diff --git a/.github/workflows/test-B01_SL_load_single_file.yml b/.github/workflows/test-B01_SL_load_single_file.yml index ed40ef18..6dcdee90 100644 --- a/.github/workflows/test-B01_SL_load_single_file.yml +++ b/.github/workflows/test-B01_SL_load_single_file.yml @@ -23,3 +23,5 @@ jobs: run: pip install . - name: first step B01_SL_load_single_file run: python src/icesat2_tracks/analysis_db/B01_SL_load_single_file.py 20190502052058_05180312_005_01 SH_testSLsinglefile2 True + - name: second step make_spectra + run: python src/icesat2_tracks/analysis_db/B02_make_spectra_gFT.py SH_20190502_05180312 SH_testSLsinglefile2 True \ No newline at end of file diff --git a/src/icesat2_tracks/analysis_db/B02_make_spectra_gFT.py b/src/icesat2_tracks/analysis_db/B02_make_spectra_gFT.py new file mode 100644 index 00000000..5fbddadf --- /dev/null +++ b/src/icesat2_tracks/analysis_db/B02_make_spectra_gFT.py @@ -0,0 +1,535 @@ +# %% +import os, sys +#execfile(os.environ['PYTHONSTARTUP']) + +""" +This file open a ICEsat2 track applied filters and corections and returns smoothed photon heights on a regular grid in an .nc file. +This is python 3 +""" + +from icesat2_tracks.config.IceSAT2_startup import ( + mconfig, + xr, + color_schemes, + font_for_pres, + plt, + np +) + +#%matplotlib inline +from threadpoolctl import threadpool_info, threadpool_limits +from pprint import pprint + + +import icesat2_tracks.ICEsat2_SI_tools.convert_GPS_time as cGPS +import h5py +import icesat2_tracks.ICEsat2_SI_tools.io as io +import icesat2_tracks.ICEsat2_SI_tools.spectral_estimates as spec + +import time +import imp +import copy +from icesat2_tracks.local_modules.m_spectrum_ph3 import spicke_remover +import datetime +import icesat2_tracks.ICEsat2_SI_tools.generalized_FT as gFT +from scipy.ndimage.measurements import label +import icesat2_tracks.local_modules.m_tools_ph3 as MT +from icesat2_tracks.local_modules import m_general_ph3 as M + +# from guppy import hpy +# h=hpy() +# h.heap() +#import s3fs +#from memory_profiler import profile +import tracemalloc + +def linear_gap_fill(F, key_lead, key_int): + + """ + F pd.DataFrame + key_lead key in F that determined the independent coordindate + key_int key in F that determined the dependent data + """ + y_g = np.array(F[key_int]) + + nans, x2= np.isnan(y_g), lambda z: z.nonzero()[0] + y_g[nans]= np.interp(x2(nans), x2(~nans), y_g[~nans]) + + return y_g + + +# %% +track_name, batch_key, test_flag = io.init_from_input(sys.argv) # loads standard experiment +#track_name, batch_key, test_flag = '20190605061807_10380310_004_01', 'SH_batch01', False +#track_name, batch_key, test_flag = '20190601094826_09790312_004_01', 'SH_batch01', False +#track_name, batch_key, test_flag = '20190207111114_06260210_004_01', 'SH_batch02', False +#track_name, batch_key, test_flag = '20190208152826_06440210_004_01', 'SH_batch01', False +#track_name, batch_key, test_flag = '20190213133330_07190212_004_01', 'SH_batch02', False +#track_name, batch_key, test_flag = '20190205231558_06030212_004_01', 'SH_batch02', False + +#local track +#track_name, batch_key, test_flag = '20190219073735_08070210_004_01', 'SH_batch02', False +#track_name, batch_key, test_flag = 'NH_20190301_09580203', 'NH_batch05', False + +#track_name, batch_key, test_flag = 'NH_20190301_09590203', 'NH_batch05', False +#track_name, batch_key, test_flag = 'SH_20190101_00630212', 'SH_batch04', False +#track_name, batch_key, test_flag = 'NH_20190301_09570205', 'NH_batch05', True +#track_name, batch_key, test_flag = 'SH_20190219_08070212', 'SH_publish', True + +#track_name, batch_key, test_flag = 'NH_20190302_09830203', 'NH_batch06', True + +#track_name, batch_key, test_flag = 'SH_20190219_08070210', 'SH_batchminimal', True + +#print(track_name, batch_key, test_flag) +hemis, batch = batch_key.split('_') +#track_name= '20190605061807_10380310_004_01' +ATlevel= 'ATL03' + +load_path = mconfig['paths']['work'] + '/'+ batch_key +'/B01_regrid/' +load_file = load_path + 'processed_' + ATlevel + '_' + track_name + '.h5' + +save_path = mconfig['paths']['work'] + '/'+ batch_key+ '/B02_spectra/' +save_name = 'B02_'+track_name + +plot_path = mconfig['paths']['plot'] + '/'+hemis+'/'+batch_key+'/' + track_name + '/B_spectra/' +MT.mkdirs_r(plot_path) +MT.mkdirs_r(save_path) +bad_track_path =mconfig['paths']['work'] +'bad_tracks/'+ batch_key+'/' +# %% + +all_beams = mconfig['beams']['all_beams'] +high_beams = mconfig['beams']['high_beams'] +low_beams = mconfig['beams']['low_beams'] +#Gfilt = io.load_pandas_table_dict(track_name + '_B01_regridded', load_path) # rhis is the rar photon data + +# laod with pandas +#Gd = io.load_pandas_table_dict(track_name + '_B01_binned' , load_path) # + +N_process = 4 +print('N_process=', N_process) + +# open with hdf5 +Gd = h5py.File(load_path +'/'+track_name + '_B01_binned.h5', 'r') +#Gd.close() + +# %% test amount of nans in the data + +nan_fraction= list() +for k in all_beams: + heights_c_std = io.get_beam_var_hdf_store(Gd[k], 'dist') + nan_fraction.append( np.sum(np.isnan(heights_c_std)) / heights_c_std.shape[0] ) + +del heights_c_std + +# test if beam pairs have bad ratio +bad_ratio_flag = False +for group in mconfig['beams']['groups']: + Ia = Gd[group[0]]#['x'] + Ib = Gd[group[1]]#['x'] + ratio = Ia['x'][:].size/ Ib['x'][:].size + if (ratio > 10) | (ratio < 0.1): + print('bad data ratio ' , ratio, 1/ratio) + bad_ratio_flag = True + +if (np.array(nan_fraction).mean() > 0.95) | bad_ratio_flag: + print('nan fraction > 95%, or bad ratio of data, pass this track, add to bad tracks') + MT.json_save(track_name, bad_track_path, {'nan_fraction': np.array(nan_fraction).mean(), 'date': str(datetime.date.today()) }) + print('exit.') + exit() + +# %% test LS with an even grid where missing values are set to 0 +imp.reload(spec) +print(Gd.keys()) +Gi =Gd[ list(Gd.keys())[0] ] # to select a test beam +dist = io.get_beam_var_hdf_store(Gd[list(Gd.keys())[0]] , 