forked from bigchem/retrosynthesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransformer.py
707 lines (550 loc) · 21.2 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
import sys
import datetime
import yaml
import math
import os
import re
import h5py
import numpy as np
import matplotlib.pyplot as plt
from rdkit import Chem
#suppress INFO, WARNING, and ERROR messages of Tensorflow
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
import tensorflow as tf
from tensorflow.keras import layers
from tensorflow.keras import backend as K
from tensorflow.keras.utils import plot_model
import argparse
from tqdm import tqdm
#custom layers
from layers import PositionLayer, MaskLayerLeft, \
MaskLayerRight, MaskLayerTriangular, \
SelfLayer, LayerNormalization
#seed = 0;
#tf.random.set_random_seed(seed);
#np.random.seed(seed);
config = tf.ConfigProto()
config.gpu_options.allow_growth = True;
K.set_session(tf.Session(config=config))
class suppress_stderr(object):
def __init__(self):
self.null_fds = [os.open(os.devnull,os.O_RDWR)]
self.save_fds = [os.dup(2)]
def __enter__(self):
os.dup2(self.null_fds[0],2)
def __exit__(self, *_):
os.dup2(self.save_fds[0],2)
for fd in self.null_fds + self.save_fds:
os.close(fd)
chars = " ^#%()+-./0123456789=@ABCDEFGHIKLMNOPRSTVXYZ[\\]abcdefgilmnoprstuy$"; #UPTSO
#chars = " ^#()+-./123456789=@BCFHIKLMNOPSZ[\\]cdegilnorstu$"; #nadine
vocab_size = len(chars);
char_to_ix = { ch:i for i,ch in enumerate(chars) }
ix_to_char = { i:ch for i,ch in enumerate(chars) }
MAX_PREDICT = 160; #max for nadine database
TOPK = 1;
NUM_EPOCHS = 1000;
BATCH_SIZE = 64
N_HIDDEN = 512
EMBEDDING_SIZE = 64;
KEY_SIZE = EMBEDDING_SIZE;
WARMUP = 16000.0;
L_FACTOR = 20.0;
epochs_to_save = [600, 700, 800, 900, 999];
def GetPosEncodingMatrix(max_len = MAX_PREDICT, d_emb = EMBEDDING_SIZE):
pos_enc = np.array([
[pos / np.power(10000, 2 * (j // 2) / d_emb) for j in range(d_emb)]
for pos in range(max_len)
])
pos_enc[1:, 0::2] = np.sin(pos_enc[1:, 0::2])
pos_enc[1:, 1::2] = np.cos(pos_enc[1:, 1::2])
return pos_enc
GEO = GetPosEncodingMatrix();
def gen_right(data):
batch_size = len(data);
nr = len(data[0]) + 1;
y = np.zeros((batch_size, nr), np.int8);
my = np.zeros((batch_size, nr), np.int8);
py = np.zeros((batch_size, nr, EMBEDDING_SIZE), np.float32);
for cnt in range(batch_size):
reactants = "^" + data[cnt];
for i, p in enumerate(reactants):
y[cnt, i] = char_to_ix[p];
py[cnt, i] = GEO[i+1, :EMBEDDING_SIZE ];
my[cnt, :i+1] =1;
return y, my, py;
def gen_left(data):
batch_size = len(data);
nl = len(data[0]) + 2;
x = np.zeros((batch_size, nl), np.int8);
mx = np.zeros((batch_size, nl), np.int8);
px = np.zeros((batch_size, nl, EMBEDDING_SIZE), np.float32);
for cnt in range(batch_size):
product = "^" + data[cnt] + "$";
for i, p in enumerate(product):
x[cnt, i] = char_to_ix[ p] ;
px[cnt, i] = GEO[i+1, :EMBEDDING_SIZE ];
mx[cnt, :i+1] = 1;
return x, mx, px;
def gen_right(data):
batch_size = len(data);
nr = len(data[0]) + 1;
y = np.zeros((batch_size, nr), np.int8);
my = np.zeros((batch_size, nr), np.int8);
py = np.zeros((batch_size, nr, EMBEDDING_SIZE), np.float32);
for cnt in range(batch_size):
reactants = "^" + data[cnt];
for i, p in enumerate(reactants):
y[cnt, i] = char_to_ix[p];
py[cnt, i] = GEO[i+1, :EMBEDDING_SIZE ];
my[cnt, :i+1] =1;
