-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathinfer_vis.py
1196 lines (1045 loc) · 40 KB
/
infer_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# Copyright (c) 2023 Shihao Ma, Haotian Cui, WangLab @ U of T
# inference and visualization
from io import StringIO
import os
import shutil
import sys
import yaml
import numpy as np
import pandas as pd
from datetime import datetime
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from torch.optim.lr_scheduler import CosineAnnealingLR
from sklearn.metrics import roc_auc_score, mean_squared_error, mean_absolute_error
from sklearn.metrics import (
accuracy_score,
precision_score,
recall_score,
f1_score,
)
from sklearn.metrics import confusion_matrix
from scipy.stats import pearsonr
from rdkit import Chem
import rdkit.Chem.Draw as Draw
import matplotlib
from matplotlib import pyplot as plt
import umap
from dataset.dataset_test import MolTestDatasetWrapper, MolTestDataset
from utils.plot import _image_scatter, facecolors_customize
from utils.constants import (
R2_to_type,
R3_to_type,
R2_to_chain_length,
R3_to_chain_length,
)
apex_support = False
try:
sys.path.append("./apex")
from apex import amp
apex_support = True
except:
print(
"Please install apex for mixed precision training from: https://github.com/NVIDIA/apex"
)
apex_support = False
class Normalizer(object):
"""Normalize a Tensor and restore it later."""
def __init__(self, tensor):
"""tensor is taken as a sample to calculate the mean and std"""
self.mean = torch.mean(tensor)
self.std = torch.std(tensor)
def norm(self, tensor):
return (tensor - self.mean) / self.std
def denorm(self, normed_tensor):
return normed_tensor * self.std + self.mean
def state_dict(self):
return {"mean": self.mean, "std": self.std}
def load_state_dict(self, state_dict):
self.mean = state_dict["mean"]
self.std = state_dict["std"]
def get_desc_cols(fname):
"""Get the descriptor columns from a csv file."""
df = pd.read_csv(fname)
return [
col
for col in df.columns
if col not in ["smiles", "expt_Hela", "expt_Raw", "label", "labels"]
]
class Inference(object):
def __init__(self, dataset, config):
self.config = config
self.device = self._get_device()
current_time = datetime.now().strftime("%b%d_%H-%M-%S")
self.log_dir = os.path.join("finetune", config["model_to_evaluate"])
self.dataset = dataset
self.criterion = nn.MSELoss()
def _get_device(self):
if torch.cuda.is_available() and self.config["gpu"] != "cpu":
device = self.config["gpu"]
torch.cuda.set_device(device)
else:
device = "cpu"
print("Running on:", device)
return device
def _step(self, model, data, n_iter):
# get the prediction
__, pred = model(data) # [N,C]
if self.config["dataset"]["task"] == "classification":
loss = self.criterion(pred, data.y.flatten())
elif self.config["dataset"]["task"] == "regression":
if self.normalizer:
loss = self.criterion(pred, self.normalizer.norm(data.y))
else:
loss = self.criterion(pred, data.y)
return loss
def inference(self):
data_loader = self.dataset.get_fulldata_loader()
self.normalizer = None
from models.agile_finetune import AGILE
model = AGILE(self.config["dataset"]["task"], **self.config["model"]).to(
self.device
)
model = self._load_pre_trained_weights(model)
self.model = model
layer_list = []
for name, param in model.named_parameters():
if "pred_" in name:
print(name, param.requires_grad)
layer_list.append(name)
params = list(
map(
lambda x: x[1],
list(filter(lambda kv: kv[0] in layer_list, model.named_parameters())),
)
)
base_params = list(
map(
lambda x: x[1],
list(
filter(lambda kv: kv[0] not in layer_list, model.named_parameters())
),
)
)
# # save config file
# _save_config_file(model_checkpoints_folder)
predictions = []
embeddings = []
labels = []
with torch.no_grad():
model.eval()
test_loss = 0.0
num_data = 0
for bn, data in enumerate(data_loader):
data = data.to(self.device)
emb, pred = model(data)
loss = self._step(model, data, bn)
test_loss += loss.item() * data.y.size(0)
num_data += data.y.size(0)
if self.normalizer:
pred = self.normalizer.denorm(pred)
if self.config["dataset"]["task"] == "classification":
pred = F.softmax(pred, dim=-1)
if self.device == "cpu":
predictions.extend(pred.detach().numpy())
embeddings.extend(emb.detach().numpy())
labels.extend(data.y.flatten().numpy())
else:
predictions.extend(pred.cpu().detach().numpy())
embeddings.extend(emb.cpu().detach().numpy())
labels.extend(data.y.cpu().flatten().numpy())
test_loss /= num_data
model.train()
if self.config["dataset"]["task"] == "regression":
predictions = np.array(predictions).flatten()
embeddings = np.array(embeddings)
labels = np.array(labels)
if self.config["task_name"] in ["qm7", "qm8", "qm9"]:
self.mae = mean_absolute_error(labels, predictions)
else:
self.rmse = mean_squared_error(labels, predictions, squared=False)
self.corr = pearsonr(labels, predictions)[0]
print(
"Test loss:",
test_loss,
"Test RMSE:",
self.rmse,
"Test Corr:",
self.corr,
)
elif self.config["dataset"]["task"] == "classification":
predictions = np.array(predictions)
embeddings = np.array(embeddings)
labels = np.array(labels)
self.roc_auc = roc_auc_score(labels, predictions[:, 1])
print("Test loss:", test_loss, "Test ROC AUC:", self.roc_auc)
# save predictions and labels to csv
all_smiles = self.dataset.all_smiles
pred_to_save = predictions if predictions.ndim == 1 else predictions[:, 1]
assert len(all_smiles) == len(pred_to_save)
df = pd.DataFrame(
{
"smiles": all_smiles,
"predictions": pred_to_save,
"labels": labels,
"pred_rank": (-pred_to_save).argsort().argsort() + 1,
"label_rank": (-labels).argsort().argsort() + 1,
}
)
df.to_csv(
os.path.join(self.log_dir, f"preds_on_{config['task_name']}.csv"),
index=False,
)
return predictions, embeddings, labels
def _eval_stratified_classes(
self,
labels: np.ndarray,
predictions: np.ndarray,
q=6,
use_set="all",
):
"""
Evaluate the stratified classes of the predictions. If labels and predictions
are intergers, will directly view them as categories. If labels and predictions
are floats, will first convert them to categories by stratifying them.
The stratification is done by sorting the predictions and labels in descending
order and then split them into 5 groups with equal number of samples based
on the quantiles.
Args:
labels (np.ndarray): Labels of the samples
predictions (np.ndarray): Predictions of the samples
q (int): Number of quantiles to split the samples into. Defaults to 4.
use_set (str): The set to evaluate on, choices from train, test, all.
Defaults to "test".
"""
# fmt: off
test_set_index = [45, 46, 47, 48, 49, 55, 56, 57, 58, 59, 145, 146, 147, 148, 149, 155, 156, 157,
158, 159, 245, 246, 247, 248, 249, 255, 256, 257, 258, 259, 345, 346, 347, 348, 349, 355, 356,
357, 358, 359, 445, 446, 447, 448, 449, 455, 456, 457, 458, 459, 545, 546, 547, 548, 549, 555,
556, 557, 558, 559, 645, 646, 647, 648, 649, 655, 656, 657, 658, 659, 745, 746, 747, 748, 749,
755, 756, 757, 758, 759, 845, 846, 847, 848, 849, 855, 856, 857, 858, 859, 945, 946, 947, 948,
949, 955, 956, 957, 958, 959, 1045, 1046, 1047, 1048, 1049, 1055, 1056, 1057, 1058, 1059, 1145,
1146, 1147, 1148, 1149, 1155, 1156, 1157, 1158, 1159]
valid_set_index = [65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 165, 166, 167, 168, 169, 170, 171, 172,
