diff --git a/tangram/mapping_utils.py b/tangram/mapping_utils.py index fe20d89..2ac37f9 100644 --- a/tangram/mapping_utils.py +++ b/tangram/mapping_utils.py @@ -152,7 +152,7 @@ def map_cells_to_space( target_count=None, random_state=None, verbose=True, - density_prior=None, + density_prior='rna_count_based', ): """ Map single cell data (`adata_sc`) on spatial data (`adata_sp`). @@ -176,7 +176,7 @@ def map_cells_to_space( target_count (int): Optional. The number of cells to be filtered. Default is None. random_state (int): Optional. pass an int to reproduce training. Default is None. verbose (bool): Optional. If print training details. Default is True. - density_prior (ndarray or str): Spatial density of spots, when is a string, value can be 'rna_count_based' or 'uniform', when is a ndarray, shape = (number_spots,). This array should satisfy the constraints sum() == 1. If not provided, the density term is ignored. + density_prior (str, ndarray or None): Spatial density of spots, when is a string, value can be 'rna_count_based' or 'uniform', when is a ndarray, shape = (number_spots,). This array should satisfy the constraints sum() == 1. If None, the density term is ignored. Default value is 'rna_count_based'. Returns: a cell-by-spot AnnData containing the probability of mapping cell i on spot j.