Skip to content

Latest commit

 

History

History
110 lines (84 loc) · 4.32 KB

README.md

File metadata and controls

110 lines (84 loc) · 4.32 KB

symbolize

An attempt to implement symbolic math calculations and intuitionistic logic using Python.

Install

python -m pip install git+https://github.com/bsdz/symbolize.git

Example

from symbolize.logic.argument import Argument
from symbolize.logic.typetheory.proposition import implies, ImpliesPropositionExpression, not_
from symbolize.logic.typetheory.variables import A, B, C, Falsum

A_implies_B = implies(A, B)
B_implies_C = implies(B, C)
a = A_implies_B.get_proof('a')
b = B_implies_C.get_proof('b')
x = A.get_proof('x')

a

$$a : A \Rightarrow B$$

b

$$b : B \Rightarrow C$$

x

$$x : A$$

arg1 = Argument([x, a], a(x))
arg2 = Argument([arg1, b], b(arg1.conclusion))
arg3 = Argument([arg2, x], arg2.conclusion.abstract(x))
arg4 = Argument([arg2, x], arg3.conclusion.abstract(b))
arg5 = Argument([arg2, x], arg4.conclusion.abstract(a))
arg5

$$\frac{\frac{\frac{x : A \quad a : A \Rightarrow B}{a(x) : B} \quad b : B \Rightarrow C}{b(a(x)) : C} \quad x : A}{\lambda{}(a).\lambda{}(b).\lambda{}(x).(b(a(x))) : (A \Rightarrow B) \Rightarrow ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))}$$

new_type = arg5.conclusion.proposition_type.replace(C, Falsum).copy()
new_type

$$(A \Rightarrow B) \Rightarrow ((B \Rightarrow \bot) \Rightarrow (A \Rightarrow \bot))$$

new_type.walk(print)
ExpressionWalkResult(expr: ⟹; obj: ⟹(⟹(A, B), ⟹(⟹(B, ⟘), ⟹(A, ⟘))); type: ImpliesPropositionSymbol)
ExpressionWalkResult(expr: ⟹(A, B); obj: [⟹(A, B), ⟹(⟹(B, ⟘), ⟹(A, ⟘))][0]; type: ImpliesPropositionExpression; parent_type: ImpliesPropositionExpression)
ExpressionWalkResult(expr: ⟹; obj: ⟹(A, B); type: ImpliesPropositionSymbol)
ExpressionWalkResult(expr: A; obj: [A, B][0]; type: PropositionSymbol; parent_type: ImpliesPropositionExpression)
ExpressionWalkResult(expr: B; obj: [A, B][1]; type: PropositionSymbol; parent_type: ImpliesPropositionExpression)
ExpressionWalkResult(expr: ⟹(⟹(B, ⟘), ⟹(A, ⟘)); obj: [⟹(A, B), ⟹(⟹(B, ⟘), ⟹(A, ⟘))][1]; type: ImpliesPropositionExpression; parent_type: ImpliesPropositionExpression)
ExpressionWalkResult(expr: ⟹; obj: ⟹(⟹(B, ⟘), ⟹(A, ⟘)); type: ImpliesPropositionSymbol)
ExpressionWalkResult(expr: ⟹(B, ⟘); obj: [⟹(B, ⟘), ⟹(A, ⟘)][0]; type: ImpliesPropositionExpression; parent_type: ImpliesPropositionExpression)
ExpressionWalkResult(expr: ⟹; obj: ⟹(B, ⟘); type: ImpliesPropositionSymbol)
ExpressionWalkResult(expr: B; obj: [B, ⟘][0]; type: PropositionSymbol; parent_type: ImpliesPropositionExpression)
ExpressionWalkResult(expr: ⟘; obj: [B, ⟘][1]; type: PropositionSymbol)
ExpressionWalkResult(expr: ⟹(A, ⟘); obj: [⟹(B, ⟘), ⟹(A, ⟘)][1]; type: ImpliesPropositionExpression; parent_type: ImpliesPropositionExpression)
ExpressionWalkResult(expr: ⟹; obj: ⟹(A, ⟘); type: ImpliesPropositionSymbol)
ExpressionWalkResult(expr: A; obj: [A, ⟘][0]; type: PropositionSymbol; parent_type: ImpliesPropositionExpression)
ExpressionWalkResult(expr: ⟘; obj: [A, ⟘][1]; type: PropositionSymbol)
def my_sub(wr):
    if type(wr.expr) is ImpliesPropositionExpression and wr.expr.base == implies and wr.expr.children[1] == Falsum:
        wr.obj[wr.index] = not_(wr.expr.children[0])
new_type.walk(my_sub)
new_type

$$(A \Rightarrow B) \Rightarrow ((\neg(B)) \Rightarrow (\neg(A)))$$

# switch off Tex render and render using unicode
from symbolize.expressions import Expression
Expression.jupyter_repr_html_function = lambda self: f"{self.repr_unicode()}"
new_type

(A ⟹ B) ⟹ ((¬(B)) ⟹ (¬(A)))

For more examples see the Jupyter notebooks in the examples folder.

To Do

There is still lots to do initially implementing finite types and natural numbers. Further into the project I would like to implement some simple symbolic manipulations and perhaps even implement Gruntz (http://www.cybertester.com/data/gruntz.pdf)

References

  • [BN] Programming in Martin-Lofs Type Theory - Bengt Nordstrom
  • [ST] Type Theory & Functional Programming - Simon Thompson