'dist') + +# derive spectal limits +# Longest deserved period: +T_max = 40 #sec +k_0 = (2 * np.pi/ T_max)**2 / 9.81 +x = np.array(dist).squeeze() +dx = np.round(np.median(np.diff(x)), 1) +min_datapoint = 2*np.pi/k_0/dx + +Lpoints = int(np.round(min_datapoint) * 10 ) +Lmeters = Lpoints * dx + +#plt.plot(np.diff(np.array(Gi['dist']))) +print('L number of gridpoint:', Lpoints) +print('L length in km:', Lmeters/1e3) +print('approx number windows', 2* dist.iloc[-1] /Lmeters-1 ) + +T_min = 6 +lambda_min = 9.81 * T_min**2/ (2 *np.pi) +flim = 1/T_min +#2 * np.pi /lambda_min + +oversample = 2 +dlambda = Lmeters * oversample +dk = 2 * np.pi/ dlambda +kk = np.arange(0, 1/lambda_min, 1/dlambda) * 2*np.pi +kk = kk[k_0<=kk] +#dk = np.diff(kk).mean() +print('2 M = ', kk.size *2 ) + + +# for k in all_beams: +# #I = G_gFT[k] +# I2 = Gd_cut +# #plt.plot(I['x_coord'], I['y_coord'], linewidth =0.3) +# plt.plot( I2['x']/1e3, I2['dist']/1e3) + + +# # %% +# xscale= 1e3 +# F= M.figure_axis_xy(5, 3, view_scale= 0.6) +# for k in all_beams: +# I = Gd[k]#['x'] +# #I = Gd_cut +# plt.plot( I['x'][:]/xscale , I['y'][:]/xscale , '.' , markersize = 0.3) +# #plt.xlim(3e6, 3.25e6) +# +# #F.ax.axhline(0, color='gray', zorder= 2) +# +# plt.title('B01 filter and regrid | ' + track_name +'\npoleward '+str(track_poleward)+' \n \n', loc='left') +# plt.xlabel('along track distance (km)') +# plt.ylabel('across track distance (km)') + +# %% + +#Gd.keys() +print('define global xlims') +dist_list = np.array([np.nan, np.nan]) +for k in all_beams: + print(k) + hkey= 'heights_c_weighted_mean' + x = Gd[k+'/dist'][:] + print(x[0] , x[-1]) + dist_list = np.vstack([ dist_list, [ x[0] , x[-1] ] ]) + +xlims = np.nanmin(dist_list[:, 0]) - dx, np.nanmin(dist_list[:, 1]) + +dist_lim = 2000e3 # maximum distanc in the sea ice tha tis analysed: + + +if (xlims[1]- xlims[0]) > dist_lim: + xlims = xlims[0], xlims[0]+dist_lim + print('-reduced xlims length to ' , xlims[0]+dist_lim , 'm') + +#nan_fraction= list() +for k in all_beams: + dist_i = io.get_beam_var_hdf_store(Gd[k], 'dist') + x_mask= (dist_i>xlims[0]) & (dist_ixlims[0]) & (Gi['dist']=xlims[0]) & (x<=xlims[1]) + x = x[x_mask] + #xlims = x.iloc[0], x.iloc[-1] + dd = np.copy(Gd_cut[hkey]) + + dd_error = np.copy(Gd_cut['heights_c_std']) + dd_error[np.isnan(dd_error)] = 100 + #plt.hist(1/dd_weight, bins=40) + F = M.figure_axis_xy(6, 3) + plt.subplot(2, 1, 1) + #plt.plot(x, dd, 'gray', label='displacement (m) ') + + # compute slope spectra !! + dd = np.gradient(dd) + dd, _ = spicke_remover(dd, spreed=10, verbose=False) + dd_nans = (np.isnan(dd) ) + (Gd_cut['N_photos'] <= 5) + + # dd_filled = np.copy(dd) + # dd_filled[dd_nans] = 0 + #win = create_weighted_window(dd_filled) + + # using gappy data + dd_no_nans = dd[~dd_nans] # windowing is applied here + x_no_nans = x[~dd_nans] + dd_error_no_nans = dd_error[~dd_nans] + + plt.plot(x_no_nans, dd_no_nans, '.', color= 'black', markersize=1, label='slope (m/m)') + plt.legend() + plt.show() + + + print('gFT') + #S_pwelch_k2 = np.arange(S_pwelch_k[1], S_pwelch_k[-1], S_pwelch_dk*2 ) + + #imp.reload(gFT) + with threadpool_limits(limits=N_process, user_api='blas'): + pprint(threadpool_info()) + + S = gFT.wavenumber_spectrogram_gFT( np.array(x_no_nans), np.array(dd_no_nans), Lmeters, dx, kk, data_error = dd_error_no_nans, ov=None) + GG, GG_x, Params = S.cal_spectrogram(xlims= xlims, max_nfev = 8000, plot_flag = False) + + print('after ', k , tracemalloc.get_traced_memory()[0]/1e6, tracemalloc.get_traced_memory()[1]/1e6) + + plot_data_model=False + if plot_data_model: + for i in np.arange(0,16,2): + c1= 'blue' + c2= 'red' + + GGi = GG.isel(x= i) + + xi_1=GG_x.x[i] + xi_2=GG_x.x[i+1] + #if k%2 ==0: + + F = M.figure_axis_xy(16, 2) + eta = GG_x.eta + + y_model = GG_x.y_model[:, i] + plt.plot(eta +xi_1, y_model ,'-', c=c1, linewidth=0.8, alpha=1, zorder=12) + y_model = GG_x.y_model[:, i+1] + plt.plot(eta +xi_2, y_model,'-', c=c2, linewidth=0.8, alpha=1, zorder=12) + + FT = gFT.generalized_Fourier(eta +xi_1, None,GG.k ) + _ = FT.get_H() + FT.p_hat=np.concatenate([ GGi.gFT_cos_coeff, GGi.gFT_sin_coeff ]) + plt.plot(eta +xi_1, FT.model() ,'-', c='orange', linewidth=0.8, alpha=1,zorder= 2) + + FT = gFT.generalized_Fourier(eta +xi_2, None,GG.k ) + _ = FT.get_H() + FT.p_hat=np.concatenate([ GGi.gFT_cos_coeff, GGi.gFT_sin_coeff ]) + plt.plot(eta +xi_2, FT.model() ,'-', c='orange', linewidth=0.8, alpha=1,zorder= 2) + + + # oringial data + plt.plot(x, dd, '-', c='k',linewidth=2, alpha =0.6, zorder=11) + #plt.plot(x, dd, '.', c='k',markersize=3, alpha =0.5) + + + #plt.plot(x[~dd_nans], dd_error[~dd_nans], '.', c='green',linewidth=1, alpha =0.5) + + F.ax.axvline(xi_1 + eta[0].data , linewidth=4, color=c1, alpha=0.5) + F.ax.axvline(xi_1 + eta[-1].data, linewidth=4, color=c1, alpha=0.5) + F.ax.axvline(xi_2 + eta[0].data , linewidth=4, color=c2, alpha=0.5) + F.ax.axvline(xi_2 + eta[-1].data, linewidth=4, color=c2, alpha=0.5) + + ylims= -np.nanstd(dd)*2, np.nanstd(dd)*2 + plt.text(xi_1 + eta[0].data, ylims[-1], ' N='+ str(GG.sel(x=xi_1, method='nearest').N_per_stancil.data) + ' N/2M= '+ str(GG.sel(x=xi_1, method='nearest').N_per_stancil.data/2/kk.size) ) + plt.text(xi_2 + eta[0].data, ylims[-1], ' N='+ str(GG.sel(x=xi_2, method='nearest').N_per_stancil.data) + ' N/2M= '+ str(GG.sel(x=xi_2, method='nearest').N_per_stancil.data/2/kk.size) ) + plt.xlim(xi_1 + eta[0].data*1.2, xi_2 + eta[-1].data*1.2 ) + + + plt.ylim(ylims[0], ylims[-1]) + plt.show() + + #S.mean_spectral_error() # add x-mean spectal error estimate to xarray + S.parceval(add_attrs= True, weight_data=False) + + # assign beam coordinate + GG.coords['beam'] = GG_x.coords['beam'] = str(k) + GG, GG_x = GG.expand_dims(dim = 'beam', axis = 1), GG_x.expand_dims(dim = 'beam', axis = 1) + # repack such that all coords are associated with beam + GG.coords['N_per_stancil'] = (('x', 'beam' ), np.expand_dims(GG['N_per_stancil'], 1)) + GG.coords['spec_adjust'] = (('x', 