-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathoverhead.Rmd
248 lines (203 loc) · 7.32 KB
/
overhead.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
---
title: "Overhead with Multithreading"
author: "Benjamin Christoffersen"
date: "`r Sys.Date()`"
output: html_document
bibliography: bibliography.bib
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(
echo = TRUE,
fig.height = 4, fig.width = 7, dpi = 128,
cache.path = "cache/overhead-cache/", fig.path = "fig/overhead-fig/",
error = FALSE, cache.lazy = FALSE)
options(digits = 4, scipen = 10, width = 70)
```
## Introduction
The objective of this file is to highlight the performance when multithreading is used.
The conclusions likely depend on both the hardware, operating system and
compiler.
We will simulate and estimate a first order vector auto-regression model in
this example using the particle filter and smoother. For details see
[this vignette](../vignettes/Particle_filtering.pdf) which can also be found by
calling `vignette("Particle_filtering", package = "dynamichazard")`. The models
we are going to simulate from and estimate are of the form
$$
\begin{split}
y_{it} &\sim g(\cdot\vert\eta_{it}) & \\
\vec{\eta}_t &= X_tR^+\vec{\alpha}_t + Z_t\vec{\beta} + \vec{o}_t \\
\vec{\alpha}_t &= F\vec{\alpha}_{t - 1} + R\vec{\epsilon}_t &
\quad \vec{\epsilon}_t \sim N(\vec{0}, Q) \\
& & \quad \vec{\alpha}_0 \sim N(\vec{a}_0, Q_0)
\end{split}, \qquad
\begin{array}{l} i = 1, \dots, n_t \\ t = 1, \dots, d \end{array}
$$
where the $y_{it}$ is individual $i$'s indicator at time $t$ for whether he dies
between time $(t - 1, t]$. The indicators, $y_{it}$,
are binomial distributed with the complementary log-log link function conditional on
knowing the log times at risk, $\vec{o}_1,\cdots,\vec{o}_d$, covariates, $X_t$ and $Z_t$, and latent states, $\vec{\alpha}_1,\dots,\vec{\alpha}_d$.
The total survival time of individual $i$ is $T_i$ which is
piecewise constant exponentially distributed
conditional on knowing the latent states. Further, we set $Z_t = X_t$ so the
states have a non-zero mean. The true values are
$$
F = \begin{pmatrix}0.9 & 0 \\ 0 & 0.9 \end{pmatrix}, \quad
Q = \begin{pmatrix}0.33^2 & 0 \\ 0 & 0.33^2 \end{pmatrix}, \quad
R = I_2, \quad
\vec{\beta} = (-6.5, -2)^\top
$$
```{r assign_kit_info, echo = FALSE}
git_key <- system("git rev-parse --short HEAD", intern = TRUE)
git_bra <- system("git branch", intern = TRUE)
regexp <- "^(\\*\ )(.+)$"
git_bra <- git_bra[grepl(regexp, git_bra)]
git_bra <- gsub(regexp, "\\2", git_bra)
```
where $I_2$ is the two-dimensional identity matrix and
$\vec{a}_0$ and $Q_0$ are given by the invariant distribution. The unknown
parameters to be estimated is everything but $Q_0$ and $R$ (since we fix $Q_0$ doing the estimation and we set $\vec{a}_0 = (0, 0)^\top$). This
example is run on the git branch "`r git_bra`" with ID "`r git_key`". The code
can be found on
[the Github site for the package](../examples).
All functions which assignments are not shown and are not in the
`dynamichazard` package can be found on the Github site.
## Simulation
We start by simulating the data. Feel free to skip this part as the specifications
are given above. First we assign the parameters for the simulation
```{r assign_get_Q_0, echo = FALSE}
# function to find Q_0
get_Q_0 <- function(Qmat, Fmat){
# see https://math.stackexchange.com/q/2854333/253239
eg <- eigen(Fmat)
las <- eg$values
if(any(abs(las) >= 1))
stop("Divergent series")
U <- eg$vectors
U_t <- t(U)
T. <- crossprod(U, Qmat %*% U)
Z <- T. / (1 - tcrossprod(las))
solve(U_t, t(solve(U_t, t(Z))))
}
```
```{r assign_sim_params, cache = 1}
n_periods <- 300L
Fmat <- matrix(c(.9, 0, 0, .9), 2)
Rmat <- diag(1 , 2)
Qmat <- diag(.33^2, 2)
Q_0 <- get_Q_0(Qmat, Fmat)
beta <- c(-6.5, -2)
```
`get_Q_0` is a function to get the covariance matrix for the invariant distribution.
