-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathREADME.Rmd
1302 lines (1095 loc) · 44.3 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
---
output:
github_document:
pandoc_args: --webtex=https://render.githubusercontent.com/render/math?math=
bibliography: ref.bib
---
```{r setup, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%")
options(digits = 3)
```
# mdgc
[![R-CMD-check](https://github.com/boennecd/mdgc/workflows/R-CMD-check/badge.svg)](https://github.com/boennecd/mdgc/actions)
[![](https://www.r-pkg.org/badges/version/mdgc)](http://cran.rstudio.com/web/packages/mdgc/index.html)
[![CRAN RStudio mirror
downloads](http://cranlogs.r-pkg.org/badges/mdgc)](http://cran.rstudio.com/web/packages/mdgc/index.html)
This package contains a marginal likelihood approach to estimating the
model discussed by @hoff07, @zhao20, and @zhao20Mat. That is, a missing data approach
where one uses Gaussian copulas in the latter case.
We have modified the Fortran
code by @Genz02 to supply an approximation of the gradient for the log
marginal likelihood and to use an approximation of the marginal likelihood
similar to the CDF approximation in @Genz02. We have also used the same
Fortran code to perform the imputation conditional on a covariance matrix
and the observed data. The method is described by @Christoffersen21 which can
be found at [arxiv.org](https://arxiv.org/abs/2102.02642).
Importantly, we also extend the model used by @zhao20 to support multinomial
variables. Thus, our model supports both continuous, binary, ordinal, and
multinomial variables which makes it applicable to a large number of data sets.
The package can be useful for a lot of other models. For instance,
the methods are directly applicable to other Gaussian copula models and some
mixed effect models. All methods are implemented in C++, support computation
in parallel, and should easily be able to be ported to other languages.
## Installation
The package can be installed from Github by calling:
```{r, eval = FALSE}
remotes::install_github("boennecd/mdgc")
```
or from CRAN by calling:
```{r, eval = FALSE}
install.packages("mdgc")
```
The code benefits from being build with automatic vectorization so having e.g.
`-O3 -mtune=native` in the `CXX11FLAGS` flags in your Makevars file may be
useful.
## The Model
We observe four types of variables for each observation: continuous,
binary, ordinal, and multinomial variables. Let $\vec X_i$ be a K
dimensional vector for the i'th observation. The variables $X_{ij}$ are
continuous
if $j\in\mathcal C$, binary if $j\in\mathcal B$ with probability $p_j$ of
being true, ordinal if $j\in\mathcal O$ with $m_j$ levels and borders
$\alpha_{j0} = -\infty < \alpha_1<\cdots < \alpha_{m_j} = \infty$, and
multinomial if $j\in\mathcal M$ with $m_j$ levels. $\mathcal C$,
$\mathcal B$, $\mathcal O$, and $\mathcal M$ are mutually exclusive.
We assume that there is
a latent variable $\vec Z_i$ which is multivariate normally distributed such
that:
<!-- $$ -->
<!-- \begin{align*} -->
<!-- \vec Z_i & \sim N\left(\vec\mu, -->
<!-- \Sigma\right) \nonumber\\ -->
<!-- X_{ij} &= f_j(Z_{ih(j)}) & j &\in \mathcal C \\ -->
<!-- X_{ij} &= \begin{cases} -->
<!-- 1 & Z_{ij} > \underbrace{-\Phi^{-1}(p_{j})}_{\mu_{h(j)}} \\ -->
<!-- 0 & \text{otherwise} -->
<!-- \end{cases} & j &\in \mathcal B \\ -->
<!-- X_{ij} &= k\Leftrightarrow \alpha_{jk} < Z_{ih(j)} \leq \alpha_{j,k + 1} -->
<!-- & j &\in \mathcal O\wedge k = 0,\dots m_j -1 \\ -->
<!-- X_{ij} &= k \Leftrightarrow Z_{i,h(j) + k} \geq -->
<!-- \max(Z_{ih(j)},\cdots,Z_{i,h(j) + m_j - 1}) -->
<!-- & j&\in \mathcal M \wedge k = 0,\dots m_j -1 -->
<!-- \end{align*} -->
<!-- $$ -->
$$\begin{align*} \vec Z_i & \sim N\left(\vec\mu, \Sigma\right) \nonumber\\ X_{ij} &= f_j(Z_{ih(j)}) & j &\in \mathcal C \\ X_{ij} &= 1_{\{Z_{ih(j)} > \underbrace{-\Phi^{-1}(p_{j})}_{\mu_{h(j)}}\}} & j &\in \mathcal B \\ X_{ij} &= k\Leftrightarrow \alpha_{jk} < Z_{ih(j)} \leq \alpha_{j,k + 1} & j &\in \mathcal O\wedge k = 0,\dots m_j -1 \\ X_{ij} &= k \Leftrightarrow Z_{i,h(j) + k} \geq \max(Z_{ih(j)},\cdots,Z_{i,h(j) + m_j - 1}) & j&\in \mathcal M \wedge k = 0,\dots m_j -1 \end{align*}$$
where $1_{\{\cdot\}}$ is one if the condition in the subscript is true and zero
otherwise, $h(j)$ is a map to the index of the first latent variable associated with
the j'th variable in $\vec X_i$ and $f_j$ is a bijective function. We only
estimate some of the means, the $\vec\mu$, and some of the covariance
parameters. Furthermore, we set $Z_{ih(j)} = 0$ if $j\in\mathcal M$ and assume
that the variable is uncorrelated with all the other $\vec Z_i$'s.