'beam' ), np.expand_dims(GG['spec_adjust'], 1)) + + # add more coodindates to the Dataset + x_coord_no_gaps = linear_gap_fill( Gd_cut, 'dist', 'x' ) + y_coord_no_gaps = linear_gap_fill( Gd_cut, 'dist', 'y' ) + mapped_coords = spec.sub_sample_coords(Gd_cut['dist'], x_coord_no_gaps, y_coord_no_gaps, S.stancil_iter , map_func = None ) + + GG.coords['x_coord'] = GG_x.coords['x_coord'] = (('x', 'beam' ), np.expand_dims(mapped_coords[:,1], 1) ) + GG.coords['y_coord'] = GG_x.coords['y_coord'] = (('x', 'beam' ), np.expand_dims(mapped_coords[:,2], 1) ) + + # if data staarts with nans replace coords with nans again + if (GG.coords['N_per_stancil'] == 0).squeeze()[0].data: + nlabel = label( (GG.coords['N_per_stancil'] == 0).squeeze())[0] + nan_mask= nlabel ==nlabel[0] + GG.coords['x_coord'][nan_mask] =np.nan + GG.coords['y_coord'][nan_mask] =np.nan + + lons_no_gaps = linear_gap_fill( Gd_cut, 'dist', 'lons' ) + lats_no_gaps = linear_gap_fill( Gd_cut, 'dist', 'lats' ) + mapped_coords = spec.sub_sample_coords(Gd_cut['dist'], lons_no_gaps, lats_no_gaps, S.stancil_iter , map_func = None ) + + GG.coords['lon'] = GG_x.coords['lon'] = (('x', 'beam' ), np.expand_dims(mapped_coords[:,1], 1) ) + GG.coords['lat'] = GG_x.coords['lat'] = (('x', 'beam' ), np.expand_dims(mapped_coords[:,2], 1) ) + + # spectral errors are cacualted within S and now repacked to main DataSet G + #G.coords['mean_El'] = (('k', 'beam' ), np.expand_dims(S.G['mean_El'], 1)) + #G.coords['mean_Eu'] = (('k', 'beam' ), np.expand_dims(S.G['mean_Eu'], 1)) + + # calculate number data points + def get_stancil_nans(stancil): + x_mask = (stancil[0] < x) & (x <= stancil[-1]) + idata = Gd_cut['N_photos'][x_mask] + return stancil[1], idata.sum() + + photon_list = np.array(list(dict(map( get_stancil_nans, copy.copy(S.stancil_iter) )).values())) + GG.coords['N_photons'] = (('x', 'beam' ), np.expand_dims(photon_list, 1)) + + # Save to dict + G_gFT[k] = GG + G_gFT_x[k] = GG_x + Pars_optm[k] = Params + + # plot + plt.subplot(2, 1, 2) + G_gFT_power = GG.gFT_PSD_data.squeeze() + plt.plot(G_gFT_power.k, np.nanmean(G_gFT_power,1), 'gray', label='mean gFT power data ') + G_gFT_power = GG.gFT_PSD_model.squeeze() + plt.plot(GG.k, np.nanmean(S.G, 1), 'k', label='mean gFT power model') + + # standard FFT + print('FFT') + dd[dd_nans] = 0 + #xlim_mask = (xlims[0] <= x) & (x <= xlims[1]) + #print(x[xlim_mask]) + S = spec.wavenumber_spectrogram(x, dd, Lpoints) + G = S.cal_spectrogram() + S.mean_spectral_error() # add x-mean spectal error estimate to xarray + S.parceval(add_attrs= True) + + # assign beam coordinate + G.coords['beam'] = str(k)#(('beam'), str(k)) + G = G.expand_dims(dim = 'beam', axis = 2) + G.coords['mean_El'] = (('k', 'beam' ), np.expand_dims(G['mean_El'], 1)) + G.coords['mean_Eu'] = (('k', 'beam' ), np.expand_dims(G['mean_Eu'], 1)) + G.coords['x'] = G.coords['x'] * dx # adjust x-coodinate definition + + stancil_iter = spec.create_chunk_boundaries(int(Lpoints), dd_nans.size) + def