u9e+pg/FtRmddnHE0c7u43ZOAS7HI1gUI/WCrldE04M0KoVsiy4qZE085zgHLwwElsCqzL1ohrEs/fHrlGc98xjj4nGQcWCtyLtSwSeyTf/SJA6axABxYAmRLt7sEyjlROshOEC5yz7ML1awgOsPtsrPF7Z4EyPr36rM9DMLaFt5kP8t/age+r8sgdNnLrq4Q7l42viUpkXNuGd3pUpm5LL4lc7j7TC8G4e7LdKG4SODvvwR0RlOHVGeMmkHoBjaH8xd3+BLQwaST4RtgGWy5ZTDfaEp8UsmH6RmEttOsxgdu8Q9NAuSYbzyS/7rPTqDoZmMTIi44gNPkXz63lEUTwyH/ITcGyV/XNj23QGoDT6sto7N8O9naZunbtgzCdZMmh5z4gtDkbKvk6pbRJpqpbhdQ6wPcbKv+u5xlMQh3v/L4jqJbmLNlNDol/mIQ7r7MQ9Ht7iZDdjIIA7f4owQWg3CpCYsETkAJZMAm6zEIXZMeo+UEFMmuZjkD342NjTbYagbh9OHvllAGZfXillE3ULqe3ZZRuAZziztyCZghtkLoBkkGYbYphjJZZ4XwAfUB9ZyjnH3l1JVV8BZ/Xwlsk1lFk60VwnyH8ElPetKWLCsu576tEPocAaNxMQj3levhhJA9Z8voP//n92grVD7t1DvyB+cj4s0gnFYIg9vDLs+HLwE3fDJKGIRk2+Q7lY8yYBDm1ur5JufDT+6Ex5xlXJLozxDmllECWur4+mqyGITr5bKELhI4ISRggGwrkS0tPhnRvkd2QuT86GRy1eDwXcy2ZfQmN91ubE8DAlzksxPLCuEul0nJ+JWvfOW4ZbS+gZXtWP1gwHMMQt9Cq5HCtgHbLnN0XJOLXPn5zSuEpV+e+9zntvwHzotnBuGtbzV+y28xCHevipCtLaM+6cDg871Z9bvXUZ7JXLwdIi7B6stn97g5cSll22JWCEkiZUDWr371q9qWUZMi+RbyiSut3cl56vBv/dZvtv7XZyd2+uzQ7qR4fFBZDMLjoxyXXCwSOCQJUJitUyrfNlGz81ZRrBYu7ggkUPLs3R/8wR802Tqf80cf//g8UDYwizNg8H1F34NitKQzS/ziH74EmkFY34LzUeT2LcRO7qH6ohe9qJXRAx7wgHnVaimDSOfQ/Ca3knEGvGR+7/rIuwmn5z33eWWQbNGLjBmEPp7uNt4PfPADPcgW8PJ0SBKIbH2f0mUm9PvqcYCUke8QRv+7cXRxuysBRwLI9x73uEcjnLLx4pn+971KE7J79+7d3cRPcGrO55uQNSnyF/WNR/Lu5X+Ci2ef7C8G4T4iWQIWCZwYEsi2xJxzq28BbtZ3/rYpzQwaSGQnRdqH57ltH1sz+C4iTbg7wSW9+OADu65U5rgern/u+M6WtlU6oTH7NWve3MRreIkPLrA9XOj2cRdffHGbfa9vHW7Wd6Am8FEGoeeD17aL2jZqhj4yCj1+YD3P9Cf+8h4fzKpT1uIDE38VznvidvL3B7OOHt5Dq8ddBxu4dX7C1tLo8ha68uyjyi5sIP99Zt8n+Rk0+FB2fU+rXckunV7eq+mt5aNPv38u5MAfcv2bMhJe4qMXmslr7yduFW5Ov8MPbI/vOeGrfkWsgrb3feAmGi7y+YG7/0AzCF/yohdvbcnt6DAIf+iHfqgZhL/zxt/ZdvEM4qGd57wfqTxm/LT3lbSk17ukKyzP/PY85Scybn6Xx5lO4OJLu4MLT/H7tGYa00PSDi9zfEfPNjkfFbcl0eUx0gqPScNA2SdvrnPt69Qq4n+Z637o9/zNaXVpzOnWwxzfPScdcDPNLl74quvhgp+wpBEfbns+BjxFFuGp+V266VPDK95yRtmlVQmPL/7Nb37zvK09+r/lp+JCD9w619NJuQYXfJ5X/dBKeA+bPArbls96Xwu/Eg4vcPFDx3vCVn140k74+Lp9vLAtrGu3fbhnjjxM9jEIfXpln0vFRrDlbyeBxSDshLE8LhI40SRAUTu34Mrrq13tapsve9lLN30jsHezEp+UdZT7amcVRR6fcg8senlOfHxxnvMeP+F8uAnvYcVxiUsaY+hWeOL5PUye+/iJ4OTt3CEBCL3gJ4zvu0vPetazWod01llntTNsDa546OHqo+6bNzzjhm2W2OAgtOLPsCsyEh+Y+I3wAf5k4LAK1tPon+f0J4TIrBJv6a/CrtLt32fYSQaJ63maYabIPq6lvZ9897jOTz3ykY/crA9cbz72sY9txh6SaPgFlkFeH6zePOOMMzZt8W2u0ujrd2DjB2YE7upZ0e1d4Ht/ll8B5rmPb/jks0M+A9vngYwSnvTz3stP3Bwujek9fEizf05873vm0AmtvMcXjk59iHvzZrU6e8rl9my++13vFt3cnEa9+Tbcox/96M2TL3fy5uMe/7jNy8qQj0saoYc/Lnnq0+9peg5ug5/w5ue880Oz80O30ThAmaLJHQxPDa5LpyHCrbA+zT684XTl28MGji/POZcZWbz1rW9txoYJEXo+4cEDb6LEgJnR+Gu/9muJmuUCR1vYB7fnqX9ekz8yTv4kkOfkpafdP/dwjbEV2pF5mIYbnP45cIkL/Lb3jrbw8NE/wwtO7+e5p0u26jZDkFHy9Kc/fcYF1+hXOlZuGeQ+O+RG0tDC8/yMt/r1+dgWt5VwexK3Gt/ep/A+fp2ek1Zc6OSdHz48B7+X11ocNCe6ie99z3mPbFpaKzjC4vCR9IXBz/vna3X8EY94RJP9wx/+8HZhW/AC278vz5ubi0G41IJFAiegBHrFq9N6znOe01ay7ne/+7WBQ4ufFLTn/CKq4K+Gt/gVBb5PxxYiK35o9sGr9NPp9DD7PE/89uGNNr4m3tBJevF7+Dyvi0tY/MDyEybPVgQNxPbs2bP5zGc+s32Au4dtz8WPD2Dn4o0LLrigfdh9plPxjdeil7zPcRXG5T3PeZ/zOOU54X1nHpxeLsKaKzw4+QkLjVVeWlxkGp6ndNEO3rq0V+OSXu/3aSdcGOc9/EgrYR+sSzRMdBiMveENb2gTHWATH39jY2Pznve8Z6v/T3va0+ZVwm2wE15wVnloRLs/wZ2D4OdXgXPZ1PM+sDPS+rhtaRfNOe8d3j6PXdqJa+kKn9xh87SORoX5MPsznvGMtvp6+9v9o3bjZb8fNPmQrssffC/yarVKboAcXjK4WyujSiPhvT/Lo+MreYwf+LzzhfXhM50xsgfd9tzjzBEdrZ7uWtgJaV1cjwtslaf5fSU9sCZEHvzgB7d6/YQnPGGeEEk6vf/CF76wtROr5F+oc4fctra6IsvglsC28bTK70hou1xbWP9noi0vodv8lTShJL5Hz3Pi+LNcJpzEBRbf+4TNkVsP+/A00YPfu9Ba9e24MdHqOED/2Y8ejv5/0IMe2OR/4YUXtnJr9KWRdOJP6Qe/56E9T3B9fP8cesL8IqfArPozH1NCq/F5j5zyPvO1wnfCt8GBmfgRfig8ge9p5ZneeN/73teOCpgQdE4/umTmYeo/8774i0G41IFFAiekBJripIgn95GPfKRdKuAsw8/93M/Nnz8AR5FG0QZ+23uvlKfnmX73HpxVP50B2jPeuueEdX49NpzQTGeySlN8fj1O8MAnPH7imt/HT8/SmtMrpH4A5XuCT3ziE9t2RbO/Vp5meumIOprOkZihv8Y1rrH50pe+dOY19OH6rb6v8up9NS+BER468dNJzrTx1MEFd45v5Lc64dABl3THx6261cI7msFJvfLe85H4mQ7cSWZz3EQPTGQSeDBua33gAx/YVgfvepe77nOhTOhI10ruC17wglZWp592ejvTc2ltYwTTOzz0aSUutLzP8R1/vTxDMzh5j+zynng0W9jEyz7Pie/84ITWOp5mOh2fCQve/nhqeerKRJo9PBpWp2yFVq9t3YpLWeed7+PojBHX859zzjmbGxsb2+oEmPDV+3lOvPeErT6D4XaML9zV+P49z8FfJ9dVmPDQcNBf4Q88F5ozXMIOgifyDC+RLSPjV37lV5rsr3Od62z69EFoJ62W7lSnbSe1tfSU2jrNeGRM9nBg4xK+kw+uj+uf19Ho4z2vvm/DWSePKWw13f69f96WxlSHK9E53f658dLHFaFt+Ek7voTKKY8/+9M/3bzLXe7SDL1zzz23XfAT3EZ3BG30fLxeO2E8XnTRRfOkVMo1eBNKq0eJa2Edj432xE/S6cPAhx5/G50uLnC938tGOAe/0Zv8MXQrDe8t/fFhfm5hndwajSkfB+RpBS/wScfZ2Yf96MOqPu/ZvM1tbrO5Ufqkd0mrD1ueF4NwqQOLBE5oCUSZE8Kzn/3szStc/vLtALytFi4b8I0wMBl08CnT4NkWk/gMmBMXnCjfGa7HnzoRdBrtKS04fVp5lkbi0Fv9JQ5c6IXHxDX+Jjr74wl+cJN+/ND33v8Ygs5kPuqRj2pytDroFsuWZuWJ8zz7FRa+3HJpNtPA4PnPf34blF1Wq7dWcHuepbeO79BJWvz8xOW5jw/v4v1sF058C5vklHjwnuMHdh3thIH33HAmnkKDfENb2q18k2bn97TQ6d89f/3SSxv9r3z5y22F6QfrIhM3J7q51Uwx1/iYcFvA9Af+Rg0Y3PJH/qeddtrmq171qrZyuy2t8DPlJzz0fvKV+sFPfOK8t3z2cpmeG49TOi3tid8mu4KJj0aeQ6vBd+mtppv04zc+JprbeJJm/XpeVmFXaSdt5eBipJe97GVN/i7TOP/88zcvrfDQIHbPHLw4Mr986Z/L1Yru2Wef3c7TqvtgGv3JT1poeF7NT2SeuPCa9Ffxgr+Kt5Nce7mEl/irtJNmcHqekt5qXGDi9zTX8RT+wfs5N/hv6puP9Ei2S3/pS1+KmLeVawLJmc4hfyvqttjR/5F/9AJe8gt/qzx5T1zvRxbBzzuY9lx4TRbe65d8RU6BC83g9/QS1/PU4880+3o/tb1GZyXdns42noJT8D1fnl2k9OEPfWjzDne4Q2sD9Mk7L35nyw9546H+NNFLM872drJ3AZOy0I6cr+3zF/77sP65z6vw8AbPu/jIqOFN+e3jWjjY5LGehfV4odvwwBWdPPdxLazDD53A7iTT5DM++B4nz0mL76eef+xjH9u8293u1mR/tbqsLSuzkXnkzUd/cVsSOMljdZyLWySwSOBEk4Cmf1Jd7TepgL/6q78aXviCFwwveOELh1KsQ906Otz9bncfTj/j9KFWDoeaPQY+nHzy5YZSpEMNHoYa6LXwUtCNDpgaPAx1kUeLqwFJwX6zJFvdXCHDC0wZSw2Wjwc0ahAzVCfY8NGBw5XqbumCqVm/wvtGvZ/c6PF72njCW/DxEJ5qgDN4Rwcehyc8COOD6XlKXvAmLmnB90Mbz34bGxtDrYwMNSgbrnWtaw11Nmr4iZ/4iaEM7SZr6UXe6HhueSz/f3/+80OtKg6vfe1rhy9/+ctD3Uw6/MDdyf+MSuekks0VG+/V8c38hV8yTfjoX654vazJ2nt9i6/RjOzlSX7DDx7kpc872Esv/VqluWcuN/GhIW2yG+X5jSI1lhU6wjm+ssCDNCLjPDeg+qNMlduePWM+4Hz968pxrEfSRIuPBy48kz/6tSoy1ErTULPtQ1233+rvT/3UE4dzzz2v1atZ1oW7rQyK7knF8x//8R8Pj3nMY4b3vOc9Qw1Uhn/6z/7ZUFfFD7XK1eQnX9L0Cy08JTz8rda/PXvGsiBzvG/VP/Ia2wRZRjZ9GQj7tm+7QtWtS1sexEm/clA8aIsnN7yUSWQvjeQRbTylHosDN7YJcr6s1ScyFM5ps8oiPIENj2P6DWymA07+1f+6qXj4L+9733BypVNnZ4c6OzXUJw1Gvov12jba8CJDlDx/o9KoVa3hBS944fAX/+svhqtf7WrDD93vfg33Sle6YumgKzXZgZde5NnnnVxqjDfLOHF4T/7w71mbqG2trX6iF37kI/DxySXxniOXvqzgjfX267NP1sK54K3ylLJCk56tSbh99N9OPKErTn7o7Lo4Y6hzm0Ntux1OqTyfe955Tf41MTLLDg6X/NSouOmmL37xi8Pznve8oT4P0upLXTI23Oc+9xmud93rDt9+9avP5U8mwV/N05jfb1ZZb+nGK1+Z7vlKw5emHzh1Knq6lzPa8hQ5KWe6FQxccgoeGO/hh7/KU087ZR85w5cWuvDIURi/x0O3LwN9gXICk/S909u12jrUtwdb3brRjW40/PRP/3TpoHMbLDppP+hJU9r1Z/jC//k/Q32rc3j1q1/d8vs93/M9w53vfOfh1FNPbbiXv/wp5Y/9K/lxcEd6m8X35Rte6iAY9MkZv3RAXz7wV2VJ39O5wtEFr44HHz3hwpQLOfXlAw9MHPmAxVPKEH54SvtBJ3hopAyCd4Ur6M9HGHDgxzrw9eJ1rP/GL5/61KeGOhPe9P9pp53WZF/HMPap++Fv8bdLYDEIt8tjeVskcOJIQEdUyplLx/KFL3xheMc7fn94yYtfOrz/A+9vSrx1WAVDEevEdPaF0ToGJDxzFL3B3kllvASnhTWgMZ3ANoSVP2C3dZKhOSYypZd0xzRXSOzzGp7qwopGG8Ch8rRjnrBggBv+GL2Vd51ZXaM//Kt/9a+Ge93rXm2Ql85uZhDOJPuE6QjrgofhLW958/BLv/TLzbgxWI/MRr6lpwwizzH99o5kJ/tGd+LRc/LNH8txLCe8zXmouDw3/OlPjxM6ffz43ITRZLI9Dq8Y2eLBs3QOlHZgwi+8Hd2Uf4M9cq9V7qGuGx+ufOUr74jSR0irVkWGunW0Dco2NvbWwGM0dOR5K9+e8Q97e75W5dQgCnALt09x6znx8bdixqeE8zlp9/Ug8SP0+Ddh8RM30sD3Vllvhwm/MDxngDcO5uFtwaNR9bH++U+Ge2oQaSD84PPPH2rb7nDqaadONCZZAdzBXVb1/b3vfc/wH371V4d3vvOdg0FeTzvpRhf19QfJUTzojwbzCD/qrFXd0rOQesbn4MUlLOHeE9/XS2FjGmQS7NEf4Vd5Ap82wGjcShPWdp6S5ggz8jTmE2zPjwF6bZMbzjvv3OEBDzh7qPNrczzYtQ7DxX99N3K4uOReuxqGD33oQ83IBD/mmTFQz8Vzyjryl/4YnraxJYDt+dhKveF08t7KU0uxAYJJucUf4bboYKbxtUJrHf2ZT+iQpvYbautwWmY7uNCga1P+wvJMJnVj9FDn8ZsOut3tbtcMklGGY/klvfjJE/3PmKwt1s2wnCdiSg+RefiLH3w+GikP7z2foS88LjTiC/ecfKzCJX6n/rCnE9wxz+N4YT3+ahmM79tpTTqmlVcob/nhWYj81yechvrUyvD4xz++TehpD2AWd2AJLAbhgWW0QCwSOGEkkJnB2vrYBgQXX3xxm3WuM1lNBjqo1vHUIPEb39xapYvC1ZlkVpEi9k5Jc2PnsDW7aMbSzCOawdfZMN7WzTSmc+RnBrHN0FZnWUOtlq5ZyCvWSlrjrXgUHp7gXcHsZ61+jDOl48y9tDMj3M98pnNt+a08JH3v0vjbL/1tm7llgBjYXfva3z3c6IY3HO5y17u2