In principle, we could use other distributions than a multivariate normal
distribution for $\vec Z_i$. However, the multivariate normal distribution
has the advantage that it is very easy to marginalize which is convenient when
we have to estimate the model with missing entries and it is also has some
computational advantages for approximating the log marginal likelihood as
similar intractable problem have been thoroughly studied.
## Examples
Below, we provide an example similar to @zhao20 [Section 7.1]. The authors
use a data set with a random correlation matrix, 5 continuous variables,
5 binary variables, and 5 ordinal variables with 5 levels. There is a total
of 2000 observations and 30% of the variables are missing completely at
random.
To summarize @zhao20 results, they show that their approximate EM algorithm
converges in what seems to be 20-25 seconds (this is with a pure R
implementation to be fair) while it takes more than 150
seconds for the MCMC algorithm used by @hoff07. These figures
should be kept in mind when looking at the results below. Importantly,
@zhao20 use an approximation in the E-step of an EM algorithm which is
fast but might be crude in some settings. Using a potentially arbitrarily
precise approximation of the log marginal likelihood is useful if this can
be done quickly enough.
We will provide a [quick example](#quick-example) and
[an even shorter example](#an-even-shorter-example)
where we show how to use the methods in the package to estimate the
correlation matrix and to perform the imputation. We then show a
[simulation study](#simulation-study) where we compare with the method
suggested by @zhao20.
The last section called [adding multinomial variables](#adding-multinomial-variables)
covers data sets which also have multinomial variables.
## Quick Example
We first simulate a data set and provide an example which shows how to use
the package. The [an even shorter example](#an-even-shorter-example) section
shows a shorter example then what is shown here. You may want to see this
first if you just want to perform some quick imputation.
```{r load_pkgs}
# load the packages we need
library(bench)
library(mdgc)
library(missForest, quietly = TRUE)
# remotes::install_github("udellgroup/mixedgcImp", ref = "5ad6d523d")
library(mixedgcImp)
library(doParallel)
```
```{r sim_dat, cache = 1, fig.height = 3, fig.width = 7}
# simulates a data set and mask some of the data.
#
# Args:
# n: number of observations.
# p: number of variables.
# n_lvls: number of levels for the ordinal variables.
#
# Returns:
# Simulated masked data, the true data, and true covariance matrix.
sim_dat <- function(n, p = 3L, n_lvls = 5L){
# get the covariance matrix
Sig <- cov2cor(drop(rWishart(1L, p, diag(p))))
# draw the observations
truth <- matrix(rnorm(n * p), n) %*% chol(Sig)
# determine the type
n_rep <- floor((p + 3 - 1) / 3)
type <- rep(1:3, each = n_rep)[1:p]
is_con <- type == 1L
is_bin <- type == 2L
is_ord <- type == 3L
col_nam <- c(outer(1:n_rep, c("C", "B", "O"),
function(x, y) paste0(y, x)))[1:p]
# sample which are masked data
is_mask <- matrix(runif(n * p) < .3, n)
# make sure we have no rows with all missing data
while(any(all_nans <- rowSums(is_mask) == NCOL(is_mask)))
is_mask[all_nans, ] <- runif(sum(all_nans) * p) < .3
# create observed data
truth_obs <- data.frame(truth)
colnames(truth_obs) <- col_nam
truth_obs[, is_con] <- qexp(pnorm(as.matrix(truth_obs[, is_con])))
bs_border <- 0
truth_obs[, is_bin] <-
truth_obs[, is_bin] > rep(bs_border, each = NROW(truth_obs))
bs_ord <- qnorm(seq(0, 1, length.out = n_lvls + 1L))
truth_obs[, is_ord] <- as.integer(cut(truth[, is_ord], breaks = bs_ord))
for(i in which(is_ord)){
truth_obs[, i] <- ordered(truth_obs[, i])
levels(truth_obs[, i]) <-
LETTERS[seq_len(length(unique(truth_obs[, i])))]
}
# mask the data
seen_obs <- truth_obs
seen_obs[is_mask] <- NA
list(truth = truth, truth_obs = truth_obs, seen_obs = seen_obs,
Sigma = Sig)
}
# simulate and show the data
set.seed(1)
p <- 15L
dat <- sim_dat(2000L, p = p)
# how an observed data set could look
head(dat$seen_obs)