173, 174, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 365, 366, 367, 368, 369, 370, 371,
372, 373, 374, 465, 466, 467, 468, 469, 470, 471, 472, 473, 474, 565, 566, 567, 568, 569, 570,
571, 572, 573, 574, 665, 666, 667, 668, 669, 670, 671, 672, 673, 674, 765, 766, 767, 768, 769,
770, 771, 772, 773, 774, 865, 866, 867, 868, 869, 870, 871, 872, 873, 874, 965, 966, 967, 968,
969, 970, 971, 972, 973, 974, 1065, 1066, 1067, 1068, 1069, 1070, 1071, 1072, 1073, 1074, 1165,
1166, 1167, 1168, 1169, 1170, 1171, 1172, 1173, 1174]
# fmt: on
if use_set == "test":
labels = labels[test_set_index]
predictions = predictions[test_set_index]
elif use_set == "valid":
labels = labels[valid_set_index]
predictions = predictions[valid_set_index]
elif use_set == "valid_test":
labels = labels[valid_set_index + test_set_index]
predictions = predictions[valid_set_index + test_set_index]
elif use_set == "train":
labels = np.delete(labels, test_set_index + valid_set_index)
predictions = np.delete(predictions, test_set_index + valid_set_index)
# if labels and predictions are floats, convert them to categories
if not isinstance(labels[0], int) and not isinstance(predictions[0], int):
labels = pd.qcut(labels, q, labels=False, duplicates="drop")
predictions = pd.qcut(predictions, q, labels=False, duplicates="drop")
# calculate the number of samples in each category
num_samples = len(labels)
num_samples_in_each_category = [
len(labels[labels == i]) for i in np.unique(labels)
]
assert len(labels) == len(predictions)
print(
"Number of samples in each category:",
num_samples_in_each_category,
"Total number of samples:",
num_samples,
)
# compute accuracy, precision, recall, macro F1 score
acc = accuracy_score(labels, predictions)
precision = precision_score(labels, predictions, average="macro")
recall = recall_score(labels, predictions, average="macro")
f1_macro = f1_score(labels, predictions, average="macro")
f1_micro = f1_score(labels, predictions, average="micro")
print(f"Accuracy: {acc:.4f}, Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}, F1_macro: {f1_macro:.4f}, F1_micro: {f1_micro:.4f}")
self.stratified_class_results = {
"accuracy": acc,
"precision": precision,
"recall": recall,
"macro f1": f1_macro,
"micro f1": f1_micro,
}
import csv
# specify the file name
filename = os.path.join(
self.log_dir,
f"matrics_{use_set}_{self.config['task_name']}.csv",
)
# writing to csv file
with open(filename, 'w') as csvfile:
# creating a csv writer object
csvwriter = csv.writer(csvfile)
# writing the headers
csvwriter.writerow(self.stratified_class_results.keys())
# writing the data rows
csvwriter.writerow(self.stratified_class_results.values())
# compute and plot confusion matrix using seaborn api
labels_to_show = np.sort(np.unique(labels))
num_cates = len(labels_to_show)
cm = confusion_matrix(labels, predictions, labels=labels_to_show)
cm = cm.astype("float") / cm.sum(axis=1)[:, np.newaxis]
import seaborn as sns
sns.set_style("white")
sns.set_context("paper", font_scale=1.5)
fig, ax = plt.subplots(figsize=(10, 8))
sns.heatmap(
cm,
# cm[::-1, :], # reverse the y axis for better visualization
annot=True,
cmap="Blues",
fmt=".2f",
)
# ax.set_title("Confusion Matrix")
ax.set_xlabel("Predicted top k percentiles")
ax.set_ylabel("Actual top k percentiles")
# set the stick postions at num_cates + 1 positions
ax.set_xticks(np.linspace(0, num_cates, num_cates + 1))
ax.set_yticks(np.linspace(0, num_cates, num_cates + 1))
# set the tick labels
ax.set_xticklabels(
[
f"{i}%" if i != 0 else "Top"
for i in np.linspace(100, 0, num_cates + 1).astype(int)
]
)
ax.set_yticklabels(
[
f"{i}%" if i != 0 else ""
for i in np.linspace(100, 0, num_cates + 1).astype(int)
]
)
