-
Notifications
You must be signed in to change notification settings - Fork 105
/
interior.h
executable file
·170 lines (164 loc) · 4.97 KB
/
interior.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
extern "C" {
#include "ldl.h"
#include "amd.h"
}
struct NRldl {
Doub Info [AMD_INFO];
Int lnz,n,nz;
VecInt PP,PPinv,PPattern,LLnz,LLp,PParent,FFlag,*LLi;
VecDoub YY,DD,*LLx;
Doub *Ax, *Lx, *B, *D, *X, *Y;
Int *Ai, *Ap, *Li, *Lp, *P, *Pinv, *Flag,*Pattern, *Lnz, *Parent;
NRldl(NRsparseMat &adat);
void order();
void factorize();
void solve(VecDoub_O &y,VecDoub &rhs);
~NRldl();
};
Doub dotprod(VecDoub_I &x, VecDoub_I &y)
{
Doub sum=0.0;
for (Int i=0;i<x.size();i++)
sum += x[i]*y[i];
return sum;
}
Int intpt(const NRsparseMat &a, VecDoub_I &b, VecDoub_I &c, VecDoub_O &x)
{
const Int MAXITS=200;
const Doub EPS=1.0e-6;
const Doub SIGMA=0.9;
const Doub DELTA=0.02;
const Doub BIG=numeric_limits<Doub>::max();
Int i,j,iter,status;
Int m=a.nrows;
Int n=a.ncols;
VecDoub y(m),z(n),ax(m),aty(n),rp(m),rd(n),d(n),dx(n),dy(m),dz(n),
rhs(m),tempm(m),tempn(n);
NRsparseMat at=a.transpose();
ADAT adat(a,at);
NRldl solver(adat.ref());
solver.order();
Doub rpfact=1.0+sqrt(dotprod(b,b));
Doub rdfact=1.0+sqrt(dotprod(c,c));
for (j=0;j<n;j++) {
x[j]=1000.0;
z[j]=1000.0;
}
for (i=0;i<m;i++) {
y[i]=1000.0;
}
Doub normrp_old=BIG;
Doub normrd_old=BIG;
cout << setw(4) << "iter" << setw(12) << "Primal obj." << setw(9) <<
"||r_p||" << setw(13) << "Dual obj." << setw(11) << "||r_d||" <<
setw(13) << "duality gap" << setw(16) << "normalized gap" << endl;
cout << scientific << setprecision(4);
for (iter=0;iter<MAXITS;iter++) {
ax=a.ax(x);
for (i=0;i<m;i++)
rp[i]=ax[i]-b[i];
Doub normrp=sqrt(dotprod(rp,rp))/rpfact;
aty=at.ax(y);
for (j=0;j<n;j++)
rd[j]=aty[j]+z[j]-c[j];
Doub normrd=sqrt(dotprod(rd,rd))/rdfact;
Doub gamma=dotprod(x,z);
Doub mu=DELTA*gamma/n;
Doub primal_obj=dotprod(c,x);
Doub dual_obj=dotprod(b,y);
Doub gamma_norm=gamma/(1.0+abs(primal_obj));
cout << setw(3) << iter << setw(12) << primal_obj << setw(12) <<
normrp << setw(12) << dual_obj << setw(12) << normrd << setw(12)
<< gamma << setw(12) << gamma_norm<<endl;
if (normrp < EPS && normrd < EPS && gamma_norm < EPS)
return status=0;
if (normrp > 1000*normrp_old && normrp > EPS)
return status=1;
if (normrd > 1000*normrd_old && normrd > EPS)
return status=2;
for (j=0;j<n;j++)
d[j]=x[j]/z[j];
adat.updateD(d);
solver.factorize();
for (j=0;j<n;j++)
tempn[j]=x[j]-mu/z[j]-d[j]*rd[j];
tempm=a.ax(tempn);
for (i=0;i<m;i++)
rhs[i]=-rp[i]+tempm[i];
solver.solve(dy,rhs);
tempn=at.ax(dy);
for (j=0;j<n;j++)
dz[j]=-tempn[j]-rd[j];
for (j=0;j<n;j++)
dx[j]=-d[j]*dz[j]+mu/z[j]-x[j];
Doub alpha_p=1.0;
for (j=0;j<n;j++)
if (x[j]+alpha_p*dx[j] < 0.0)
alpha_p=-x[j]/dx[j];
Doub alpha_d=1.0;
for (j=0;j<n;j++)
if (z[j]+alpha_d*dz[j] < 0.0)
alpha_d=-z[j]/dz[j];
alpha_p = MIN(alpha_p*SIGMA,1.0);
alpha_d = MIN(alpha_d*SIGMA,1.0);
for (j=0;j<n;j++) {
x[j]+=alpha_p*dx[j];
z[j]+=alpha_d*dz[j];
}
for (i=0;i<m;i++)
y[i]+=alpha_d*dy[i];
normrp_old=normrp;
normrd_old=normrd;
}
return status=3;
}
NRldl::NRldl(NRsparseMat &adat) : n(adat.ncols), nz(adat.nvals),
Ap(&adat.col_ptr[0]), Ai(&adat.row_ind[0]), Ax(&adat.val[0]),
PP(n),PPinv(n),PPattern(n),LLnz(n),LLp(n+1),PParent(n),FFlag(n),
YY(n),DD(n),Y(&YY[0]),D(&DD[0]),P(&PP[0]),Pinv(&PPinv[0]),
Pattern(&PPattern[0]),Lnz(&LLnz[0]),Lp(&LLp[0]),Parent(&PParent[0]),
Flag(&FFlag[0]) {}
void NRldl::order() {
if (amd_order (n, Ap, Ai, P, (Doub *) NULL, Info) != AMD_OK)
throw("call to AMD failed");
amd_control ((Doub *) NULL);
//amd_info (Info);
ldl_symbolic (n, Ap, Ai, Lp, Parent, Lnz, Flag, P, Pinv);
lnz = Lp [n];
/* find # of nonzeros in L, and flop count for ldl_numeric */
Doub flops = 0 ;
for (Int j = 0 ; j < n ; j++)
flops += ((Doub) Lnz [j]) * (Lnz [j] + 2) ;
cout << "Nz in L: " << lnz << " Flop count: " << flops << endl;
/* -------------------------------------------------------------- */
/* allocate remainder of L, of size lnz */
/* -------------------------------------------------------------- */
LLi=new VecInt(lnz);
LLx=new VecDoub(lnz);
Li=&(*LLi)[0];
Lx=&(*LLx)[0];
}
void NRldl::factorize() {
/* -------------------------------------------------------------- */
/* numeric factorization to get Li, Lx, and D */
/* -------------------------------------------------------------- */
Int dd = ldl_numeric (n, Ap, Ai, Ax, Lp, Parent, Lnz, Li, Lx, D,
Y, Flag, Pattern, P, Pinv) ;
if (dd != n)
throw("Factorization failed since diagonal is zero.");
}
void NRldl::solve(VecDoub_O &y,VecDoub &rhs) {
B=&rhs[0];
X=&y[0];
/* solve Ax=b */
/* the factorization is LDL' = PAP' */
ldl_perm (n, Y, B, P) ; /* y = Pb */
ldl_lsolve (n, Y, Lp, Li, Lx) ; /* y = L\y */
ldl_dsolve (n, Y, D) ; /* y = D\y */
ldl_ltsolve (n, Y, Lp, Li, Lx) ; /* y = L'\y */
ldl_permt (n, X, Y, P) ; /* x = P'y */
}
NRldl::~NRldl() {
delete LLx;
delete LLi;
}