return y, my, py;
def gen_data(data, progn = False):
batch_size = len(data);
#search for max lengths
left = [];
right = [];
for line in data:
line = line.split(">");
#left.append( list(filter(None, re.split(token_regex, line[0].strip() ))) );
left.append( line[0].strip());
if len(line) > 1:
#right.append( list(filter(None, re.split(token_regex, line[2].strip() ))) );
right.append ( line[2].strip() );
else: right.append("")
nl = len(left[0]);
nr = len(right[0]);
for i in range(1, batch_size, 1):
nl_a = len(left[i]);
nr_a = len(right[i]);
if nl_a > nl:
nl = nl_a;
if nr_a > nr:
nr = nr_a;
#add start and end symbols
nl += 2;
nr += 1;
#products
x = np.zeros((batch_size, nl), np.int8);
mx = np.zeros((batch_size, nl), np.int8);
#reactants
y = np.zeros((batch_size, nr), np.int8);
my = np.zeros((batch_size, nr), np.int8);
#for output
z = np.zeros((batch_size, nr, vocab_size), np.int8);
for cnt in range(batch_size):
product = "^" + left[cnt] + "$";
reactants = "^" + right[cnt];
if progn == False: reactants += "$";
for i, p in enumerate(product):
x[cnt, i] = char_to_ix[ p] ;
mx[cnt, :i+1] = 1;
for i in range( (len(reactants) -1) if progn == False else len(reactants ) ):
y[cnt, i] = char_to_ix[ reactants[i]];
if progn == False:
z[cnt, i, char_to_ix[ reactants[i + 1] ]] = 1;
my[cnt, :i+1] =1;
return [x, mx, y, my], z;
def data_generator(fname):
f = open(fname, "r");
lines = [];
while True:
for i in range(BATCH_SIZE):
line = f.readline();
if len(line) == 0:
f.seek(0,0);
if len(lines) > 0:
yield gen_data(lines);
lines = [];
break;
lines.append(line);
if len(lines) > 0:
yield gen_data(lines);
lines = [];
def gen(mdl, product):
res = "";
for i in range(1, 70):
lines = [];
lines.append( product + " >> " + res);
v = gen_data(lines, True);
n = mdl.predict(v[0]);
p = n[0 , i-1, :];
w = np.argmax(p);
if w == char_to_ix["$"]:
break;
res += ix_to_char[w];
return res;
def generate2(product, T, res, mdl):
lines = [];
lines.append(product + " >> " + res);
v = gen_data(lines, True);
i = len(res);
n = mdl.predict(v[0]);
#increase temperature during decoding steps
p = n[0, i, :] / T;
p = np.exp(p) / np.sum(np.exp(p));
return p;
def gen_greedy(mdl_encoder, mdl_decoder, T, product):
product_encoded, product_mask = mdl_encoder(product);
res = "";
score = 0.0;
for i in range(1, MAX_PREDICT):
p = mdl_decoder(res, product_encoded, product_mask, T);
w = np.argmax(p);
score -= math.log10( np.max(p));
if w == char_to_ix["$"]:
break;
res += ix_to_char[w];
reags = res.split(".");
sms = set() ;
with suppress_stderr():
for r in reags:
r = r.replace("$", "");
m = Chem.MolFromSmiles(r);
if m is not None:
sms.add(Chem.MolToSmiles(m));
if len(sms):
return [sorted(list(sms)), score ];
return ["", 0.0];
def gen_beam(mdl_encoder, mdl_decoder, T, product, beam_size = 1):
product_encoded, product_mask = mdl_encoder(product);
if beam_size == 1:
return [gen_greedy(mdl_encoder, mdl_decoder, T, product)] ;
lines = [];
scores = [];
final_beams = [];
for i in range(beam_size):
lines.append("");
scores.append(0.0);
for step in range(MAX_PREDICT):
if step == 0:
p = mdl_decoder("", product_encoded, product_mask, T);
nr = np.zeros((vocab_size, 2));
for i in range(vocab_size):
nr [i ,0 ] = -math.log10(p[i]);
nr [i ,1 ] = i;
else:
cb = len(lines);
nr = np.zeros(( cb * vocab_size, 2));
for i in range(cb):