# ax.set_yticklabels(
# [
# (f"{i}%" if i != 0 else "Top") if i != 100 else ""
# for i in np.linspace(0, 100, num_cates + 1).astype(int)
# ]
# )
# fig, ax = plt.subplots(figsize=(8, 8))
# im = ax.imshow(cm, interpolation="nearest", cmap=plt.cm.Blues)
# ax.figure.colorbar(im, ax=ax)
# ax.set(
# xticks=np.arange(cm.shape[1]),
# yticks=np.arange(cm.shape[0]),
# xticklabels=np.unique(labels),
# yticklabels=np.unique(labels),
# title="Confusion matrix",
# ylabel="True label",
# xlabel="Predicted label",
# )
# # plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
# # Loop over data dimensions and create text annotations.
# fmt = ".2f"
# thresh = cm.max() / 2.0
# for i in range(cm.shape[0]):
# for j in range(cm.shape[1]):
# ax.text(
# j,
# i,
# format(cm[i, j], fmt),
# ha="center",
# va="center",
# color="white" if cm[i, j] > thresh else "black",
# )
# fig.tight_layout()
self.stratified_class_results["confusion matrix"] = cm
self.stratified_class_results["confusion matrix fig"] = fig
# save the confusion matrix
fig.savefig(
os.path.join(
self.log_dir,
f"confusion_matrix_{use_set}_{self.config['task_name']}.png",
)
)
fig.savefig(
os.path.join(
self.log_dir,
f"confusion_matrix_{use_set}_{self.config['task_name']}.svg",
),
format="svg",
)
def visualize(
self,
embeddings: np.ndarray,
labels: np.ndarray = None,
predictions: np.ndarray = None,
color_key: str = "labels",
) -> matplotlib.figure.Figure:
"""
Visualize the embeddings with UMAP
Args:
embeddings (np.ndarray): Raw embeddings to visualize
labels (np.ndarray, optional): Labels of the embeddings
predictions (np.ndarray, optional): Predictions values. Defaults to None.
color_key (str): Use which field to color the points. Defaults to "labels".
Returns:
matplotlib.figure.Figure
"""
if color_key == "labels":
color = labels
legend_name = "Efficiency"
elif color_key == "predictions":
color = predictions
legend_name = "Predicted efficiency"
if labels is not None and predictions is not None:
self._eval_stratified_classes(labels, predictions)
if predictions is not None and labels is not None:
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(24, 10))
else:
fig, ax1 = plt.subplots(figsize=(12, 10))
# umap visualization of embeddings with hue as labels
# reducer = umap.UMAP(n_neighbors=30, min_dist=1.0, spread=1.0)
# reducer = umap.UMAP(n_neighbors=60, min_dist=1.0, spread=1.0)
# reducer = umap.UMAP(n_neighbors=60, min_dist=1.0, spread=1.0, metric="cosine")
reducer = umap.UMAP(
n_neighbors=60,
min_dist=1.0,
spread=1.0,
metric="cosine",
random_state=12,
)
embedding = reducer.fit_transform(embeddings)
self.umap_emb = embedding
# customize cmap
# cmap_ = matplotlib.cm.get_cmap("Accent_r")
# make a cmap using three key colors
cmap_ = matplotlib.colors.LinearSegmentedColormap.from_list(
"mycmap",
# ["#44548c", "#5a448e", "#377280"],
# ["#5f6da0", "#735fa2", "#518692"],
# ["#5a448e", "#735fa2", "#cec6e1", "#bed5db", "#377280"],
# ["#5a448e", "#907fb7", "#709d7a", "#377280"],
["#cec6e1", "#bda3cd", "#907fb7", "#735fa2", "#5a448e"],
)
im = ax1.scatter(
embedding[:, 0],
embedding[:, 1],
c=color,
s=60 * 1000 / len(color),
cmap=cmap_,
alpha=0.9,
)
# remove ticks and spines
ax1.set(xticks=[], yticks=[])
ax1.set_title("UMAP projection of the dataset", fontsize=24)
ax1.spines["top"].set_visible(False)
ax1.spines["right"].set_visible(False)
ax1.spines["bottom"].set_visible(False)
ax1.spines["left"].set_visible(False)
cbar = fig.colorbar(
im,
ax=ax1,
# ticks=[i for i in np.linspace(np.min(color), np.max(color), 5)],
format="%.1f",
orientation="vertical",
shrink=0.5,
)
cbar.ax.tick_params(labelsize=16)
cbar.ax.set_ylabel(legend_name, rotation=270, fontsize=16, labelpad=20)
# correlation scatter plot bettwen labels and predictions
if predictions is not None and labels is not None:
ax2.scatter(
labels,
predictions,
s=60 * 1000 / len(color),
alpha=0.7,
)
ax2.set_title("Correlation between labels and predictions", fontsize=24)
ax2.set_xlabel("Labels", fontsize=16)
ax2.set_ylabel("Predictions", fontsize=16)
ax2.tick_params(axis="both", which="major", labelsize=16)
ax2.spines["top"].set_visible(False)
ax2.spines["right"].set_visible(False)
ax2.set_xlim([np.min(labels), np.max(labels)])
ax2.set_ylim([np.min(predictions), np.max(predictions)])
ax2.plot(
[np.min(labels), np.max(labels)],
[np.min(predictions), np.max(predictions)],
"r--",
)
# write the correlation coefficient on the plot
corr = pearsonr(labels, predictions)[0]
ax2.text(
0.7,
0.3,
f"Corr: {corr:.2f}",
transform=ax2.transAxes,
verticalalignment="top",
fontsize=16,
color="red",
)
return fig
def _load_pre_trained_weights(self, model):
try:
checkpoints_folder = os.path.join(
"./finetune", self.config["model_to_evaluate"], "checkpoints"
)
state_dict = torch.load(
os.path.join(checkpoints_folder, "model.pth"), map_location=self.device
)
# model.load_state_dict(state_dict)
model.load_my_state_dict(state_dict)
print("Loaded pre-trained model with success.")