Then we simulate and plot the latent states
```{r sim_plot_latent}
set.seed(54432125)
betas <- matrix(nrow = n_periods + 1, ncol = 2)
betas[1, ] <- rnorm(2) %*% chol(Q_0)
for(i in 1:n_periods + 1)
betas[i, ] <- Fmat %*% betas[i - 1, ] + drop(rnorm(2) %*% chol(Qmat))
betas <- t(t(betas) + beta)
# plot of latent variables
cols <- c("black", "darkblue")
matplot(betas, type = "l", lty = 1, col = cols)
for(i in 1:2)
abline(h = beta[i], lty = 2, col = cols[i])
```
We simulate the observations as follows
```{r sim_obs}
# assign function to simulate observations
get_obs <- function(n_obs){
set.seed(37723679)
df <- replicate(n_obs, {
# left-censoring
tstart <- max(0L, sample.int((n_periods - 1L) * 2L, 1) - n_periods + 1L)
# covariates
x <- runif(1, -1, 1)
covars <- c(1, x)
# outcome (stop time and event indicator)
y <- FALSE
for(tstop in (tstart + 1L):n_periods){
fail_time <- rexp(1) / exp(covars %*% betas[tstop + 1L, ])
if(fail_time <= 1){
y <- TRUE
tstop <- tstop - 1L + fail_time
break
}
}
c(tstart = tstart, tstop = tstop, x = x, y = y)
})
df <- data.frame(t(df))
}
# use function
df <- get_obs(3000L)
head(df, 10)
```
We left-censor the observations since we otherwise may end up with a low number
of observations towards the end.
## Particle filter and smoother
We use the generalized two-filter smoother from @fearnhead10
```{r load_pkg, cache = 1}
library(dynamichazard)
```
```{r ass_test_func, cache = 1}
func <- function(N_fw_n_bw, N_smooth, N_first){
lapply(1:6, function(n_threads){
set.seed(30520116)
suppressWarnings(ti <- system.time(pf_Fear <- PF_EM(
Surv(tstart, tstop, y) ~ x + ddFixed(x) + ddFixed_intercept(TRUE), df,
Q_0 = diag(1, 2), Q = diag(1, 2), Fmat = matrix(c(.1, 0, 0, .1), 2),
by = 1, type = "VAR", model = "exponential", max_T = n_periods,
control = PF_control(
N_fw_n_bw = N_fw_n_bw, N_smooth = N_smooth, N_first = N_first,
method = "AUX_normal_approx_w_cloud_mean",
n_max = 1, # Just take one EM-iteration
smoother = "Fearnhead_O_N",
Q_tilde = diag(.3^2, 2), n_threads = n_threads))))
list(ti = ti, fit = pf_Fear, n_threads = n_threads)
})
}
```
<!--
knitr::opts_knit$set(output.dir = ".")
knitr::load_cache("few_part", "out", path = "examples/cache/overhead-cache/")
-->
```{r few_part, cache = 1, dependson = c("assign_sim_params", "ass_test_func"), message=FALSE}
out <- func(200L, 500L, 2000L)
```
We assign a function to check the results
```{r ass_res_func}
show_res <- function(out){
do_check <- c("fixed_effects", "Q", "F")
if(all(sapply(
out[-1L], function(target)
isTRUE(all.equal(target$fit[do_check], out[[1]]$fit[do_check])))))
cat("All estimates match\n")
# plot log time versus log number of threads
ti <- sapply(out, "[[", "ti")["elapsed", ]
n_threads <- sapply(out, "[[", "n_threads")
plot(ti ~ n_threads, log = "xy")
cat("Ols estimates are\n")
print(coef(lm(log(ti) ~ log(n_threads))))
}
show_res(out)
```
Increasing the number of particles we use changes the results
```{r many_part, cache = 1, dependson = c("assign_sim_params", "ass_test_func"), message=FALSE}
out <- func(5000L, 5000L, 10000L)
```
```{r show_res_second}
show_res(out)
```
Similar changes apply for for larger data sets
```{r many_obs, cache = 1, dependson = c("assign_sim_params", "ass_test_func"), message=FALSE}
df <- get_obs(10000L)
out <- func(200L, 500L, 2000L)
```
```{r show_res_many_obs}
show_res(out)
```
## Session info
```{r ses_info}
sessionInfo()
parallel::detectCores(logical = FALSE)
```
## References