# assign objects needed for model estimation
mdgc_obj <- get_mdgc(dat$seen_obs)
log_ml_ptr <- get_mdgc_log_ml(mdgc_obj)
start_val <- mdgc_start_value(mdgc_obj)
# this is very fast so we can neglect this when we consider the computation
# time
mark(`Setup time` = {
mdgc_obj <- get_mdgc(dat$seen_obs)
log_ml_ptr <- get_mdgc_log_ml(mdgc_obj)
start_val <- mdgc_start_value(mdgc_obj)
}, min_iterations = 10)
# fit the model using three different methods
set.seed(60941821)
system.time(
fit_Lagran_start <- mdgc_fit(
ptr = log_ml_ptr, vcov = start_val, mea = mdgc_obj$means,
n_threads = 4L, maxit = 100L, method = "aug_Lagran", rel_eps = 1e-3,
maxpts = 200L))
system.time(
fit_Lagran <- mdgc_fit(
ptr = log_ml_ptr, vcov = fit_Lagran_start$result$vcov,
mea = fit_Lagran_start$result$mea,
n_threads = 4L, maxit = 100L, method = "aug_Lagran", rel_eps = 1e-3,
maxpts = 5000L, mu = fit_Lagran_start$mu,
lambda = fit_Lagran_start$lambda))
system.time(
fit_adam <- mdgc_fit(
ptr = log_ml_ptr, vcov = start_val, mea = mdgc_obj$means,
n_threads = 4L, lr = 1e-3, maxit = 25L, batch_size = 100L,
method = "adam", rel_eps = 1e-3, maxpts = 5000L))
set.seed(fit_seed <- 19570958L)
system.time(
fit_svrg <- mdgc_fit(
ptr = log_ml_ptr, vcov = start_val, mea = mdgc_obj$means,
n_threads = 4L, lr = 1e-3, maxit = 25L, batch_size = 100L,
method = "svrg", verbose = TRUE, rel_eps = 1e-3, maxpts = 5000L))
# compare the log marginal likelihood
print(rbind(
`Augmented Lagrangian` =
mdgc_log_ml(vcov = fit_Lagran$result$vcov, mea = fit_Lagran$result$mea,
ptr = log_ml_ptr, rel_eps = 1e-3),
ADAM =
mdgc_log_ml(vcov = fit_adam$result$vcov , mea = fit_adam$result$mea,
ptr = log_ml_ptr, rel_eps = 1e-3),
SVRG =
mdgc_log_ml(vcov = fit_svrg$result$vcov , mea = fit_svrg$result$mea,
ptr = log_ml_ptr, rel_eps = 1e-3),
Truth =
mdgc_log_ml(vcov = dat$Sigma , mea = numeric(5),
ptr = log_ml_ptr, rel_eps = 1e-3)),
digits = 10)
# we can use an approximation in the method
set.seed(fit_seed)
system.time(
fit_svrg_aprx <- mdgc_fit(
ptr = log_ml_ptr, vcov = start_val, mea = mdgc_obj$means,
n_threads = 4L, lr = 1e-3, maxit = 25L, batch_size = 100L,
method = "svrg", rel_eps = 1e-3, maxpts = 5000L, use_aprx = TRUE))
# essentially the same estimates
norm(fit_svrg_aprx$result$vcov - fit_svrg$result$vcov, "F")
sd(fit_svrg_aprx$result$mea - fit_svrg$result$mea)
# compare the estimated correlation matrix with the true value
do_plot <- function(est, truth, main){
par_old <- par(mfcol = c(1, 3), mar = c(1, 1, 4, 1))
on.exit(par(par_old))
sc <- colorRampPalette(c("Red", "White", "Blue"))(201)
f <- function(x, main)
image(x[, NCOL(x):1], main = main, col = sc, zlim = c(-1, 1),
xaxt = "n", yaxt = "n", bty = "n")
f(est, main)
f(truth, "Truth")
f(est - truth, "Difference")
}
do_plot(fit_Lagran$result$vcov, dat$Sigma, "Estimates (Aug. Lagrangian)")
do_plot(fit_adam $result$vcov, dat$Sigma, "Estimates (ADAM)")
do_plot(fit_svrg $result$vcov, dat$Sigma, "Estimates (SVRG)")
norm(fit_Lagran$result$vcov - dat$Sigma, "F")
norm(fit_adam $result$vcov - dat$Sigma, "F")
norm(fit_svrg $result$vcov - dat$Sigma, "F")
# perform the imputation
system.time(imp_res <- mdgc_impute(
mdgc_obj, fit_svrg$result$vcov, mea = fit_svrg$result$mea, rel_eps = 1e-3,
maxit = 10000L, n_threads = 4L))
# look at the result for one of the observations
imp_res[2L]
# compare with the observed and true data
rbind(truth = dat$truth_obs[2L, ], observed = dat$seen_obs[2L, ])
# we can threshold the data like this
threshold <- function(org_data, imputed){
# checks
stopifnot(NROW(org_data) == length(imputed),
is.list(imputed), is.data.frame(org_data))
# threshold
is_cont <- which(sapply(org_data, is.numeric))
is_bin <- which(sapply(org_data, is.logical))
is_ord <- which(sapply(org_data, is.ordered))
stopifnot(
length(is_cont) + length(is_bin) + length(is_ord) == NCOL(org_data))
is_cat <- c(is_bin, is_ord)
trans_to_df <- function(x){
if(is.matrix(x))
as.data.frame(t(x))
else
as.data.frame( x )
}
out_cont <- trans_to_df(sapply(imputed, function(x) unlist(x[is_cont])))
out_cat <- trans_to_df(sapply(imputed, function(x)
sapply(x[is_cat], which.max)))
out <- cbind(out_cont, out_cat)