except FileNotFoundError:
print("Pre-trained weights not found. Training from scratch.")
return model
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("checkpoint", type=str, help="Name of the checkpoint")
args = parser.parse_args()
# args = parser.parse_args(["Copy_Nov17_23-19-18_lnp_hela_with_feat_expt_Hela"])
config_file = os.path.join(
"./finetune", args.checkpoint, "checkpoints", "config_finetune.yaml"
)
config = yaml.load(open(config_file, "r"), Loader=yaml.FullLoader)
config["model_to_evaluate"] = args.checkpoint
if config["task_name"] == "lnp_hela_with_feat":
config["dataset"]["task"] = "regression"
config["dataset"][
"data_path"
] = "data/finetuning_set_smiles_plus_features.csv"
target_list = ["expt_Hela"]
config["dataset"]["feature_cols"] = get_desc_cols(
config["dataset"]["data_path"]
)
config["model"]["pred_additional_feat_dim"] = len(
config["dataset"]["feature_cols"]
)
elif config["task_name"] == "lnp_raw_with_feat":
config["dataset"]["task"] = "regression"
config["dataset"][
"data_path"
] = "data/finetuning_set_smiles_plus_features.csv"
target_list = ["expt_Raw"]
config["dataset"]["feature_cols"] = get_desc_cols(
config["dataset"]["data_path"]
)
config["model"]["pred_additional_feat_dim"] = len(
config["dataset"]["feature_cols"]
)
elif config["task_name"] == "smiles12000_with_feat":
config["dataset"]["task"] = "regression"
config["dataset"][
"data_path"
] = "data/candidate_set_smiles_plus_features.csv"
target_list = ["desc_ABC/10"]
config["dataset"]["feature_cols"] = get_desc_cols(
config["dataset"]["data_path"]
)
config["model"]["pred_additional_feat_dim"] = len(
config["dataset"]["feature_cols"]
)
config["headtail_label_file"] = ""
else:
raise ValueError("Undefined downstream task!")
print(config)
results_list = []
for target in target_list:
config["dataset"]["target"] = target
# result = main(config)
# results_list.append([target, result])
dataset = MolTestDatasetWrapper(config["batch_size"], **config["dataset"])
infer_agent = Inference(dataset, config)
pred, embs, labels = infer_agent.inference()
results_list.append(
{
"result_rmse": getattr(infer_agent, "rmse", None),
"result_corr": getattr(infer_agent, "corr", None),
}
)
if target.startswith("expt_"):
# experiment data with labels
fig = infer_agent.visualize(embs, labels, predictions=pred)
else:
fig = infer_agent.visualize(embs, predictions=pred, color_key="predictions")
df = pd.DataFrame(results_list)
df.to_csv(
os.path.join(
infer_agent.log_dir,
f"{config['model_to_evaluate']}_{config['task_name']}_result.csv",
),
mode="a",
index=False,
)
# save figure
fig.savefig(
os.path.join(
infer_agent.log_dir,
f"{config['model_to_evaluate']}_{config['task_name']}_umap.png",
)
)
# %% add head, tail labels
# This is the file that contains the head, tail labels for the candidate set for examing the head, tail length distribution
# You can input your own file here,
if "headtail_label_file" in config:
label_df = pd.read_csv(config["headtail_label_file"])
# verify data alignment
smiles_data_ = dataset.dataset.smiles_data
assert len(smiles_data_) == len(label_df)
for i in range(len(smiles_data_)):
assert smiles_data_[i] == label_df.iloc[i]["smiles"]
if "R1" not in label_df.columns:
tails1, heads, tails2 = label_df["label"].str.split(",", 2).str
label_df.insert(1, "R1", heads.str.split(":").str[1])
label_df.insert(2, "R2", tails1.str.split(":").str[1])
label_df.insert(3, "R3", tails2.str.split(":").str[1])
r1s = label_df["R1"].values
