-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathinterpret_grammar.py
265 lines (229 loc) · 8.97 KB
/
interpret_grammar.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
from copy import deepcopy
from re import fullmatch
# Interpretation grammar for re-writing input sequences as output sequences.
# - Each grammar is a list of algebraic re-write rules.
# - Rules are applied in sequential order (first come, first serve)
def is_prim_var(s):
# detect if string is a primitive name, such as 'u12' (u followed by optional number)
# ignore the interpretation symbols
s = int_strip(s)
pattern = fullmatch('u[0-9]*',s)
return bool(pattern)
def is_var(s):
# detect if string is a variable name, such as 'x12' (x followed by optional number)
# ignore the interpretation symbols
s = int_strip(s)
pattern = fullmatch('x[0-9]*',s)
return bool(pattern)
def int_strip(s):
# Strip the interpretation symbols, [ and ],
# from the beginning and end of strings, respectively
s = s.lstrip('[')
s = s.rstrip(']')
return s
def to_interpet(s):
# Does string s still need interpretation?
# i.e., does it start with [ and end with ]?
return s[0] == '[' and s[-1] == ']'
def str_to_grammar(s, input_symbols):
# Interpret string specification as a grammar object
#
# e.g.,
# lug -> YELLOW \n x2 lug -> [x2] \n ...
#
# input
# s : string description of grammar
# input_symbols : possible input primitives (could include more than grammar does)
#
# return
# Grammar object, or [] if we cannot create a valid grammar with this specification
lines = s.split('\n')
lines = [l.strip() for l in lines]
lines = [l for l in lines if len(l) > 0]
rules = []
for l in lines:
if "->" not in l:
return []
sides = l.split("->")
if len(sides) != 2:
return []
LHS = sides[0].strip()
RHS = sides[1].strip()
if len(LHS)==0 or len(RHS)==0:
return []
R = Rule(LHS,RHS)
rules.append(R)
G = Grammar(rules, input_symbols)
if not G.var_match(): # make sure none of the rules drop a variable..
# thus variables consistent on LHS and RHS
return []
return G
class Grammar():
max_recursion = 50 # maximum number of recursive calls
count_recursion = 0 # recursive counters
rules = []
def __init__(self,rules, list_prims):
#
# Input
# rules is a list of Rule objects
# list_prims : list of input symbols (cannot contain numbers)
self.rules = deepcopy(rules)
self.list_prims = list_prims
for r in self.rules:
r.set_primitives(list_prims)
def var_match(self):
# Check if all the variables match, such that those in RHS are also in LHS
return all([r.valid_var_match for r in self.rules])
def apply(self,s):
# apply re-write rules recursively to string s
self.count_recursion = 0
return self.__apply_helper(s)
def __apply_helper(self,s):
self.count_recursion += 1
valid = []
myrule = None
for r in self.rules:
valid.append(r.applies(s))
if not any(valid):
return s
myrule = self.rules[valid.index(True)] # pick first rule
# run 'apply' recursively
out = myrule.apply(s) # out is a list of partially-processed sub-strings
for idx,o in enumerate(out):
if to_interpet(o) and self.count_recursion < self.max_recursion: # non-terminals
out[idx] = self.__apply_helper(int_strip(o))
return ' '.join(out)
def __str__(self):
s = ''
for r in self.rules:
s += str(r)+' \n '
return s
class Rule():
# left-hand-side
LHS_str = ''
LHS_list = []
LHS_regexp = ''
# right-hand-side
RHS_str = ''
RHS_list = []
#
valid_var_match = False # verifies that every variable in RHS is also in the LHS
var_regexp = '([ a-zA-Z0-9]+)' # define acceptable string for a variable to hold
def __init__(self,LHS,RHS):
# LHS : string with variables (no interpretation symbols [ or ] )
# RHS : string with variables (can have interpretation symbols for recursive computation)
assert(LHS.strip()==LHS)
assert(RHS.strip()==RHS)
self.LHS_str = LHS
self.LHS_list = LHS.split()
self.RHS_str = RHS
self.RHS_list = RHS.split()
def set_primitives(self,list_prims):
# Create regular expressions for detecting matches
# list_prims : list of the primitive input symbols
self.list_prims = list_prims
self.prim_regexp = '(' + '|'.join(self.list_prims) + ')' # define acceptable string for a primitive
# get list of all variables in LHS (and for valid rules, the same vars should be in the RHS)
self.vars = [v for v in self.LHS_list if is_prim_var(v) or is_var(v)] # LHS vars
rhs_vars = [int_strip(v) for v in self.RHS_list if is_prim_var(v) or is_var(v)] # RHS vars
self.valid_var_match = all([v in self.vars for v in rhs_vars]) # check that RHS variables are in LHS
