-
Notifications
You must be signed in to change notification settings - Fork 73
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Access to posterior output #365
Comments
3000 posterior draws, which you can summarize (mean, median, mode, SD) or
plot (eg histogram, density, box plot) as you like. See that when you do
these yourself they match the output summary statistics.
…On Mon, Jan 8, 2024, 9:17 AM StudentSaskia ***@***.***> wrote:
Hi,
I want to see if the output for my 3 Raja species is significantly
different (so does RJM significantly eat more shrimp than RJH for example).
However I am having trouble finding the posterior output data. I know it is
supposed to be in Jags.1$BUGSoutput$p.global, however this is a matrix of
3000 x 5 in my model. I get that the 5 are the 5 prey species, however
where does the 3000 come from?
This is my code:
Define the file path as a character string
mix.ray <- "CorrelationLengthSizeClass3.csv"
Load the mixture data
mix <- read.csv(mix.ray, header = TRUE)
Load the mixture/consumer data
mix <- load_mix_data(filename= mix.ray,
iso_names=c("d13C","d15N"),
factors=c("Sex","sclass"),
fac_random=c(FALSE,FALSE),
fac_nested=c(FALSE,FALSE),
cont_effects="Length..cm.")
Replace the system.file call with the path to your file
source.ray <- "ray_sources3.csv"
source <- read.csv(source.ray, header = TRUE)
Load the source data
source <- load_source_data(filename=source.ray,
source_factors=NULL,
conc_dep=FALSE,
data_type = "means", mix)
load discrimination factors
discr.ray <- "ray_discrimination3.csv"
discr <- read.csv(discr.ray,header = TRUE)
discr <- load_discr_data(filename="ray_discrimination3.csv", mix)
#make isospace plot
plot_data(filename="isospace_plot", plot_save_pdf=TRUE,
plot_save_png=FALSE, mix,source,discr)
#calculate normalized surface area
if(mix$n.iso==2) calc_area(source=source,mix=mix,discr=discr)
#plot informative prior
kw.alpha <- c(58,68, 24, 3, 72)
kw.alpha <- kw.alpha*length(kw.alpha)/138
kw.alpha[which(kw.alpha==0)] <- 0.01
plot_prior(alpha.prior=kw.alpha,source=source,plot_save_pdf=TRUE,
plot_save_png=FALSE,filename="prior_plot")
#write JAGS model
?write_JAGS_model
model_filename <- "MixSIAR_model.txt"
resid_err <- TRUE
process_err <- FALSE
write_JAGS_model(model_filename, resid_err, process_err, mix, source)
#Run JAGS model
?run_model
jags.1 <- run_model(run="long",mix,source,discr,model_filename,
alpha.prior = 1,resid_err,process_err)
#maximize output
getOption("max.print")
options(max.print = 100000)
getOption("max.print")
#process output
output_JAGS(jags.1,mix,source,
output_options = list(summary_save = TRUE, summary_name =
"summary_statistics",
sup_post = FALSE,
plot_post_save_pdf = FALSE, plot_post_name = "posterior_density",
sup_pairs = TRUE, plot_pairs_save_pdf = TRUE, plot_pairs_name =
"pairs_plot", sup_xy
= TRUE, plot_xy_save_pdf = TRUE, plot_xy_name = "xy_plot", gelman = TRUE,
heidel =
FALSE, geweke = TRUE, diag_save = TRUE, diag_name = "diagnostics",
indiv_effect =
FALSE, plot_post_save_png = FALSE, plot_pairs_save_png = FALSE,
plot_xy_save_png =
TRUE, diag_save_ggmcmc = TRUE))
Thanks in advance!
—
Reply to this email directly, view it on GitHub
<#365>, or unsubscribe
<https://github.com/notifications/unsubscribe-auth/ABHDA46Y3DGFVHN6GPCFPJ3YNOTRFAVCNFSM6AAAAABBRBWEI2VHI2DSMVQWIX3LMV43ASLTON2WKOZSGA3DSOJUGA3DEMQ>
.
You are receiving this because you are subscribed to this thread.Message
ID: ***@***.***>
|
Thanks for the fast response! Is there a way to match the 3000 draws to each prey and consumer? Or are the only statistics to work with the summary? |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hi,
I want to see if the output for my 3 Raja species is significantly different (so does RJM significantly eat more shrimp than RJH for example). However I am having trouble finding the posterior output data. I know it is supposed to be in Jags.1$BUGSoutput$p.global, however this is a matrix of 3000 x 5 in my model. I get that the 5 are the 5 prey species, however where does the 3000 come from?
This is my code:
Define the file path as a character string
mix.ray <- "CorrelationLengthSizeClass3.csv"
Load the mixture data
mix <- read.csv(mix.ray, header = TRUE)
Load the mixture/consumer data
mix <- load_mix_data(filename= mix.ray,
iso_names=c("d13C","d15N"),
factors=c("Sex","sclass"),
fac_random=c(FALSE,FALSE),
fac_nested=c(FALSE,FALSE),
cont_effects="Length..cm.")
Replace the system.file call with the path to your file
source.ray <- "ray_sources3.csv"
source <- read.csv(source.ray, header = TRUE)
Load the source data
source <- load_source_data(filename=source.ray,
source_factors=NULL,
conc_dep=FALSE,
data_type = "means", mix)
load discrimination factors
discr.ray <- "ray_discrimination3.csv"
discr <- read.csv(discr.ray,header = TRUE)
discr <- load_discr_data(filename="ray_discrimination3.csv", mix)
#make isospace plot
plot_data(filename="isospace_plot", plot_save_pdf=TRUE,
plot_save_png=FALSE, mix,source,discr)
#calculate normalized surface area
if(mix$n.iso==2) calc_area(source=source,mix=mix,discr=discr)
#plot informative prior
kw.alpha <- c(58,68, 24, 3, 72)
kw.alpha <- kw.alpha*length(kw.alpha)/138
kw.alpha[which(kw.alpha==0)] <- 0.01
plot_prior(alpha.prior=kw.alpha,source=source,plot_save_pdf=TRUE,
plot_save_png=FALSE,filename="prior_plot")
#write JAGS model
?write_JAGS_model
model_filename <- "MixSIAR_model.txt"
resid_err <- TRUE
process_err <- FALSE
write_JAGS_model(model_filename, resid_err, process_err, mix, source)
#Run JAGS model
?run_model
jags.1 <- run_model(run="long",mix,source,discr,model_filename,
alpha.prior = 1,resid_err,process_err)
#maximize output
getOption("max.print")
options(max.print = 100000)
getOption("max.print")
#process output
output_JAGS(jags.1,mix,source,
output_options = list(summary_save = TRUE, summary_name = "summary_statistics",
sup_post = FALSE,
plot_post_save_pdf = FALSE, plot_post_name = "posterior_density",
sup_pairs = TRUE, plot_pairs_save_pdf = TRUE, plot_pairs_name = "pairs_plot", sup_xy
= TRUE, plot_xy_save_pdf = TRUE, plot_xy_name = "xy_plot", gelman = TRUE, heidel =
FALSE, geweke = TRUE, diag_save = TRUE, diag_name = "diagnostics", indiv_effect =
FALSE, plot_post_save_png = FALSE, plot_pairs_save_png = FALSE, plot_xy_save_png =
TRUE, diag_save_ggmcmc = TRUE))
Thanks in advance!
The text was updated successfully, but these errors were encountered: