-
Notifications
You must be signed in to change notification settings - Fork 148
/
main_single_gpu.py
352 lines (295 loc) · 13.8 KB
/
main_single_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import os
import time
import argparse
import shutil
import numpy as np
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import video_transforms
import models
import datasets
model_names = sorted(name for name in models.__dict__
if name.islower() and not name.startswith("__")
and callable(models.__dict__[name]))
dataset_names = sorted(name for name in datasets.__all__)
parser = argparse.ArgumentParser(description='PyTorch Two-Stream Action Recognition')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--settings', metavar='DIR', default='./datasets/settings',
help='path to datset setting files')
parser.add_argument('--modality', '-m', metavar='MODALITY', default='rgb',
choices=["rgb", "flow"],
help='modality: rgb | flow')
parser.add_argument('--dataset', '-d', default='ucf101',
choices=["ucf101", "hmdb51"],
help='dataset: ucf101 | hmdb51')
parser.add_argument('--arch', '-a', metavar='ARCH', default='rgb_resnet152',
choices=model_names,
help='model architecture: ' +
' | '.join(model_names) +
' (default: rgb_vgg16)')
parser.add_argument('-s', '--split', default=1, type=int, metavar='S',
help='which split of data to work on (default: 1)')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=250, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=25, type=int,
metavar='N', help='mini-batch size (default: 50)')
parser.add_argument('--iter-size', default=5, type=int,
metavar='I', help='iter size as in Caffe to reduce memory usage (default: 5)')
parser.add_argument('--new_length', default=1, type=int,
metavar='N', help='length of sampled video frames (default: 1)')
parser.add_argument('--new_width', default=340, type=int,
metavar='N', help='resize width (default: 340)')
parser.add_argument('--new_height', default=256, type=int,
metavar='N', help='resize height (default: 256)')
parser.add_argument('--lr', '--learning-rate', default=0.001, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--lr_steps', default=[100, 200], type=float, nargs="+",
metavar='LRSteps', help='epochs to decay learning rate by 10')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 5e-4)')
parser.add_argument('--print-freq', default=50, type=int,
metavar='N', help='print frequency (default: 50)')
parser.add_argument('--save-freq', default=25, type=int,
metavar='N', help='save frequency (default: 25)')
parser.add_argument('--resume', default='./checkpoints', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
best_prec1 = 0
os.environ["CUDA_DEVICE_ORDER"]="PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"]="0"
def main():
global args, best_prec1
args = parser.parse_args()
# create model
print("Building model ... ")
model = build_model()
print("Model %s is loaded. " % (args.arch))
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
if not os.path.exists(args.resume):
os.makedirs(args.resume)
print("Saving everything to directory %s." % (args.resume))
cudnn.benchmark = True
# Data transforming
if args.modality == "rgb":
is_color = True
scale_ratios = [1.0, 0.875, 0.75, 0.66]
clip_mean = [0.485, 0.456, 0.406] * args.new_length
clip_std = [0.229, 0.224, 0.225] * args.new_length
elif args.modality == "flow":
is_color = False
scale_ratios = [1.0, 0.875, 0.75]
clip_mean = [0.5, 0.5] * args.new_length
clip_std = [0.226, 0.226] * args.new_length
else:
print("No such modality. Only rgb and flow supported.")
normalize = video_transforms.Normalize(mean=clip_mean,
std=clip_std)
train_transform = video_transforms.Compose([
# video_transforms.Scale((256)),
video_transforms.MultiScaleCrop((224, 224), scale_ratios),
video_transforms.RandomHorizontalFlip(),
video_transforms.ToTensor(),
normalize,
])
val_transform = video_transforms.Compose([
# video_transforms.Scale((256)),
video_transforms.CenterCrop((224)),
video_transforms.ToTensor(),
normalize,
])
# data loading
train_setting_file = "train_%s_split%d.txt" % (args.modality, args.split)
train_split_file = os.path.join(args.settings, args.dataset, train_setting_file)
val_setting_file = "val_%s_split%d.txt" % (args.modality, args.split)
val_split_file = os.path.join(args.settings, args.dataset, val_setting_file)
if not os.path.exists(train_split_file) or not os.path.exists(val_split_file):
print("No split file exists in %s directory. Preprocess the dataset first" % (args.settings))
train_dataset = datasets.__dict__[args.dataset](root=args.data,
source=train_split_file,
phase="train",
modality=args.modality,
is_color=is_color,
new_length=args.new_length,
new_width=args.new_width,
new_height=args.new_height,
video_transform=train_transform)
val_dataset = datasets.__dict__[args.dataset](root=args.data,
source=val_split_file,
phase="val",
modality=args.modality,
is_color=is_color,
new_length=args.new_length,
new_width=args.new_width,
new_height=args.new_height,
video_transform=val_transform)
print('{} samples found, {} train samples and {} test samples.'.format(len(val_dataset)+len(train_dataset),
len(train_dataset),
len(val_dataset)))
train_loader = torch.utils.data.DataLoader(
train_dataset,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
val_dataset,
batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion)
return
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch)
# evaluate on validation set
prec1 = 0.0
if (epoch + 1) % args.save_freq == 0:
prec1 = validate(val_loader, model, criterion)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
if (epoch + 1) % args.save_freq == 0:
checkpoint_name = "%03d_%s" % (epoch + 1, "checkpoint.pth.tar")
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best, checkpoint_name, args.resume)
def build_model():
model = models.__dict__[args.arch](pretrained=True, num_classes=101)
model.cuda()
return model
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
optimizer.zero_grad()
loss_mini_batch = 0.0
acc_mini_batch = 0.0
for i, (input, target) in enumerate(train_loader):
input = input.float().cuda(async=True)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
output = model(input_var)
# measure accuracy and record loss
prec1, prec3 = accuracy(output.data, target, topk=(1, 3))
acc_mini_batch += prec1[0]
loss = criterion(output, target_var)
loss = loss / args.iter_size
loss_mini_batch += loss.data[0]
loss.backward()
if (i+1) % args.iter_size == 0:
# compute gradient and do SGD step
optimizer.step()
optimizer.zero_grad()
# losses.update(loss_mini_batch/args.iter_size, input.size(0))
# top1.update(acc_mini_batch/args.iter_size, input.size(0))
losses.update(loss_mini_batch, input.size(0))
top1.update(acc_mini_batch/args.iter_size, input.size(0))
batch_time.update(time.time() - end)
end = time.time()
loss_mini_batch = 0
acc_mini_batch = 0
if (i+1) % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i+1, len(train_loader)+1, batch_time=batch_time, loss=losses, top1=top1))
def validate(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top3 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
input = input.float().cuda(async=True)
target = target.cuda(async=True)
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# measure accuracy and record loss
prec1, prec3 = accuracy(output.data, target, topk=(1, 3))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top3.update(prec3[0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@3 {top3.val:.3f} ({top3.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top3=top3))
print(' * Prec@1 {top1.avg:.3f} Prec@3 {top3.avg:.3f}'
.format(top1=top1, top3=top3))
return top1.avg
def save_checkpoint(state, is_best, filename, resume_path):
cur_path = os.path.join(resume_path, filename)
best_path = os.path.join(resume_path, 'model_best.pth.tar')
torch.save(state, cur_path)
if is_best:
shutil.copyfile(cur_path, best_path)
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 every 150 epochs"""
decay = 0.1 ** (sum(epoch >= np.array(args.lr_steps)))
lr = args.lr * decay
print("Current learning rate is %4.6f:" % lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()