p = mdl_decoder(lines[i], product_encoded, product_mask, T);
for j in range(vocab_size):
nr[ i* vocab_size + j, 0] = -math.log10(p[j]) + scores[i];
nr[ i* vocab_size + j, 1] = i * 100 + j;
y = nr [ nr[:, 0].argsort() ] ;
new_beams = [];
new_scores = [];
for i in range(beam_size):
c = ix_to_char[ y[i, 1] % 100 ];
beamno = int( y[i, 1] ) // 100;
if c == '$':
added = lines[beamno] + c;
if added != "$":
final_beams.append( [ lines[beamno] + c, y[i,0]]);
beam_size -= 1;
else:
new_beams.append( lines[beamno] + c );
new_scores.append( y[i, 0]);
lines = new_beams;
scores = new_scores;
if len(lines) == 0: break;
for i in range(len(final_beams)):
final_beams[i][1] = final_beams[i][1] / len(final_beams[i][0]);
final_beams = list(sorted(final_beams, key=lambda x:x[1]))[:5];
answer = [];
for k in range(5):
reags = set(final_beams[k][0].split("."));
sms = set();
with suppress_stderr():
for r in reags:
r = r.replace("$", "");
m = Chem.MolFromSmiles(r);
if m is not None:
sms.add(Chem.MolToSmiles(m));
#print(sms);
if len(sms):
answer.append([sorted(list(sms)), final_beams[k][1] ]);
return answer;
def validate(ftest, mdl_encoder, mdl_decoder, T, beam_size):
NTEST = sum(1 for line in open(ftest,"r"));
fv = open(ftest, "r");
cnt = 0;
ex_1 = 0;
ex_3 = 0;
ex_5 = 0;
for step in tqdm(range( NTEST )):
line = fv.readline();
if len(line) == 0: break;
reaction = line.split(">");
product = reaction[0].strip();
reagents = reaction[2].strip();
answer = [];
reags = set(reagents.split("."));
sms = set();
with suppress_stderr():
for r in reags:
m = Chem.MolFromSmiles(r);
if m is not None:
sms.add(Chem.MolToSmiles(m));
if len(sms):
answer = sorted(list(sms));
if len(answer) == 0:
continue;
cnt += 1;
beams = [];
try:
beams = gen_beam(mdl_encoder, mdl_decoder, T, product, beam_size);
except KeyboardInterrupt:
print ("\nExact: ", T, ex_1 / cnt * 100.0, ex_3 / cnt * 100.0, ex_5 * 100.0 / cnt, cnt);
return;
except:
pass;
if len (beams) == 0:
continue;
answer_s = set(answer);
ans = [];
for k in range(len(beams)):
ans.append([ beams[k][0], beams[k][1] ]);
for step, beam in enumerate(ans):
right = answer_s.intersection(set(beam[0]));
if len(right) == 0: continue;
if len(right) == len(answer):
if step == 0:
ex_1 += 1;
ex_3 += 1;
ex_5 += 1;
print("CNT: ", cnt, ex_1 /cnt *100.0, answer, beam[1], beam[1] / len(".".join(answer)) , 1.0 );
break;
if step < 3:
ex_3 += 1;
ex_5 += 1;
break;
if step < 5:
ex_5 += 1;
break;
break;
fv.close();
print ("Exact: ", T, ex_1 / cnt * 100.0, ex_3 / cnt * 100.0, ex_5 * 100.0 / cnt, cnt);
return;
def buildNetwork(n_block, n_self):
print("Building network ...");
#product
l_in = layers.Input( shape= (None,));
l_mask = layers.Input( shape= (None,));
#reagents
l_dec = layers.Input(shape =(None,)) ;
l_dmask = layers.Input(shape =(None,));
#positional encodings for product and reagents, respectively
l_pos = PositionLayer(EMBEDDING_SIZE)(l_mask);
l_dpos = PositionLayer(EMBEDDING_SIZE)(l_dmask);
l_emask = MaskLayerRight()([l_dmask, l_mask]);
l_right_mask = MaskLayerTriangular()(l_dmask);
l_left_mask = MaskLayerLeft()(l_mask);
#encoder
l_voc = layers.Embedding(input_dim = vocab_size, output_dim = EMBEDDING_SIZE, input_length = None);
l_embed = layers.Add()([ l_voc(l_in), l_pos]);
l_embed = layers.Dropout(rate = 0.1)(l_embed);
for layer in range(n_block):
