🌟CV-01조🌟 Supershy 성주희, 한주희, 정재웅, 김혜지, 류경엽, 임서현
${PROJECT}
├── eda
│ ├── data_eda.ipynb
├── main
│ ├── README.md
│ ├── accuracy_loss_print.py
│ ├── dataset.py
│ ├── inference.py
│ ├── loss.py
│ ├── model.py
│ ├── requiremets.txt
│ ├── train.py
│ ├── train_single_multiple.py
│ ├── hard_voting.py
│ └── soft_voting.py
├── README.md
└── requiremets.txt
- dataset.py : This file contains dataset class for model training and validation
- inference.py : This file used for predict the model
- loss.py : This file defines the loss functions used during training
- model.py : This file defines the model
- README.md
- requirements.txt : contains the necessary packages to be installed
- train.py : This file used for training the model
Data EDA
- Use MaskSplitByProfileDataset
- Downsampling
- Stratified Kfold
Model
- Ensemble
Soft Voting
- Learn additional Fine Tuning based on the public pretrained model
EfficientNet
+ConvNext
+ConvNext(Stratified Kfold)
-
Initialize and update the server
su - source .bashrc
-
Create and Activate a virtual environment in the project directory
conda create -n env python=3.8 conda activate env
-
To deactivate and exit the virtual environment, simply run:
deactivate
To Insall the necessary packages liksted in requirements.txt
, run the following command while your virtual environment is activated:
pip install -r requirements.txt
To train the model with your custom dataset, set the appropriate directories for the training images and model saving, then run the training script.
- single model
python train.py --data_dir /path/to/images --model_dir /path/to/model --model MODEL_NAME
- single multiple model
python train_single_multiple.py --data_dir /path/to/images --model_dir /path/to/model --model MODEL_NAME
For generating predictions with a trained model, provide directories for evaluation data, the trained model, and output, then run the inference script.
- single model
python inference.py --data_dir /path/to/images --model_dir /path/to/model --output_dir /path/to/model --model MODEL_NAME
- single multiple model
python inference.py --data_dir /path/to/images --model_dir /path/to/model --output_dir /path/to/model --model_mode single_multiple --model MODEL_NAME
- ensemble (hard voting)
python hard_voting.py --file_dir ./csv --csv1 file1.csv --csv2 file2.csv --csv3 file3.csv
- ensemble (soft voting)
python soft_voting.py --models MODEL_NAME1 MODEL_NAME2 MODEL_NAME3 --model_dir ./checkpoint --model_files file1.pth file2.pth file3.pth --data_dir ./data/eval