-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathExercise.cpp
executable file
·154 lines (116 loc) · 4.47 KB
/
Exercise.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
//=============================================================================
// Physically-based Simulation in Computer Graphics
// ETH Zurich
//=============================================================================
#include "Utilities/Vector2T.h"
// Gravitational acceleration (9.81 m/s^2)
static const double g = 9.81;
// functions for function AdvanceTimeStep1
double springForce1Di(double k, double L, double pj, double pi)
{
return k * ((pj-pi) - L); // * (pj-pi) / fabs(pj-pi);
}
double dampingForce1Di(double d, double v)
{
return -d * v;
}
// Exercise 1
// Hanging mass point
void AdvanceTimeStep1(double k, double m, double d, double L, double dt, int method, double p1, double v1, double& p2, double& v2)
{
// Remark: The parameter 'dt' is the duration of the time step, unless the analytic
// solution is requested, in which case it is the absolute time.
double springForce2 = springForce1Di(k,L,p1,p2);
double dampingForce2 = dampingForce1Di(d, v2);
// explicit Euler
if(method == 1)
{
p2 = p2 + dt * v2;
v2 = v2 + dt * (springForce2 + dampingForce2 - m * g ) / m;
}
// Symplectic Euler
if(method == 2)
{
v2 = v2 + dt * (springForce2 + dampingForce2 - m * g ) / m;
p2 = p2 + dt * v2;
}
// explicit midpoint
if(method == 3)
{
double p2Half = p2 + dt / 2.0 * v2;
double v2Half = v2 + dt / 2.0 * (springForce2 + dampingForce2 - m * g) / m;
double springForceHalf = springForce1Di(k, L, p1, p2Half);
double dampingForceHalf = dampingForce1Di(d, v2Half);
p2 = p2 + dt * v2Half;
v2 = v2 + dt * (springForceHalf + dampingForceHalf - m * g) / m;
}
// Semi-Implicit Euler
if(method == 4)
{
double dforcedx = -k;
double dforcedv = -d;
v2 = ((m - dt * dforcedv) * v2 + dt * (springForce2 + dampingForce2 - m * g)) / (m - dt * dforcedv - dt * dt * dforcedx );
p2 = p2 + dt * v2;
}
// analytic solution
if(method == 5)
{
double alpha = - d / (2.0 * m);
double beta = sqrt( 4.0 * k * m - d * d ) / (2.0 * m);
double c1 = m * g / k;
double c2 = - c1 * alpha / beta;
p2 = c1 * exp(alpha * dt) * cos(beta * dt) + c2 * exp(alpha * dt) * sin(beta * dt) - L - c1;
v2 = c1 * exp(alpha * dt) * (alpha * cos(beta * dt) - beta * sin(beta * dt)) + c2 * exp(alpha * dt) * (alpha * sin(beta * dt) + beta * cos(beta * dt));
}
}
// functions for function AdvanceTimeStep3
Vec2 springForce2Di(double k, double L, Vec2 pj, Vec2 pi)
{
Vec2 deltap = pj-pi;
return - k * ( deltap.length() - L ) / deltap.length() * deltap;
}
Vec2 dampingForce2Di(double d, Vec2 v)
{
return - d * v;
}
// Exercise 3
// Falling triangle
void AdvanceTimeStep3(double k, double m, double d, double L, double dt,
Vec2& p1, Vec2& v1, Vec2& p2, Vec2& v2, Vec2& p3, Vec2& v3)
{
// p1 += Vec2(1,1);
// use symplectic euler method
// stiffness for ground force
double kr = 100.0;
Vec2 springForce12 = springForce2Di(k, L, p1, p2);
Vec2 springForce13 = springForce2Di(k, L, p1, p3);
Vec2 springForce23 = springForce2Di(k, L, p2, p3);
Vec2 dampingForce1 = dampingForce2Di(d, v1);
Vec2 dampingForce2 = dampingForce2Di(d, v2);
Vec2 dampingForce3 = dampingForce2Di(d, v3);
Vec2 force1 = springForce12 + springForce13 + dampingForce1 - Vec2(0.0, m * g);
if(p1.y() <= -1.0)
{
// force induced by ground
Vec2 forceGround1 = springForce2Di(kr, 0.0, p1, Vec2(p1.x(),-1.0) );
force1 += forceGround1;
}
v1 = v1 + dt * force1 / m;
p1 = p1 + dt * v1;
Vec2 force2 = -springForce12 + springForce23 + dampingForce2 - Vec2(0.0, m * g);
if(p2.y() <= -1.0)
{
Vec2 forceGround2 = springForce2Di(kr, 0.0, p2, Vec2(p2.x(),-1.0) );
force2 += forceGround2;
}
v2 = v2 + dt * force2 / m;
p2 = p2 + dt * v2;
Vec2 force3 = -springForce13 - springForce23 + dampingForce3 - Vec2(0.0, m * g);
if(p3.y() <= -1.0)
{
Vec2 forceGround3 = springForce2Di(kr, 0.0, p3, Vec2(p3.x(),-1.0) );
force3 += forceGround3;
}
v3 = v3 + dt * force3 / m;
p3 = p3 + dt * v3;
}