AVk6opZ/g5UdOqUmFwKqeLx6J5t3vOMdQ11KMHz605+u96/V4OzLjW+84j98ZQY2vnh58gPjN86mjnIWLi/CQku6HLrSzsysztV70pKXJk+rxGUIcJEf3F5GJ5f8v37ZOLssXJkp19DyDKcva3CZfceD8rWKQ5bSDn040sUL+Xu2knGzM88carvocNppp7X0avth8TnWjcbsAf6EvzpDNbzpTW8a6gbY4bOf/WyTAVQyjkylif+sFOAl9avVw+KLA3dprfCpd1eqVS5y21Orrl/56rg6habwy75xWZMFmtIgLysO3uVfGCc98JfWCqpw+NwptXpg0Gi19Utf/lJLQ/2/UvFBbvCssnFWnOucZPG0WTRq9boQ+VZZwXy1eDOo/WrB/J3Z++KB/K0e/PVf/00rF3SucuWrDH/zt38z1NmnoW5JbDh3rfpvZZUhovwO1ckn+Vmxfctb3jLUFrCBPuLUBXz8zd/8zXD1WrWSL/BWEL9WbeSb9X5yyZbMyQYceM8VpDCGr9RqldVBebzKVa5aaX21yV29U4ZWWiI/BoP6ZXUC/Hr5XaHxtl1+Xy1ZXK3lw2rzdvn9dZOL+t14avn6apu4UCfI9Ctf+XKjeQqY+rdnz8ltlc1qfcrUqrF3/GnHV73KVYbTTj99qLOYw+1vf/tWFvJOPvy0t0Z4zR8rhWoY2al3H/zgBwf6/9Olf7QHjrw59JQFmYH3fJVKX12MbgZ3udITygVca+edTtYG6Ie0GfWc/OXXf3nKCpPyk3baRvIkDEze+3yKwwufrPl49cMnmtF/8P3Q7+PQbjwVDicuYfLGKOTkv85qDnUGvK1o3/e+9x2uf/3rt3w3gIP8gwfpaYd/8ME/GN729rcN9VmQRp8elj88x0dWHuGt6pTUi77c8W4lmU/u6hLXdEq1CfkjKz4HjiMXbTJlFNnhyYRbZIQO+ba6XYWoLxcGHr52pxziwIYn+fDj5Ac82tIIPng8pJzIwbO8Xvc61x1OP/204Z41GWhHAh448Ys7OAksBuHByWmBWiRwwkiAMqZ4KXnOszDKl9+HietdjwsejeD1NFbxZhroT+kl3aQXWn0HN+NND0m/D09Y8OML5xovU7o93uqzAZOthfD85Ks57xNwH+45+eyfV+n2NJLn8ITuLGGyntIK3eCuymxb/LoEiw4c9GYfXIU1+Yjz61zysE5+q3FBS3jeez9x8fHCeJvluh14i7epDCIrYHjS8aM105vwI4vV8J685+Cmvgavh9tGY5JdL49VHHHCVsOTnvDQbL6ILixp97z1YcEf0TKTbisYeairYzHyRxiyGuvlSvFug03cuII11oPQKIpjfnriQahEtuWnCx85OPi/MQgw9s1Jj0SOSaNRa3wo95G2JNc9w2EI7+T6vB5N+fX8HYinlrWJ5TpGVWWqjLfK1OotGnFpB3nnb5NVH9E/d0RRC53QbnIvmKSUcuhJ7PS8Lv2Epe3EX01PW9if63VyeAqt/fUTsxA74pT+zGUAAAcKSURBVKs8Bb/nKTDxO/QmMzxEdn3coTyHdvIRP+G9j27y7bmPE573Ps4zJ85vm76d6oFwrqexykcDmP6IA9vzkvjwsOqLT1gPK2y/PAFeyVudjWw4uFYnTMD0bjWdPm553pLAYhBuyWJ5WiSwSGCNBNLpronaJyiKd9UHuBqW94poA42+M5njuhQS1vuiDRl0BPDTaQmP6+HB5L3Fdx1gH9dgABR83Da8BE4+GYHtaYjaH84KiS3YiacZ38PE9ypO8swfwSZ+V2l0+MHZ1ukWcnjd5gtvlEf5ekx8C95BfhNK65xjRDfOJj7Cb0/Dc2jzOXAJ894/570CZ9kLa3UAXj0nneDFB7eTgw8uBmZoNPiJr5THKn9