# set factor levels etc.
out <- out[, order(c(is_cont, is_bin, is_ord))]
if(length(is_bin) > 0)
out[, is_bin] <- out[, is_bin] > 1L
if(length(is_ord) > 0)
for(i in is_ord)
out[[i]] <- ordered(
unlist(out[[i]]), labels = levels(org_data[, i]))
colnames(out) <- colnames(org_data)
out
}
thresh_dat <- threshold(dat$seen_obs, imp_res)
# compare thresholded data with observed and true data
head(thresh_dat)
head(dat$seen_obs) # observed data
head(dat$truth_obs) # true data
# compare correct categories
get_classif_error <- function(impu_dat, truth = dat$truth_obs,
observed = dat$seen_obs){
is_cat <- sapply(truth, function(x)
is.logical(x) || is.ordered(x))
is_match <- impu_dat[, is_cat] == truth[, is_cat]
is_match[!is.na(observed[, is_cat])] <- NA_integer_
1 - colMeans(is_match, na.rm = TRUE)
}
get_classif_error(thresh_dat)
# compute RMSE
get_rmse <- function(impu_dat, truth = dat$truth_obs,
observed = dat$seen_obs){
is_con <- sapply(truth, is.numeric)
err <- as.matrix(impu_dat[, is_con] - truth[, is_con])
err[!is.na(observed[, is_con])] <- NA_real_
sqrt(colMeans(err^2, na.rm = TRUE))
}
get_rmse(thresh_dat)
# we can compare this with missForest
miss_forest_arg <- dat$seen_obs
is_log <- sapply(miss_forest_arg, is.logical)
miss_forest_arg[, is_log] <- lapply(miss_forest_arg[, is_log], as.factor)
set.seed(1)
system.time(miss_res <- missForest(miss_forest_arg))
# turn binary variables back to logicals
miss_res$ximp[, is_log] <- lapply(
miss_res$ximp[, is_log], function(x) as.integer(x) > 1L)
rbind(mdgc = get_classif_error(thresh_dat),
missForest = get_classif_error(miss_res$ximp))
rbind(mdgc = get_rmse(thresh_dat),
missForest = get_rmse(miss_res$ximp))
```
## An Even Shorter Example
Here is an example where we use the `mdgc` function to do the model
estimation and the imputation:
```{r very_quick_example, cache = 1, eval = TRUE}
# have a data set with missing continuous, binary, and ordinal variables
head(dat$seen_obs)
# perform the estimation and imputation
set.seed(1)
system.time(res <- mdgc(dat$seen_obs, verbose = TRUE, maxpts = 5000L,
n_threads = 4L, maxit = 25L, use_aprx = TRUE))
# compare the estimated correlation matrix with the truth
norm(dat$Sigma - res$vcov, "F") / norm(dat$Sigma, "F")
# compute the classifcation error and RMSE
get_classif_error(res$ximp)
get_rmse(res$ximp)
```
We can compare this with the `mixedgcImp` which uses the method described
in @zhao20:
```{r use_zhao19, eval = TRUE, cache = 1}
# turn the data to a format that can be based
dat_pass <- dat$seen_obs
is_cat <- sapply(dat_pass, function(x) is.logical(x) | is.ordered(x))
dat_pass[, is_cat] <- lapply(dat_pass[, is_cat], as.integer)
system.time(imp_apr_em <- impute_mixedgc(dat_pass, eps = 1e-4))
# compare the estimated correlation matrix with the truth
get_rel_err <- function(est, keep = seq_len(NROW(truth)), truth = dat$Sigma)
norm(truth[keep, keep] - est[keep, keep], "F") /
norm(truth, "F")
c(mdgc = get_rel_err(res$vcov),
mixedgcImp = get_rel_err(imp_apr_em$R),
`mdgc bin/ordered` = get_rel_err(res$vcov , is_cat),
`mixedgcImp bin/ordered` = get_rel_err(imp_apr_em$R, is_cat),
`mdgc continuous` = get_rel_err(res$vcov , !is_cat),
`mixedgcImp continuous` = get_rel_err(imp_apr_em$R, !is_cat))
# compare the classifcation error and RMSE
imp_apr_res <- as.data.frame(imp_apr_em$Ximp)
is_bin <- sapply(dat$seen_obs, is.logical)
imp_apr_res[, is_bin] <- lapply(imp_apr_res[, is_bin], `>`, e2 = 0)
is_ord <- sapply(dat$seen_obs, is.ordered)
imp_apr_res[, is_ord] <- mapply(function(x, idx)
ordered(x, labels = levels(dat$seen_obs[[idx]])),
x = imp_apr_res[, is_ord], i = which(is_ord), SIMPLIFY = FALSE)
rbind(mdgc = get_classif_error(res$ximp),
mixedgcImp = get_classif_error(imp_apr_res))
rbind(mdgc = get_rmse(res$ximp),
mixedgcImp = get_rmse(imp_apr_res))
```
## Simulation Study
```{r before_sim_clean, echo = FALSE}
rm(list = setdiff(ls(), c(
"dat", "get_rmse", "get_rel_err", "get_classif_error", "sim_dat",
"threshold", "log_ml_ptr", "mdgc_obj", "p", "do_plot")))
```
We will perform a simulation study in this section to compare different
methods in terms of their computation time and performance. We first
perform the simulation.