get_stancil_nans(stancil): + idata = dd_nans[stancil[0]:stancil[-1]] + return stancil[1], idata.size - idata.sum() + + N_list = np.array(list(dict(map( get_stancil_nans, stancil_iter )).values())) + + # repack such that all coords are associated with beam + G.coords['N_per_stancil'] = (('x', 'beam' ), np.expand_dims(N_list, 1)) + + #save to dict and cut to the same size gFT + try: + G_rar_fft[k] = G.sel(x= slice(GG.x[0] , GG.x[-1].data)) + except: + G_rar_fft[k] = G.isel(x= (GG.x[0].data < G.x.data) & (G.x.data < GG.x[-1].data)) + + + #for plotting + try: + G_rar_fft_p = G.squeeze() + plt.plot(G_rar_fft_p.k, G_rar_fft_p[:, G_rar_fft_p['N_per_stancil'] > 10 ].mean('x'), 'darkblue', label='mean FFT') + #plt.plot(G.k, GG.mean('x'), 'lightblue', label='mean FFT') + plt.legend() + plt.show() + except: + pass + time.sleep(3) + #F.save_light(path=plot_path, name = 'B02_control_'+k+'_' + track_name) + #print('saved as '+'B02_control_'+k+'_' + track_name) + #print(np.isinf(G).sum().data) + + +del Gd_cut +Gd.close() + +# %% save fitting parameters +MT.save_pandas_table(Pars_optm, save_name+'_params', save_path ) + +# %% repack data +def repack_attributes(DD): + #DD = G_LS + attr_dim_list = list(DD.keys()) + for k in attr_dim_list: + for ka in list(DD[k].attrs.keys()): + I = DD[k] + I.coords[ka] = ( 'beam', np.expand_dims(I.attrs[ka], 0) ) + return DD + +#G_gFT[G_gFT_wmean.beam.data[0]] =G_gFT_wmean +#G_rar_fft[G_fft_wmean.beam.data[0]] =G_fft_wmean + + +beams_missing = set(all_beams) - set(G_gFT.keys()) + + +def make_dummy_beam(GG, beam): + + dummy = GG.copy(deep=True) + for var in list(dummy.var()): + + dummy[var] = dummy[var] *np.nan + dummy['beam'] = [beam] + return dummy + + +for beam in beams_missing: + GG = list(G_gFT.values())[0] + dummy = make_dummy_beam(GG, beam) + dummy['N_photons'] = dummy['N_photons'] *0 + dummy['N_per_stancil'] = dummy['N_per_stancil'] *0 + G_gFT[beam] = dummy + + GG = list(G_gFT_x.values())[0] + G_gFT_x[beam] = make_dummy_beam(GG, beam) + + GG = list(G_rar_fft.values())[0].copy(deep=True) + GG.data = GG.data*np.nan + GG['beam'] = [beam] + G_rar_fft[beam] = GG + +G_rar_fft.keys() + +G_gFT = repack_attributes(G_gFT) +G_gFT_x = repack_attributes(G_gFT_x) +G_rar_fft = repack_attributes(G_rar_fft) + + +# %% save results +G_gFT_DS = xr.merge(G_gFT.values())#, compat='override') +G_gFT_DS['Z_hat_imag'] = G_gFT_DS.Z_hat.imag +G_gFT_DS['Z_hat_real'] = G_gFT_DS.Z_hat.real +G_gFT_DS = G_gFT_DS.drop('Z_hat') +G_gFT_DS.attrs['name'] = 'gFT_estimates' +G_gFT_DS.to_netcdf(save_path+save_name+'_gFT_k.nc') + +G_gFT_x_DS = xr.merge(G_gFT_x.values())#, compat='override') +G_gFT_x_DS.attrs['name'] = 'gFT_estimates_real_space' +G_gFT_x_DS.to_netcdf(save_path+save_name+'_gFT_x.nc') + + +G_fft_DS = xr.merge(G_rar_fft.values())#, compat='override') +G_fft_DS.attrs['name']= 'FFT_power_spectra' +G_fft_DS.to_netcdf(save_path+save_name+'_FFT.nc') + +print('saved and done') + +# %%