-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy paths_tract_analysis_noprofile.m
197 lines (169 loc) · 9.93 KB
/
s_tract_analysis_noprofile.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
% Tract Analysis
%
% This script is an example of analysis of tracts.
%
% It returns fiber values in a tab delimited text file that can be read into
% excel. The text file is saved in the baseDirectory by default.
%
%
% Copyright Franco Pestilli Indiana University 2016
%
% Dependencies:
% addpath(genpath('~/path/to/spm8')) % -> SPM/website
% addpath(genpath('~/path/to/vistasoft')); % -> https://www.github.com/vistalab/vistasoft
% addpath(genpath('~/path/to/life')); % -> https://www.github.com/francopestilli/life
% addpath(genpath('~/path/to/mba')); % -> https://www.github.com/francopestilli/mba
%% Set directory structure
%% I. Directory and Subject Informatmation
% Data mus have been preprocessed using dtiInit.m (VISTASOFT)
dirs = 'dti32trilin';
logDir = '/path/to/output/Figures';
baseDir = {'/path/to/subjects/data/'};
% Group 1 (subjects group #1)
subjects = {'name1','name2'};
% Set fiber groups (e.g. fg structures). They can be .pdb or .mat files.
fiberName = {'fibers_connecting_rois.pdb'};
%% Set up the text file that will store the fiber vals.
dateAndTime = getDateAndTime;
textFileName = fullfile(logDir,['out_put_log_file_name',dateAndTime,'.txt']);
[fid1 message] = fopen(textFileName, 'w');
fprintf(fid1, 'Subject_Code \t Fiber_Name \t Mean_FA \t FA_StErr \t Mean_MD \t MD_StErr \t Mean Radial ADC \t RD StErr \t Mean Axial ADC \t AD StErr \t Number of Fibers (arb) \t Mean Length \t Min Length \t Max Length \n');
%% Run the fiber properties functions
for i = 1:numel(baseDir)
if i == 1; subs = subjects;
elseif i == 2; subs = subsSession2; end
for ii=1:numel(subs)
sub = dir(fullfile(baseDir{i},[subs{ii} '*']));
if ~isempty(sub)
subDir = fullfile(baseDir{i},sub.name);
dt6Dir = fullfile(subDir,dirs);
fiberDir = fullfile(subDir,'path/to/mrtrix/fibers');
roiDir = fullfile(subDir,'ROIs');
dt = dtiLoadDt6(fullfile(dt6Dir,'dt6.mat'));
fprintf('\nProcessing %s\n', subDir);
% Read in fiber groups
for kk=1:numel(fiberName)
fiberGroup = fullfile(fiberDir, fiberName{kk});
if exist(fiberGroup,'file')
disp(['Computing dtiVals for ' fiberGroup ' ...']);
try
% Read the fiber group from file
fg = fgRead(fiberGroup);
% Remove outliers from the fiber group.
% Outliers are fibers that are either too long or too far away
% from the center of mass of the fibergroup at any point along
% the fiber length.
fg = mbaRemoveFibersOutliers(fg);
% Extract the volume (all the voxels) of the fibers. We will perform all the analyses
% in the voxels in this volume.
coords = horzcat(fg.fibers{:})';
numberOfFibers = numel(fg.fibers);
% Compute the fiber length:
% Measure the step size of the first fiber. Assume that the rest are all the same.
stepSize = mean(sqrt(sum(diff(fg.fibers{1},1,2).^2)));
fiberLength = cellfun('length',fg.fibers);
% Extract values for each fiber.
[val1,val2,val3,val4,val5,val6] = dtiGetValFromTensors(dt.dt6, coords, inv(dt.xformToAcpc),'dt6','nearest');
dt6 = [val1,val2,val3,val4,val5,val6];
% Clean the data in two ways.