```{r sim_study, message = FALSE}
# the seeds we will use
seeds <- c(293498804L, 311878062L, 370718465L, 577520465L, 336825034L, 661670751L, 750947065L, 255824398L, 281823005L, 721186455L, 251974931L, 643568686L, 273097364L, 328663824L, 490259480L, 517126385L, 651705963L, 43381670L, 503505882L, 609251792L, 643001919L, 244401725L, 983414550L, 850590318L, 714971434L, 469416928L, 237089923L, 131313381L, 689679752L, 344399119L, 330840537L, 6287534L, 735760574L, 477353355L, 579527946L, 83409653L, 710142087L, 830103443L, 94094987L, 422058348L, 117889526L, 259750108L, 180244429L, 762680168L, 112163383L, 10802048L, 440434442L, 747282444L, 736836365L, 837303896L, 50697895L, 231661028L, 872653438L, 297024405L, 719108161L, 201103881L, 485890767L, 852715172L, 542126886L, 155221223L, 18987375L, 203133067L, 460377933L, 949381283L, 589083178L, 820719063L, 543339683L, 154667703L, 480316186L, 310795921L, 287317945L, 30587393L, 381290126L, 178269809L, 939854883L, 660119506L, 825302990L, 764135140L, 433746745L, 173637986L, 100446967L, 333304121L, 225525537L, 443031789L, 587486506L, 245392609L, 469144801L, 44073812L, 462948652L, 226692940L, 165285895L, 546908869L, 550076645L, 872290900L, 452044364L, 620131127L, 600097817L, 787537854L, 15915195L, 64220696L)
# gather or compute the results (you may skip this)
res <- lapply(seeds, function(s){
file_name <- file.path("sim-res", sprintf("seed-%d.RDS", s))
if(file.exists(file_name)){
message(sprintf("Reading '%s'", file_name))
out <- readRDS(file_name)
} else {
message(sprintf("Running '%s'", file_name))
# simulate the data
set.seed(s)
dat <- sim_dat(2000L, p = 15L)
# fit models and impute
mdgc_time <- system.time(
mdgc_res <- mdgc(dat$seen_obs, verbose = FALSE, maxpts = 5000L,
n_threads = 4L, maxit = 25L, use_aprx = TRUE))
dat_pass <- dat$seen_obs
is_cat <- sapply(dat_pass, function(x) is.logical(x) | is.ordered(x))
dat_pass[, is_cat] <- lapply(dat_pass[, is_cat], as.integer)
mixedgc_time <-
system.time(mixedgc_res <- impute_mixedgc(dat_pass, eps = 1e-4))
miss_forest_arg <- dat$seen_obs
is_log <- sapply(miss_forest_arg, is.logical)
miss_forest_arg[, is_log] <- lapply(
miss_forest_arg[, is_log], as.factor)
sink(tempfile())
miss_time <- system.time(
miss_res <- missForest(miss_forest_arg, verbose = FALSE))
sink()
miss_res$ximp[, is_log] <- lapply(
miss_res$ximp[, is_log], function(x) as.integer(x) > 1L)
# impute using the other estimate
mdgc_obj <- get_mdgc(dat$seen_obs)
impu_mixedgc_est <- mdgc_impute(mdgc_obj, mixedgc_res$R, mdgc_obj$means)
impu_mixedgc_est <- threshold(dat$seen_obs, impu_mixedgc_est)
# gather output for the correlation matrix estimates
vcov_res <- list(truth = dat$Sigma, mdgc = mdgc_res$vcov,
mixedgc = mixedgc_res$R)
get_rel_err <- function(est, truth, keep = seq_len(NROW(truth)))
norm(truth[keep, keep] - est[keep, keep], "F") / norm(truth, "F")
vcov_res <- within(vcov_res, {
mdgc_rel_err = get_rel_err(mdgc , truth)
mixedgc_rel_err = get_rel_err(mixedgc, truth)
})
# gather the estimated means
mea_ests <- list(marginal = mdgc_obj$means,
joint = mdgc_res$mea)
# gather output for the imputation
mixedgc_imp_res <- as.data.frame(mixedgc_res$Ximp)
is_bin <- sapply(dat$seen_obs, is.logical)
mixedgc_imp_res[, is_bin] <-
lapply(mixedgc_imp_res[, is_bin, drop = FALSE], `>`, e2 = 0)
is_ord <- sapply(dat$seen_obs, is.ordered)
mixedgc_imp_res[, is_ord] <- mapply(function(x, idx)
ordered(x, labels = levels(dat$seen_obs[[idx]])),
x = mixedgc_imp_res[, is_ord, drop = FALSE],
i = which(is_ord), SIMPLIFY = FALSE)
get_bin_err <- function(x){
. <- function(z) z[, is_bin, drop = FALSE]
get_classif_error(
.(x), truth = .(dat$truth_obs), observed = .(dat$seen_obs))
}
get_ord_err <- function(x){
. <- function(z) z[, is_ord, drop = FALSE]
get_classif_error(
.(x), truth = .(dat$truth_obs), observed = .(dat$seen_obs))
