Skip to content

Latest commit

 

History

History
86 lines (61 loc) · 2.54 KB

README.md

File metadata and controls

86 lines (61 loc) · 2.54 KB

DPM-MedImgEnhance

Pre-trained Diffusion Models for Plug-and-Play Medical Image Enhancement

Installation

Dataset

Resize each 2D slice to 256x256x3 and save it as a PNG image.

Training

  • CT model
MODEL_FLAGS="--image_size 256 --num_channels 64 --num_res_blocks 3 --num_heads 1"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear"
TRAIN_FLAGS="--lr 1e-4 --batch_size 16"

python scripts/image_train.py --data_dir ../NormalDose_png_data_path --log_dir ./work_dir/CT256 $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS
  • Heart MR model
MODEL_FLAGS="--image_size 256 --num_channels 64 --num_res_blocks 3 --num_heads 1"
DIFFUSION_FLAGS="--diffusion_steps 1000 --noise_schedule linear"
TRAIN_FLAGS="--lr 1e-4 --batch_size 16"

python scripts/image_train.py --data_dir ../ACDC-MMs_png_data_path --log_dir ./work_dir/MR256 $MODEL_FLAGS $DIFFUSION_FLAGS $TRAIN_FLAGS

Inference

Download the checkpoints here and put them to ckpt folder

  • CT model

Run

python CT_main.py
  • Heart MR model

Run

python MR_main.py

Acknowledgment

We thank the IDDPM, guided-diffusion, and DDNM as their implementation served as the basis for our work. We highly appreciate Jiwen Yu, who provided invaluable guidance and support. We also thank the organizers of AAPM Low Dose CT Grand Challenge, ACDC, MMs, and CMRxMothion for making the datasets publicly available.

@InProceedings{DPM-MedImgEnhance,
	author="Ma, Jun
	and Zhu, Yuanzhi
	and You, Chenyu
	and Wang, Bo",
	editor="Greenspan, Hayit
	and Madabhushi, Anant
	and Mousavi, Parvin
	and Salcudean, Septimiu
	and Duncan, James
	and Syeda-Mahmood, Tanveer
	and Taylor, Russell",
	title="Pre-trained Diffusion Models for Plug-and-Play Medical Image Enhancement",
	booktitle="Medical Image Computing and Computer Assisted Intervention -- MICCAI 2023",
	year="2023",
	publisher="Springer Nature Switzerland",
	address="Cham",
	pages="3--13",
}