r2s = label_df["R2"].values
r3s = label_df["R3"].values
tail_type = np.array(
[R2_to_type[r2] + R3_to_type[r3] for r2, r3 in zip(r2s, r3s)]
)
r2_length = np.array([R2_to_chain_length[r2] for r2 in r2s])
r3_length = np.array([R3_to_chain_length[r3] for r3 in r3s])
all_tail_length = r2_length + r3_length
# %% plot
# for each category in r1s, select a color from tab20
head2color = {}
heads = np.unique(r1s)
# sort heads by the average preds per head
head2pred = {}
for head in heads:
head2pred[head] = np.mean(pred[r1s == head])
heads = sorted(heads, key=lambda x: head2pred[x], reverse=True)
for i, head in enumerate(heads):
head2color[head] = facecolors_customize[i] # plt.cm.tab20(i)
# for i, head in enumerate(heads):
# head2color[head] = plt.cm.tab20(i)
# if i >= 20:
# head2color[head] = plt.cm.tab20b(i - 10)
fig, ax = plt.subplots(figsize=(15, 10))
im = ax.scatter(
infer_agent.umap_emb[:, 0],
infer_agent.umap_emb[:, 1],
c=[head2color[head] for head in r1s],
# s=np.power(pred, 3),
s=60 * 100 / np.sqrt(len(infer_agent.umap_emb)),
# cmap="Spectral",
alpha=0.7,
# edgecolors="white",
)
# remove ticks and spines
ax.set(xticks=[], yticks=[])
# ax.set_title("UMAP projection of the dataset", fontsize=24)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["left"].set_visible(False)
# Shrink current axis by 20%
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
# # size legend
# handles, labels = im.legend_elements(
# prop="sizes", alpha=0.6, func=lambda x: x ** (1 / 3)
# )
# legend = ax.legend(
# handles,
# labels,
# loc="best",
# title="Predicted efficiency",
# fontsize=16,
# )
# ax.add_artist(legend)
# smiles_ = config["highlight_smiles"]
# mol = Chem.MolFromSmiles(smiles_)
# index = smiles_data_.index(smiles_)
# pil_img = Draw.MolToImage(mol, size=(150, 150))
# # draw an arrow pointing from the emb position to the image
# x = [infer_agent.umap_emb[index, 0]]
# y = [infer_agent.umap_emb[index, 1]]
# titles = [config["highlight_name"]]
# colors = ["#7f7f7f"]
# _image_scatter(x, y, [pil_img], titles, colors, ax, offset=(0.1, 0.9))
# legend for head group
from matplotlib import patches as mpatches
handles = [mpatches.Patch(color=head2color[head], label=head) for head in heads]
legend = ax.legend(
handles,
[head for head in heads],
loc="center left",
title="Head group\n(sorted by predicted efficiency)",
fontsize=16,
bbox_to_anchor=(1, 0.5),
)
fig.savefig(
os.path.join(
infer_agent.log_dir,
f"headwise_{config['model_to_evaluate']}_{config['task_name']}_umap.png",
)
)
# %% plot
# for each category in tail_type, select a color from tab20
tail2color = {}
for i, tail_ in enumerate(np.unique(tail_type)):
tail2color[tail_] = plt.cm.tab20(i)
if i >= 20:
tail2color[tail_] = plt.cm.tab20b(i - 10)
fig, ax = plt.subplots(figsize=(15, 10))
im = ax.scatter(
infer_agent.umap_emb[:, 0],
infer_agent.umap_emb[:, 1],
c=[tail2color[tail_] for tail_ in tail_type],
s=np.power(pred, 3),
cmap="Spectral",
alpha=0.4,
edgecolors="white",
)
# remove ticks and spines
ax.set(xticks=[], yticks=[])
# ax.set_title("UMAP projection of the dataset", fontsize=24)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["left"].set_visible(False)
# Shrink current axis by 20%
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
# size legend
handles, labels = im.legend_elements(
prop="sizes", alpha=0.6, func=lambda x: x ** (1 / 3)
)
legend = ax.legend(
handles,
labels,
loc="best",
title="Predicted efficiency",
fontsize=16,
)