}
err <- list(
mdgc_bin = get_bin_err(mdgc_res$ximp),
mixedgc_bin = get_bin_err(mixedgc_imp_res),
mixed_bin = get_bin_err(impu_mixedgc_est),
missForest_bin = get_bin_err(miss_res$ximp),
mdgc_class = get_ord_err(mdgc_res$ximp),
mixedgc_class = get_ord_err(mixedgc_imp_res),
mixed_class = get_ord_err(impu_mixedgc_est),
missForest_class = get_ord_err(miss_res$ximp),
mdgc_rmse = get_rmse(
mdgc_res$ximp, truth = dat$truth_obs, observed = dat$seen_obs),
mixedgc_rmse = get_rmse(
mixedgc_imp_res, truth = dat$truth_obs, observed = dat$seen_obs),
mixed_rmse = get_rmse(
impu_mixedgc_est, truth = dat$truth_obs, observed = dat$seen_obs),
missForest_rmse = get_rmse(
miss_res$ximp, truth = dat$truth_obs, observed = dat$seen_obs))
# gather the times
times <- list(mdgc = mdgc_time, mixedgc = mixedgc_time,
missForest = miss_time)
# save stats to check convergence
conv_stats <- list(mdgc = mdgc_res$logLik,
mixedgc = mixedgc_res$loglik)
# save output
out <- list(vcov_res = vcov_res, err = err, times = times,
conv_stats = conv_stats, mea_ests = mea_ests)
saveRDS(out, file_name)
}
# print summary stat to the console while knitting
out <- readRDS(file_name)
. <- function(x)
message(paste(sprintf("%8.3f", x), collapse = " "))
with(out, {
message(paste(
"mdgc logLik",
paste(sprintf("%.2f", conv_stats$mdgc), collapse = " ")))
message(paste(
"mixedgc logLik",
paste(sprintf("%.2f", conv_stats$mixedgc), collapse = " ")))
message(sprintf(
"Relative correlation matrix estimate errors are %.4f %.4f",
vcov_res$mdgc_rel_err, vcov_res$mixedgc_rel_err))
message(sprintf(
"Times are %.2f %.2f %.2f",
times$mdgc["elapsed"], times$mixedgc["elapsed"],
times$missForest["elapsed"]))
message(sprintf(
"Binary classifcation errors are %.2f %.2f %.2f (%.2f)",
mean(err$mdgc_bin), mean(err$mixedgc_bin),
mean(err$missForest_bin), mean(err$mixed_bin)))
message(sprintf(
"Ordinal classifcation errors are %.2f %.2f %.2f (%.2f)",
mean(err$mdgc_class), mean(err$mixedgc_class),
mean(err$missForest_class), mean(err$mixed_class)))
message(sprintf(
"Mean RMSEs are %.2f %.2f %.2f (%.2f)",
mean(err$mdgc_rmse), mean(err$mixedgc_rmse),
mean(err$missForest_rmse), mean(err$mixed_rmse)))
message("")
})
out
})
```
The difference in computation time is given below:
```{r time_diff_est}
# assign function to show the summary stats
show_sim_stats <- function(v1, v2, v3, what, sub_ele = NULL){
vals <- sapply(res, function(x)
do.call(rbind, x[[what]][c(v1, v2, v3)]),
simplify = "array")
if(!is.null(sub_ele))
vals <- vals[, sub_ele, , drop = FALSE]
cat("Means and standard errors:\n")
mea_se <- function(x)
c(mean = mean(x), SE = sd(x) / sqrt(length(x)))
print(t(apply(vals, 1L, mea_se)))
cat("\nDifference:\n")
print(t(apply(
c(vals[v1, , ]) -
aperm(vals[c(v2, v3), , , drop = FALSE], c(3L, 2L, 1L)),
3L, mea_se)))
}
# compare estimation time
show_sim_stats(1L, 2L, 3L, "times", "elapsed")
```
The summary stats for the relative Frobenius norm between the estimated and
true correlation matrix is given below:
```{r F_norm_diff_est}
# relative norms
show_sim_stats("mixedgc_rel_err", "mdgc_rel_err", NULL, "vcov_res")
```
Finally, here are the results for the classification error for the binary
and ordinal outcomes and the root mean square error:
```{r impu_diff_est}
# the binary variables
show_sim_stats("mdgc_bin", "mixedgc_bin", "missForest_bin", "err")
# the ordinal variables
show_sim_stats("mdgc_class", "mixedgc_class", "missForest_class", "err")
# the continuous variables
show_sim_stats("mdgc_rmse", "mixedgc_rmse", "missForest_rmse", "err")
```
It is important to emphasize that missForest is not estimating the true
model.
## Adding Multinomial Variables
We extend the model suggested by @zhao20 in this section. The example is
very similar to the previous one but with multinomial variables.