% Some fibers extend a little beyond the brain mask. Remove those points by
% exploiting the fact that the tensor values out there are exactly zero.
dt6 = dt6(~all(dt6==0,2),:);
% There shouldn't be any nans, but let's make sure:
dt6Nans = any(isnan(dt6),2);
if(any(dt6Nans))
dt6Nans = find(dt6Nans);
for jj=1:6
dt6(dt6Nans,jj) = 0;
end
fprintf('\ NOTE: %d fiber points had NaNs. These will be ignored...',length(dt6Nans));
disp('Nan points (ac-pc coords):');
for jj=1:length(dt6Nans)
fprintf('%0.1f, %0.1f, %0.1f\n',coords(dt6Nans(jj),:));
end
end
% We now have the dt6 data from all of the fibers. We
% extract the directions into vec and the eigenvalues into
% val. The units of val are um^2/sec or um^2/msec
% mrDiffusion tries to guess the original units and convert
% them to um^2/msec. In general, if the eigenvalues are
% values like 0.5 - 3.0 then they are um^2/msec. If they
% are more like 500 - 3000, then they are um^2/sec.
[vec,val] = dtiEig(dt6);
% Some of the ellipsoid fits are wrong and we get negative eigenvalues.
% These are annoying. If they are just a little less than 0, then clipping
% to 0 is not an entirely unreasonable thing. Maybe we should check for the
% magnitude of the error?
nonPD = find(any(val<0,2));
if(~isempty(nonPD))
fprintf('\n NOTE: %d fiber points had negative eigenvalues. These will be clipped to 0...\n', numel(nonPD));
val(val<0) = 0;
end
threeZeroVals=find(sum(val,2)==0);
if ~isempty (threeZeroVals)
fprintf('\n NOTE: %d of these fiber points had all three negative eigenvalues. These will be excluded from analyses\n', numel(threeZeroVals));
end
val(threeZeroVals,:)=[];
% Now we have the eigenvalues just from the relevant fiber positions - but
% all of them. So we compute for every single node on the fibers, not just
% the unique nodes.
[fa,md,rd,ad] = dtiComputeFA(val);
%Some voxels have all the three eigenvalues equal to zero (some of them
%probably because they were originally negative, and were forced to zero).
%These voxels will produce a NaN FA
FA(1)=min(fa(~isnan(fa)));
FA(2)=mean(fa(~isnan(fa)));
FA(3)=max(fa(~isnan(fa))); % isnan is needed because sometimes if all the three eigenvalues are negative, the FA becomes NaN. These voxels are noisy.
MD(1)=min(md);
MD(2)=mean(md);
MD(3)=max(md);
radialADC(1) = min(rd);
radialADC(2) = mean(rd);
radialADC(3) = max(rd);
axialADC(1) = min(ad);
axialADC(2) = mean(ad);
axialADC(3) = max(ad);
fibLength(1) = mean(fiberLength)*stepSize;
fibLength(2) = min(fiberLength)*stepSize;
fibLength(3) = max(fiberLength)*stepSize;
avgFA = FA(2);
avgMD = MD(2);
avgRD = radialADC(2);
avgAD = axialADC(2);
avgLength = fibLength(1);
minLength = fibLength(2);
maxLength = fibLength(3);
numFibers = numel(fg.fibers);
% fg.params is empty
% meanScore = mean(fg.params{2}.stat);
faSTD = std(fa);
faSEM = faSTD/sqrt(length(fg.fibers));
mdSTD = std(md);
mdSEM = mdSTD/sqrt(length(fg.fibers));
rdSTD = std(rd);
rdSEM = rdSTD/sqrt(length(fg.fibers));
adSTD = std(ad);
adSEM = adSTD/sqrt(length(fg.fibers));
save('data_test.mat');
% Write out to the the stats file using the tab delimeter.
fprintf(fid1,'%s\t %s\t %.6f\t %.6f\t %.6f\t %.6f\t %.6f\t %.6f\t %.6f\t %.6f\t %.6f\t %.6f\t %.6f\t %.6f\t \n',...
subs{ii},fg.name,avgFA,faSEM,avgMD,mdSEM,avgRD,rdSEM,avgAD,adSEM,numFibers,avgLength,minLength,maxLength); %,meanScore);
% fprintf(fid1,'%s\t %s\t %.6f\t %.6f\t %.6f\t %.6f\n',...
% subs{ii},fg.name,avgFA,faSEM,avgMD,mdSEM);
catch ME
fprintf('Fiber group being skipped: %s',fiberGroup);
disp(ME);
clear ME
% fprintf('Can"t load the fiber group - It might be empty. Skipping.\n');
end
else disp(['Fiber group: ' fiberGroup ' not found. Skipping...'])
end
end
else disp('No data found.');
end
end
end
% save the stats file.
fclose(fid1);
disp('DONE!');
return