# Compute the regexp for checking whether the rule is active
mylist = deepcopy(self.LHS_list)
for i,x in enumerate(mylist):
if is_prim_var(x):
mylist[i] = self.prim_regexp
elif is_var(x):
mylist[i] = self.var_regexp
self.LHS_regexp = ' '.join(mylist)
def applies(self,s):
# return True if the re-write rule applies to this string
return self.valid_var_match and bool(fullmatch(self.LHS_regexp,s))
def apply(self,s):
# Apply rule to string s
# Return resulting string as list
assert self.applies(s)
assert self.valid_var_match
# extract variables from LHS
m = fullmatch(self.LHS_regexp,s)
# if the expression has two variables "x1 x2", it returns the first split
mygroups = m.groups()
assert(len(mygroups) == len(self.vars))
vdict = dict(zip(self.vars,mygroups))
# replace RHS with variable values
mylist = deepcopy(self.RHS_list)
for i,x in enumerate(mylist):
if is_var(x) or is_prim_var(x):
mylist[i] = '['+vdict[int_strip(x)]+']'
return mylist
def __str__(self):
if self.valid_var_match:
val_tag = ''
else:
val_tag = ' (invalid)'
return str(self.LHS_str) + ' -> ' + str(self.RHS_str) + val_tag
def get_grammar_miniscan():
# Generates the grammar used for testing humans on few-shot learning
S_miniscan = "1 -> 1 \n 3 -> 3 \n 2 -> 2 \n DAX -> DAX \n u1 thrice -> [u1] [u1] [u1] \n u1 surround u2 -> [u1] [u2] [u1] \n x1 after x2 -> [x2] [x1] \n u1 x1 -> [u1] [x1]"
return str_to_grammar(S_miniscan,['1','2','3','DAX','thrice','surround','after'])
if __name__ == "__main__":
# Test code
myrules = [Rule('walk','WALK'), Rule('u left','LTURN [u]'), Rule('x twice','[x] [x]')]
G = Grammar(myrules,['walk','left'])
mycommand = 'walk left twice'
myoutput = G.apply(mycommand)
mytarget = 'LTURN WALK LTURN WALK'
print('Testing command:',mycommand)
assert(myoutput==mytarget)
print('*PASSED* Grammar.apply worked to produce output:',myoutput)
print("")
mycommand = 'walk left twice twice'
myoutput = G.apply(mycommand)
mytarget = 'LTURN WALK LTURN WALK LTURN WALK LTURN WALK'
print('Testing command:',mycommand)
assert(myoutput==mytarget)
print('*PASSED* Grammar.apply worked to produce output:',myoutput)
print("")
print('Testing variable detector..')
assert is_var('x')
assert is_var('x0')
assert is_var('x10')
assert is_var('x101')
assert not is_var('X10')
assert not is_var('10x')
assert not is_var('y10')
assert not is_var(' x10')
assert not is_var('x10 ')
assert not is_var('x0 x10')
assert not is_var('x0 x10')
assert not is_var('[x0] [x10]')
print('*PASSED* Variable detector tests.')
print("")
input_symbols_list_default = ['dax', 'lug', 'wif', 'zup', 'fep', 'blicket', 'kiki', 'tufa', 'gazzer']
S_orig = "lug -> GREEN \n gazzer -> RED \n wif -> PURPLE \n fep -> BLUE \n u1 tufa x1 -> [u1] [x1] \n u1 dax -> [u1] [u1] \n u1 kiki x1 -> [u1] [u1] [x1] \n u1 x1 -> [u1] [x1] \n"
print("Original string...")
print(S_orig)
print("")
G = str_to_grammar(S_orig,input_symbols_list_default)
S_recon = str(G)
f_compare = lambda X : [x.strip() for x in X.split('\n') if len(x.strip())>0]
print('Reconstructed string from grammar...')
print(S_recon)
assert(f_compare(S_recon)==f_compare(S_orig))
print('*PASSED* Grammar construction from string, to grammar, back to string.')
mycommand="lug kiki lug dax"
mytarget="GREEN GREEN GREEN GREEN"
myoutput = G.apply(mycommand)
print('\nTesting command:',mycommand)
assert(myoutput==mytarget)
print('*PASSED* Grammar.apply worked to produce output:',myoutput)
G_miniscan = get_grammar_miniscan()
D_miniscan_support = {'1':'1', '3':'3', '2':'2', 'DAX':'DAX', '2 after 3':'3 2', '1 after 2':'2 1', '2 thrice':'2 2 2', '2 surround 3':'2 3 2', '1 thrice':'1 1 1', '3 surround 1':'3 1 3', '2 thrice after 3':'3 2 2 2', '3 after 1 surround 2':'1 2 1 3', '2 after 3 thrice':'3 3 3 2', '3 surround 1 after 2':'2 3 1 3'}
D_miniscan_query = {"3 after DAX" : "DAX 3", "DAX after 1" : "1 DAX", "DAX thrice" : "DAX DAX DAX", "1 surround DAX" : "1 DAX 1", "DAX surround 2" : "DAX 2 DAX", "2 after 3 surround DAX" : "3 DAX 3 2", "DAX thrice after 2" : "2 DAX DAX DAX", "3 after DAX thrice" : "DAX DAX DAX 3", "DAX surround DAX after DAX thrice" : "DAX DAX DAX DAX DAX DAX", "DAX surround 3 after 1 thrice" : "1 1 1 DAX 3 DAX"}
D_miniscan = {**D_miniscan_support, **D_miniscan_query}
print('\nTesting MiniSCAN grammar...')
for mycommand in D_miniscan.keys():
myoutput = G_miniscan.apply(mycommand)
mytarget = D_miniscan[mycommand]
print(' ',mycommand,'->',myoutput,'(target:',mytarget,')')
assert(myoutput==mytarget)
print('*PASSED* Grammar.apply worked to produce MiniSCAN targets')