```{r mult_sim, cache = 1, fig.height = 3, fig.width = 7}
# simulates a data set and mask some of the data.
#
# Args:
# n: number of observations.
# p: number of variables.
# n_lvls: number of levels for the ordinal and multinomial variables.
# verbose: print status during the simulation.
#
# Returns:
# Simulated masked data, the true data, and true covariance matrix.
sim_dat <- function(n, p = 4L, n_lvls = 5L, verbose = FALSE){
# determine the type
n_rep <- floor((p + 4 - 1) / 4)
type <- rep(1:4, n_rep)[1:p]
is_con <- type == 1L
is_bin <- type == 2L
is_ord <- type == 3L
is_mult <- type == 4L
col_nam <- c(outer(c("C", "B", "O", "M"), 1:n_rep, paste0))[1:p]
idx <- head(cumsum(c(1L, ifelse(type == 4, n_lvls, 1L))), -1L)
# get the covariance matrix
n_latent <- p + (n_lvls - 1L) * (p %/% 4)
Sig <- drop(rWishart(1L, 2 * n_latent, diag(1 / n_latent / 2, n_latent)))
# essentially set the reference level to zero
for(i in idx[is_mult]){
Sig[i, ] <- 0
Sig[ , i] <- 0
}
# rescale some rows and columns
sds <- sqrt(diag(Sig))
for(i in idx[is_mult]){
sds[i] <- 1
sds[i + 3:n_lvls - 1] <- 1
}
Sig <- diag(1/sds) %*% Sig %*% diag(1/sds)
# draw the observations
truth <- mvtnorm::rmvnorm(n, sigma = Sig)
truth[, idx[is_mult]] <- 0
# sample which are masked data
is_mask <- matrix(runif(n * p) < .3, n)
# make sure we have no rows with all missing data
while(any(all_nans <- rowSums(is_mask) == NCOL(is_mask)))
is_mask[all_nans, ] <- runif(sum(all_nans) * p) < .3
# create the observed data
truth_obs <- lapply(type, function(i) if(i == 1L) numeric(n) else integer(n))
truth_obs <- data.frame(truth_obs)
colnames(truth_obs) <- col_nam
bs_ord <- qnorm(seq(0, 1, length.out = n_lvls + 1L))
for(i in 1:p){
idx_i <- idx[i]
switch(
type[i],
# continuous
truth_obs[, i] <- qexp(pnorm(truth[, idx_i])),
# binary
truth_obs[, i] <- truth[, idx_i] > 0,
# ordinal
{
truth_obs[, i] <-
ordered(as.integer(cut(truth[, idx_i], breaks = bs_ord)))
levels(truth_obs[, i]) <-
LETTERS[seq_len(length(unique(truth_obs[, i])))]
},
# multinomial
{
truth_obs[, i] <- apply(
truth[, idx_i + 1:n_lvls - 1L], 1L, which.max)
truth_obs[, i] <- factor(truth_obs[, i],
labels = paste0("T", 1:n_lvls))
},
stop("Type is not implemented"))
}
# mask the data
seen_obs <- truth_obs
seen_obs[is_mask] <- NA
list(truth = truth, truth_obs = truth_obs, seen_obs = seen_obs,
Sigma = Sig)
}
# simulate and show the data
set.seed(1)
p <- 8L
dat <- sim_dat(2000L, p = p, verbose = TRUE, n_lvls = 4)
# show the first rows of the observed data
head(dat$seen_obs)
# assign object to perform the estimation and the imputation
obj <- get_mdgc(dat$seen_obs)
ptr <- get_mdgc_log_ml(obj)
# get starting values
start_vals <- mdgc_start_value(obj)
# plot the starting values and the true values
do_plot <- function(est, truth, main){
par_old <- par(mfcol = c(1, 3), mar = c(1, 1, 4, 1))
on.exit(par(par_old))
sc <- colorRampPalette(c("Red", "White", "Blue"))(201)
ma <- max(abs(est), max(abs(truth)))
f <- function(x, main)
image(x[, NCOL(x):1], main = main, col = sc, zlim = c(-ma, ma),
xaxt = "n", yaxt = "n", bty = "n")
f(est, main)
f(truth, "Truth")
f(est - truth, "Difference")
}
do_plot(start_vals, dat$Sigma, "Starting values")
# check the log marginal likelihood at the starting values and compare with
# the true values at the starting values
mdgc_log_ml(ptr, start_vals, mea = obj$means, n_threads = 1L)
# and at the true values
mdgc_log_ml(ptr, dat$Sigma , mea = numeric(length(obj$means)),
n_threads = 1L)
# much better than using a diagonal matrix!
mdgc_log_ml(ptr, diag(NROW(dat$Sigma)), mea = obj$means, n_threads = 1L)
# estimate the model
system.time(
ests <- mdgc_fit(ptr, vcov = start_vals, mea = obj$means,
method = "aug_Lagran",
n_threads = 4L, rel_eps = 1e-2, maxpts = 1000L,
minvls = 200L, use_aprx = TRUE, conv_crit = 1e-8))
# refine the estimates
system.time(
ests <- mdgc_fit(ptr, vcov = ests$result$vcov,
mea = ests$result$mea,
method = "aug_Lagran",
n_threads = 4L, rel_eps = 1e-3, maxpts = 10000L,
minvls = 1000L, mu = ests$mu, lambda = ests$lambda,
use_aprx = TRUE, conv_crit = 1e-8))
# use ADAM
system.time(
fit_adam <- mdgc_fit(
ptr, vcov = start_vals, mea = obj$means, minvls = 200L,
n_threads = 4L, lr = 1e-3, maxit = 25L, batch_size = 100L,
method = "adam", rel_eps = 1e-3, maxpts = 5000L,
use_aprx = TRUE))
# use SVRG
system.time(
fit_svrg <- mdgc_fit(
ptr, vcov = start_vals, mea = obj$means, minvls = 200L,
n_threads = 4L, lr = 1e-3, maxit = 25L, batch_size = 100L,
method = "svrg", verbose = TRUE, rel_eps = 1e-3, maxpts = 5000L,
use_aprx = TRUE, conv_crit = 1e-8))