g+jT6553iAsPn5vS6tFZx+/eGPyLWXzTGc3SMHyRKFM31zwJCPumDi1EU2MCExog3EayXln+DwUyONLqjwblPfiAfpAtPwPcZbBZTLX6eGBiJbqW3lch6/sd4dGM0C5HH5HtVDuIT55kL7fFtxF/FC8x2+Y0Yq2Hee6MP1DqY8DHSLp1TcK2u9wgBEhcmGr2tsgO+zgU+dbuHmetmBQYu8YFPCo2nykBrj139AA93hi+YvIfWjjAiOqEcNN6Uxoh+iDx1soS/zoWP9JXtHWDH6zq8dWGRV/qUsZ6Ok129/IObtL3nufeFz3greQkcGC7v8XcK68NXn7e9V3qpB6HZfECTbBIuqBiY4dt7C9peV1bDvfc0yEt+Wz1U7iv6KfiLv68EFoNwX5ksIYsETlgJUKx++1sl6YXTK+I+/P/ac/GejuZY8XAgGYhPp76Opx4/g4F1cMIOFL8T3okSTpZ+vbHrnZsHRfsRRg+7bYWgaDT8QxjghZekG38/ya+NCk98NPZLp2DGAdgWKdnv2V59D2TCV42axPNHmAz5p4GY8PrhK4Ov8LxfXhHcwSWvyqAvy53ojfDbiSU/Cd3pPeFpW3k/EF7i4wfvwPILRuS59b76hFbyvE8ZAp4CIy9Bvez7cHH7c4Ht8VfhW/lKs2dmFWj1PYJZDT/O3iM/2dqfDA8m260uTnJGy69vB0kjdeNgaPYw4Y+PxuHSoRC0/dCRxuHSOhKekn7vJ7+Nn+LzkOpskE8wfzEIT7ACX7K7SOBgJBDlTJlGyR4ILzjgDtQpZPA1b/WYFHbwQiuzfDulvW3QPqUb2nBCx3Noe97HVfrZrpjO2Duc4IVW3sGtxnsH1/s9P/ukWwHg/foOfzWtVZikLTz89GkWwXmQLs195FRhya/4pOc59EI7cQkHs8718A22eChisxEbnoMbeqEvfDXM+yrdvIdO6Ar3s7KXsFWaoR/c3ocb+H3kVXw0J416CF+BHyO35LgunUa/8MXZAhk+lbu4VZyen9CPL3/wkk+4CQvMOpqJi5808r7Kg/DA9HHS4rbVWe0hK0FkmbIDGPl5Pgi3Ls0eLYbJWGJb9aaYncsH/E4yCH0wfb68x+2Em3h+T8f7OlqBSdxOdAO3Ex3hq7gpc+F+fXmAn90UP5fPHNE9FAzX0pjqVr2MNLvyEx+nVeQt+VvXdsInvG34Hd3QjN/gKi08N/yCPZBODu6qv1s8odvkU7yog+q1fCd/yVtkscrHgd7RgeuXdLbRnuTR4hALXD0eTZ0SXsL//vI5xx1Nnirffd49R3bhMX4vy4Qt/noJLAbherksoYsETmgJpAOIf0IL4wCZnztAndQalw59TdQYZIClY+8H1DsAL+Wxg2ASPMkyr/wjkdmR4PY8HK/P+6uzB2oXB5LJgWR/oPgD0T9u4qvOM8qOeODbtZ11sl0X1mTY4R03Mt1fRqb87iOPFTnsE78/ml1c8Piccl3cegk0WYlaJ6OV8lhPYQntJbAYhL00ludFAosEFgksElgksEhgkcAigUUCiwQWCZxAElgMwhOosJesLhJYJLBIYJHAIoFFAosEFgksElgksEigl8BiEPbSWJ4XCSwSWCSwSGCRwCKBRQKLBBYJLBJYJHACSWAxCE+gwl6yukhgkcAigUUCiwQWCSwSWCSwSGCRwCKBXgKLQdhLY3leJLBIYJHAIoFFAosEFgksElgksEhgkcAJJIHFIDyBCnvJ6iKBRQKLBBYJLBJYJLBIYJHAIoFFAosEegksBmEvjeV5kcAigUUCiwQWCSwSWCSwSGCRwCKBRQInkAQWg/AEKuwlq4sEFgksElgksEhgkcAigUUCiwQWCSwS6CWwGIS9NJbnRQKLBBYJLBJYJLBIYJHAIoFFAosEFgmcQBJYDMITqLCXrC4SWCSwSGCRwCKBRQKLBBYJLBJYJLBIoJfAYhD20lieFwksElgksEhgkcAigUUCiwQWCSwSWCRwAklgMQhPoMJesrpIYJHAIoFFAosEFgksElgksEhgkcAigV4C/z9fG/J1L4xUYAAAAABJRU5ErkJggg==" - } - }, "cell_type": "markdown", "id": "3704ccc3-8c7e-4a0d-9de8-22e3cb75eae5", "metadata": {}, "source": [ - "# 1. Try the BPE tokenizer from the tiktoken library on the unknown words \"Akwirw ier\" and print the individual token IDs. Then, call the decode function on each of the resulting integers in this list to produce a mapping from tokens to token IDs as in the image below. Lastly, call the decode method on the token IDs to check whether it can reconstruct the original input, \"Akwirw ier\". \n", - "![Screenshot 2024-10-08 at 16.18.35.png](attachment:9c654054-8276-401e-84e2-4bb3f4b87c51.png)" + "Try the BPE tokenizer from the tiktoken library on the unknown words \"Akwirw ier\" and print the individual token IDs. \n", + "\n", + "Then, call the decode function on each of the resulting integers in this list to produce a mapping from tokens to token IDs as in the image below. \n", + "\n", + "Lastly, call the decode method on the token IDs to check whether it can reconstruct the original input, \"Akwirw ier\". " + ] + }, + { + "cell_type": "markdown", + "id": "5102fdfc", + "metadata": {}, + "source": [ + "" ] }, { "cell_type": "code", "execution_count": null, - "id": "9bf1f796-def2-4b4f-a997-20549f4d36c0", + "id": "a70ca4ea", "metadata": {}, "outputs": [], "source": [] @@ -1885,7 +1898,7 @@ { "cell_type": "code", "execution_count": null, - "id": "7361befa-dc0d-48bb-ab4d-dadd12fe42f1", + "id": "9f8ecea2", "metadata": {}, "outputs": [], "source": [] @@ -1893,7 +1906,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "llms", "language": "python", "name": "python3" }, @@ -1907,7 +1920,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.0" + "version": "3.11.10" } }, "nbformat": 4,