-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathperiod_inverse.py
61 lines (48 loc) · 2.14 KB
/
period_inverse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import numpy as np
import tensorflow as tf
from keras.layers import (Input, Dense, TimeDistributed, Activation, LSTM, GRU, SimpleRNN,
Dropout, merge, Reshape, Flatten, RepeatVector,
Conv1D, AtrousConv1D)
from keras.models import Model, Sequential
from keras.initializations import normal, identity
import sample_data
import keras_util as ku
from autoencoder import decoder
def main(args=None):
args = ku.parse_model_args(args)
np.random.seed(0)
N = args.N_train + args.N_test
train = np.arange(args.N_train); test = np.arange(args.N_test) + args.N_train
X, Y, X_raw, labels = sample_data.periodic(N, args.n_min, args.n_max,
even=args.even,
noise_sigma=args.sigma,
kind=args.data_type)
if args.even:
X = X[:, :, 1:2]
else:
X[:, :, 0] = ku.times_to_lags(X_raw[:, :, 0])
X[np.isnan(X)] = -1.
X_raw[np.isnan(X_raw)] = -1.
Y = sample_data.phase_to_sin_cos(Y)
model_type_dict = {'gru': GRU, 'lstm': LSTM, 'vanilla': SimpleRNN,
'conv': Conv1D, 'atrous': AtrousConv1D}
encode = Input(shape=(Y.shape[1],), name='main_input')
if args.even:
model_input = encode
else:
model_input = [encode, Input(shape=(X.shape[1], X.shape[-1] - 1),
name='aux_input')]
decode = decoder(encode, layer=model_type_dict[args.model_type],
n_step=X.shape[1], **vars(args))
model = Model(model_input, decode)
run = ku.get_run_id(**vars(args))
if args.even:
history = ku.train_and_log(Y[train], X[train, :, :], run, model, **vars(args))
else:
sample_weight = (X[train, :, -1] != -1)
history = ku.train_and_log({'main_input': Y[train], 'aux_input': X[train, :, 0:1]},
X_raw[train, :, 1:2], run, model,
sample_weight=sample_weight, **vars(args))
return X, Y, model, args
if __name__ == '__main__':
X, Y, model, args = main()