#self attention
l_o = [ SelfLayer(EMBEDDING_SIZE, KEY_SIZE) ([l_embed, l_embed, l_embed, l_left_mask]) for i in range(n_self)];
l_con = layers.Concatenate()(l_o);
l_dense = layers.TimeDistributed(layers.Dense(EMBEDDING_SIZE)) (l_con);
l_drop = layers.Dropout(rate=0.1)(l_dense);
l_add = layers.Add()( [l_drop, l_embed]);
l_att = LayerNormalization()(l_add);
#position-wise
l_c1 = layers.Conv1D(N_HIDDEN, 1, activation='relu')(l_att);
l_c2 = layers.Conv1D(EMBEDDING_SIZE, 1)(l_c1);
l_drop = layers.Dropout(rate = 0.1)(l_c2);
l_ff = layers.Add()([l_att, l_drop]);
l_embed = LayerNormalization()(l_ff);
#bottleneck
l_encoder = l_embed;
l_embed = layers.Add()([l_voc(l_dec), l_dpos]);
l_embed = layers.Dropout(rate = 0.1)(l_embed);
for layer in range(n_block):
#self attention
l_o = [ SelfLayer(EMBEDDING_SIZE, KEY_SIZE)([l_embed, l_embed, l_embed, l_right_mask]) for i in range(n_self)];
l_con = layers.Concatenate()(l_o);
l_dense = layers.TimeDistributed(layers.Dense(EMBEDDING_SIZE)) (l_con);
l_drop = layers.Dropout(rate=0.1)(l_dense);
l_add = layers.Add()( [l_drop, l_embed]);
l_att = LayerNormalization()(l_add);
#attention to the encoder
l_o = [ SelfLayer(EMBEDDING_SIZE, KEY_SIZE)([l_att, l_encoder, l_encoder, l_emask]) for i in range(n_self)];
l_con = layers.Concatenate()(l_o);
l_dense = layers.TimeDistributed(layers.Dense(EMBEDDING_SIZE)) (l_con);
l_drop = layers.Dropout(rate=0.1)(l_dense);
l_add = layers.Add()( [l_drop, l_att]);
l_att = LayerNormalization()(l_add);
#position-wise
l_c1 = layers.Conv1D(N_HIDDEN, 1, activation='relu')(l_att);
l_c2 = layers.Conv1D(EMBEDDING_SIZE, 1)(l_c1);
l_drop = layers.Dropout(rate = 0.1)(l_c2);
l_ff = layers.Add()([l_att, l_drop]);
l_embed = LayerNormalization()(l_ff);
l_out = layers.TimeDistributed(layers.Dense(vocab_size,
use_bias=False)) (l_embed);
mdl = tf.keras.Model([l_in, l_mask, l_dec, l_dmask], l_out);
def masked_loss(y_true, y_pred):
loss = tf.nn.softmax_cross_entropy_with_logits_v2(labels=y_true, logits=y_pred);
mask = tf.cast(tf.not_equal(tf.reduce_sum(y_true, -1), 0), 'float32');
loss = tf.reduce_sum(loss * mask, -1) / tf.reduce_sum(mask, -1);
loss = K.mean(loss);
return loss;
def masked_acc(y_true, y_pred):
mask = tf.cast(tf.not_equal(tf.reduce_sum(y_true, -1), 0), 'float32');
eq = K.cast(K.equal(K.argmax(y_true, axis=-1), K.argmax(y_pred, axis = -1)), 'float32');
eq = tf.reduce_sum(eq * mask, -1) / tf.reduce_sum(mask, -1);
eq = K.mean(eq);
return eq;
mdl.compile(optimizer = 'adam', loss = masked_loss, metrics=['accuracy', masked_acc]);
#mdl.summary();
#Divide the graph for faster execution. First, we calculate encoder's values.
#Then we use encoder's values and the product mask as additional decoder's input.
def mdl_encoder(product):
v = gen_left([product]);
enc = l_encoder.eval( feed_dict = {l_in : v[0], l_mask : v[1], l_pos : v[2] } );
return enc, v[1];
#And the decoder
def mdl_decoder(res, product_encoded, product_mask, T = 1.0):
v = gen_right([res]);
d = l_out.eval( feed_dict = {l_encoder : product_encoded, l_dec : v[0],
l_dmask : v[1], l_mask : product_mask, l_dpos : v[2]} );
prob = d[0, len(res), :] / T;
prob = np.exp(prob) / np.sum(np.exp(prob));
return prob;
return mdl, mdl_encoder, mdl_decoder;
def main():
parser = argparse.ArgumentParser(description='Transformer retrosynthesis model.')