ax.add_artist(legend)
# legend for tail group
from matplotlib import patches as mpatches
handles = [
mpatches.Patch(color=tail2color[tail], label=tail)
for tail in np.unique(tail_type)
]
legend = ax.legend(
handles,
[tail for tail in np.unique(tail_type)],
loc="center left",
title="Tail type",
fontsize=16,
bbox_to_anchor=(1, 0.5),
)
fig.savefig(
os.path.join(
infer_agent.log_dir,
f"tailwise_{config['model_to_evaluate']}_{config['task_name']}_umap.png",
)
)
# %% plot against tail length
features = {
"tail length": all_tail_length,
"R2 length": r2_length,
"R3 length": r3_length,
}
for feature_name, feature_ in features.items():
fig, ax = plt.subplots(figsize=(12, 10))
im = ax.scatter(
infer_agent.umap_emb[:, 0],
infer_agent.umap_emb[:, 1],
c=feature_,
s=np.power(pred, 3),
cmap="RdYlBu",
alpha=0.4,
edgecolors="white",
)
# remove ticks and spines
ax.set(xticks=[], yticks=[])
ax.set_title(f"UMAP colored by {feature_name}", fontsize=24)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["left"].set_visible(False)
# size legend
handles, labels = im.legend_elements(
prop="sizes", alpha=0.6, func=lambda x: x ** (1 / 3)
)
legend = ax.legend(
handles,
labels,
loc="best",
title="Predicted efficiency",
fontsize=16,
)
ax.add_artist(legend)
# color bar
cbar = fig.colorbar(
im,
ax=ax,
# format="%.1f",
orientation="vertical",
shrink=0.5,
)
cbar.ax.tick_params(labelsize=16)
cbar.ax.set_ylabel(feature_name, rotation=270, fontsize=16, labelpad=20)
fig.savefig(
os.path.join(
infer_agent.log_dir,
f"{feature_name}_{config['model_to_evaluate']}_{config['task_name']}_umap.png",
)
)
# %% plot against num of atoms
smiles_data_ = dataset.dataset.smiles_data
num_atoms = [Chem.MolFromSmiles(smiles).GetNumAtoms() for smiles in smiles_data_]
num_carbons = [smiles.count("C") for smiles in smiles_data_]
fig, ax = plt.subplots(figsize=(12, 10))
im = ax.scatter(
infer_agent.umap_emb[:, 0],
infer_agent.umap_emb[:, 1],
c=num_atoms,
s=np.power(pred, 3),
cmap="gnuplot2",
alpha=0.4,
edgecolors="white",
)
# remove ticks and spines
ax.set(xticks=[], yticks=[])
ax.set_title("UMAP projection of the dataset", fontsize=24)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["left"].set_visible(False)
# size legend
handles, labels = im.legend_elements(
prop="sizes", alpha=0.6, func=lambda x: x ** (1 / 3)
)
legend = ax.legend(
handles,
labels,
loc="best",
title="Predicted efficiency",
fontsize=16,
)
ax.add_artist(legend)
# color bar
cbar = fig.colorbar(
im,
ax=ax,
# format="%.1f",
orientation="vertical",
shrink=0.5,
)
cbar.ax.tick_params(labelsize=16)
cbar.ax.set_ylabel("num atoms", rotation=270, fontsize=16, labelpad=20)
fig.savefig(
os.path.join(
infer_agent.log_dir,
f"numatoms_{config['model_to_evaluate']}_{config['task_name']}_umap.png",
)
)
# %% plot against num of carbons
fig, ax = plt.subplots(figsize=(12, 10))
im = ax.scatter(
infer_agent.umap_emb[:, 0],
infer_agent.umap_emb[:, 1],
c=num_carbons,
s=np.power(pred, 3),
cmap="gnuplot2",
alpha=0.4,
edgecolors="white",
)
# remove ticks and spines
ax.set(xticks=[], yticks=[])
ax.set_title("UMAP projection of the dataset", fontsize=24)
ax.spines["top"].set_visible(False)
ax.spines["right"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.spines["left"].set_visible(False)
# size legend
handles, labels = im.legend_elements(
prop="sizes", alpha=0.6, func=lambda x: x ** (1 / 3)
)
legend = ax.legend(
handles,
labels,
loc="best",
title="Predicted efficiency",
fontsize=16,
)
ax.add_artist(legend)