# compare log marginal likelihood
print(rbind(
`Augmented Lagrangian` =
mdgc_log_ml(ptr, ests$result$vcov , mea = ests$result$mea,
n_threads = 1L),
ADAM =
mdgc_log_ml(ptr, fit_adam$result$vcov, mea = fit_adam$result$mea,
n_threads = 1L),
SVRG =
mdgc_log_ml(ptr, fit_svrg$result$vcov, mea = fit_svrg$result$mea,
n_threads = 1L),
Truth =
mdgc_log_ml(ptr, dat$Sigma , mea = numeric(length(obj$means)),
n_threads = 1L)), digits = 10)
# compare the estimated and the true values (should not match because of
# overparameterization? See https://stats.stackexchange.com/q/504682/81865)
do_plot(ests$result$vcov , dat$Sigma, "Estimates (Aug. Lagrangian)")
do_plot(fit_adam$result$vcov, dat$Sigma, "Estimates (ADAM)")
do_plot(fit_svrg$result$vcov, dat$Sigma, "Estimates (SVRG)")
# after rescaling
do_plot_rescale <- function(x, lab){
trans <- function(z){
scal <- diag(NCOL(z))
m <- obj$multinomial[[1L]]
for(i in seq_len(NCOL(m))){
idx <- m[3, i] + 1 + seq_len(m[2, i] - 1)
scal[idx, idx] <- solve(t(chol(z[idx, idx])))
}
tcrossprod(scal %*% z, scal)
}
do_plot(trans(x), trans(dat$Sigma), lab)
}
do_plot_rescale(ests$result$vcov , "Estimates (Aug. Lagrangian)")
do_plot_rescale(fit_adam$result$vcov, "Estimates (ADAM)")
do_plot_rescale(fit_svrg$result$vcov, "Estimates (SVRG)")
# perform the imputation
system.time(
imp_res <- mdgc_impute(obj, ests$result$vcov, mea = ests$result$mea,
rel_eps = 1e-3, maxit = 10000L, n_threads = 4L))
# look at the result for one of the observations
imp_res[1L]
# compare with the observed and true data
rbind(truth = dat$truth_obs[1L, ], observed = dat$seen_obs[1L, ])
# we can threshold the data like this
threshold <- function(org_data, imputed){
# checks
stopifnot(NROW(org_data) == length(imputed),
is.list(imputed), is.data.frame(org_data))
# threshold
is_cont <- which(sapply(org_data, is.numeric))
is_bin <- which(sapply(org_data, is.logical))
is_ord <- which(sapply(org_data, is.ordered))
is_mult <- which(sapply(org_data, is.factor))
is_mult <- setdiff(is_mult, is_ord)
stopifnot(
length(is_cont) + length(is_bin) + length(is_ord) + length(is_mult) ==
NCOL(org_data))
is_cat <- c(is_bin, is_ord, is_mult)
trans_to_df <- function(x){
if(is.matrix(x))
as.data.frame(t(x))
else
as.data.frame( x )
}
out_cont <- trans_to_df(sapply(imputed, function(x) unlist(x[is_cont])))
out_cat <- trans_to_df(sapply(imputed, function(x)
sapply(x[is_cat], which.max)))
out <- cbind(out_cont, out_cat)
# set factor levels etc.
out <- out[, order(c(is_cont, is_bin, is_ord, is_mult))]
if(length(is_bin) > 0)
out[, is_bin] <- out[, is_bin] > 1L
if(length(is_ord) > 0)
for(i in is_ord)
out[[i]] <- ordered(
unlist(out[[i]]), labels = levels(org_data[, i]))
if(length(is_mult) > 0)
for(i in is_mult)
out[[i]] <- factor(
unlist(out[[i]]), labels = levels(org_data[, i]))
colnames(out) <- colnames(org_data)
out
}
thresh_dat <- threshold(dat$seen_obs, imp_res)
# compare thresholded data with observed and true data
head(thresh_dat)
head(dat$seen_obs) # observed data
head(dat$truth_obs) # true data
# compare correct categories
get_classif_error <- function(impu_dat, truth = dat$truth_obs,
observed = dat$seen_obs){
is_cat <- sapply(truth, function(x)
is.logical(x) || is.factor(x))
is_match <- impu_dat[, is_cat] == truth[, is_cat]
is_match <- matrix(is_match, ncol = sum(is_cat))
is_match[!is.na(observed[, is_cat])] <- NA_integer_
setNames(1 - colMeans(is_match, na.rm = TRUE),
colnames(truth)[is_cat])
}
get_classif_error(thresh_dat)
# compute RMSE
get_rmse <- function(impu_dat, truth = dat$truth_obs,
observed = dat$seen_obs){
is_con <- sapply(truth, is.numeric)
err <- as.matrix(impu_dat[, is_con] - truth[, is_con])
err[!is.na(observed[, is_con])] <- NA_real_
sqrt(colMeans(err^2, na.rm = TRUE))
}
get_rmse(thresh_dat)
# we can compare this with missForest
miss_forest_arg <- dat$seen_obs
is_log <- sapply(miss_forest_arg, is.logical)
miss_forest_arg[, is_log] <- lapply(miss_forest_arg[, is_log], as.factor)
set.seed(1)
system.time(miss_res <- missForest(miss_forest_arg))
# turn binary variables back to logical variables
miss_res$ximp[, is_log] <- lapply(
miss_res$ximp[, is_log], function(x) as.integer(x) > 1L)
# compare errors
rbind(mdgc = get_classif_error(thresh_dat),
missForest = get_classif_error(miss_res$ximp))
rbind(mdgc = get_rmse(thresh_dat),
missForest = get_rmse(miss_res$ximp))
```
### Edgar Anderson's Iris Data
We make a small example below were we take the iris data set and randomly
mask it. Then we compare the imputation method in this package with
missForest.
```{r comp_w_iris, cache=1}
# re-scales continuous variables to have scale 1.