parser.add_argument('--layers', type=int, default =3,
help='Number of layers in encoder\'s module. Default 3.');
parser.add_argument('--heads', type=int, default =10,
help='Number of attention heads. Default 10.');
parser.add_argument('--validate', action='store', type=str, help='Validation regime.', required=False);
parser.add_argument('--predict', action='store', type=str, help='File to predict.', required=False);
parser.add_argument('--train', action='store', type=str, help='File to train.', required=False);
parser.add_argument('--model', type=str, default ='../models/retrosynthesis-long.h5', help='A model to be used during validation. Default file ../models/retrosynthesis-long.h5', required=False);
parser.add_argument('--temperature', type=float, default =1.2, help='Temperature for decoding. Default 1.2', required=False);
parser.add_argument('--beam', type=int, default =5, help='Beams size. Default 5. Must be 1 meaning greedy search or greater or equal 5.', required=False);
parser.add_argument('--retrain', action='store', type=str, help='File with initial weights.', required=False);
args = parser.parse_args();
mdl, mdl_encoder, mdl_decoder = buildNetwork(args.layers, args.heads);
if args.validate is not None:
mdl.load_weights(args.model);
with K.get_session().as_default():
acc= validate(args.validate, mdl_encoder, mdl_decoder, args.temperature, args.beam);
sys.exit(0);
if args.predict is not None:
mdl.load_weights( args.model);
with K.get_session().as_default():
NTEST = sum(1 for line in open(args.predict,"r"));
fv = open(args.predict, "r");
for step in range( NTEST ):
line = fv.readline();
if len(line) == 0:
break;
product = line.split(">")[0].strip();
beams = [];
try:
beams = gen_beam(mdl_encoder, mdl_decoder, args.temperature, product, args.beam);
except KeyboardInterrupt:
break;
except:
pass;
if len(beams):
print(product, ">>");
for i in range(len(beams)):
print("\t", ".".join(beams[i][0]), beams[i][1]);
else:
print(product, ">>\n\n");
sys.exit(0);
retrain = False;
if args.retrain is not None:
retrain = True;
mdl.load_weights(args.retrain);
epochs_to_save = [90, 91, 92, 93, 94, 95, 96, 97, 98, 99];
#evaluate before training
def printProgress():
print("");
for t in ["CN1CCc2n(CCc3cncnc3)c3ccc(C)cc3c2C1",
"Clc1ccc2n(CC(c3ccc(F)cc3)(O)C(F)(F)F)c3CCN(C)Cc3c2c1",
"Ic1ccc2n(CC(=O)N3CCCCC3)c3CCN(C)Cc3c2c1"]:
res = gen(mdl, t);
print(t, " >> ", res);
printProgress();
try:
os.mkdir("storage");
except:
pass;
print("Training ...")
class GenCallback(tf.keras.callbacks.Callback):
def __init__(self, eps=1e-6, **kwargs):
self.steps = 0;
self.warm = WARMUP;
if retrain == True:
self.steps = self.warm + 30;
def on_batch_begin(self, batch, logs={}):
self.steps += 1;
lr = L_FACTOR * min(1.0, self.steps / self.warm) / max(self.steps, self.warm);
K.set_value(self.model.optimizer.lr, lr)
def on_epoch_end(self, epoch, logs={}):
printProgress();
if epoch in epochs_to_save:
mdl.save_weights("tr-" + str(epoch) + ".h5", save_format="h5");
if epoch % 100 == 0 and epoch > 0:
self.steps = self.warm - 1;
try:
train_file = args.train;
NTRAIN = sum(1 for line in open(train_file));
print("Number of points: ", NTRAIN);
callback = [ GenCallback() ];
history = mdl.fit_generator( generator = data_generator(train_file),
steps_per_epoch = int(math.ceil(NTRAIN / BATCH_SIZE)),
epochs = NUM_EPOCHS if retrain == False else 100,
use_multiprocessing=False,
shuffle = True,
callbacks = callback);
print("Averaging weights");
f = [];
for i in epochs_to_save:
f.append(h5py.File("tr-" + str(i) + ".h5", "r+"));
keys = list(f[0].keys());
for key in keys:
groups = list(f[0][key]);
if len(groups):
for group in groups:
items = list(f[0][key][group].keys());
for item in items:
data = [];
for i in range(len(f)):
data.append(f[i][key][group][item]);
avg = np.mean(data, axis = 0);
del f[0][key][group][item];
f[0][key][group].create_dataset(item, data=avg);
for fp in f:
fp.close();
for i in epochs_to_save[1:]:
os.remove("tr-" + str(i) + ".h5");
os.rename("tr-" + str(epochs_to_save[0]) + ".h5", "final.h5");
print("Final weights are in the file: final.h5");
# summarize history for accuracy
plt.plot(history.history['masked_acc'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.savefig("accuracy.pdf");
plt.clf();
# summarize history for loss
plt.plot(history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.savefig("loss.pdf");
plt.clf();
except KeyboardInterrupt:
pass;
if __name__ == '__main__':
main();