forked from autonomousvision/gaussian-opacity-fields
-
Notifications
You must be signed in to change notification settings - Fork 0
/
extract_mesh_tsdf.py
117 lines (91 loc) · 4.55 KB
/
extract_mesh_tsdf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import torch
from scene import Scene
import os
from os import makedirs
from gaussian_renderer import render
import random
from tqdm import tqdm
from argparse import ArgumentParser
from arguments import ModelParams, PipelineParams, get_combined_args
from gaussian_renderer import GaussianModel
import numpy as np
import open3d as o3d
import open3d.core as o3c
import math
def tsdf_fusion(model_path, name, iteration, views, gaussians, pipeline, background, kernel_size):
render_path = os.path.join(model_path, name, "ours_{}".format(iteration), "tsdf")
makedirs(render_path, exist_ok=True)
o3d_device = o3d.core.Device("CUDA:0")
voxel_size = 0.002
alpha_thres=0.5
vbg = o3d.t.geometry.VoxelBlockGrid(
attr_names=('tsdf', 'weight', 'color'),
attr_dtypes=(o3c.float32, o3c.float32, o3c.float32),
attr_channels=((1), (1), (3)),
voxel_size=voxel_size,
block_resolution=16,
block_count=50000,
device=o3d_device)
with torch.no_grad():
for _, view in enumerate(tqdm(views, desc="Rendering progress")):
rendering = render(view, gaussians, pipeline, background, kernel_size=kernel_size)["render"]
depth = rendering[6:7, :, :]
alpha = rendering[7:8, :, :]
rgb = rendering[:3, :, :]
if view.gt_alpha_mask is not None:
depth[(view.gt_alpha_mask < 0.5)] = 0
depth[(alpha < alpha_thres)] = 0
W = view.image_width
H = view.image_height
ndc2pix = torch.tensor([
[W / 2, 0, 0, (W-1) / 2],
[0, H / 2, 0, (H-1) / 2],
[0, 0, 0, 1]]).float().cuda().T
intrins = (view.projection_matrix @ ndc2pix)[:3,:3].T
intrinsic=o3d.camera.PinholeCameraIntrinsic(
width=W,
height=H,
cx = intrins[0,2].item(),
cy = intrins[1,2].item(),
fx = intrins[0,0].item(),
fy = intrins[1,1].item()
)
extrinsic = np.asarray((view.world_view_transform.T).cpu().numpy())
o3d_color = o3d.t.geometry.Image(np.asarray(rgb.permute(1,2,0).cpu().numpy(), order="C"))
o3d_depth = o3d.t.geometry.Image(np.asarray(depth.permute(1,2,0).cpu().numpy(), order="C"))
o3d_color = o3d_color.to(o3d_device)
o3d_depth = o3d_depth.to(o3d_device)
intrinsic = o3d.core.Tensor(intrinsic.intrinsic_matrix, o3d.core.Dtype.Float64)#.to(o3d_device)
extrinsic = o3d.core.Tensor(extrinsic, o3d.core.Dtype.Float64)#.to(o3d_device)
frustum_block_coords = vbg.compute_unique_block_coordinates(
o3d_depth, intrinsic, extrinsic, 1.0, 6.0)
vbg.integrate(frustum_block_coords, o3d_depth, o3d_color, intrinsic,
intrinsic, extrinsic, 1.0, 6.0)
mesh = vbg.extract_triangle_mesh().to_legacy()
# write mesh
o3d.io.write_triangle_mesh(f"{render_path}/tsdf.ply", mesh)
def extract_mesh(dataset : ModelParams, iteration : int, pipeline : PipelineParams):
with torch.no_grad():
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians, load_iteration=iteration, shuffle=False)
train_cameras = scene.getTrainCameras()
gaussians.load_ply(os.path.join(dataset.model_path, "point_cloud", f"iteration_{iteration}", "point_cloud.ply"))
bg_color = [1,1,1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
kernel_size = dataset.kernel_size
cams = train_cameras
tsdf_fusion(dataset.model_path, "test", iteration, cams, gaussians, pipeline, background, kernel_size)
if __name__ == "__main__":
# Set up command line argument parser
parser = ArgumentParser(description="Testing script parameters")
model = ModelParams(parser, sentinel=True)
pipeline = PipelineParams(parser)
parser.add_argument("--iteration", default=30000, type=int)
parser.add_argument("--quiet", action="store_true")
args = get_combined_args(parser)
print("Rendering " + args.model_path)
random.seed(0)
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.set_device(torch.device("cuda:0"))
extract_mesh(model.extract(args), args.iteration, pipeline.extract(args))