-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrle_to_bitmap.py
191 lines (144 loc) · 5.59 KB
/
rle_to_bitmap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
import numpy as np
class RepCount:
def __init__(self):
self.num_string = ''
def push(self, c):
self.num_string += c
def calc(self):
rep = 1 if not self.num_string else int(self.num_string)
self.num_string = ''
return rep
# https://conwaylife.com/wiki/Run_Length_Encoded
class RLEParser:
def __init__(self):
self.repCount = RepCount()
self.dfb_cur_str = ''
self.bit_array = []
self.x = 0
self.y = 0
def parse( self, rle_string, width, height):
self.width = width
self.height = height
for c in rle_string:
if c.isspace():
continue
self.dfb_cur_str += c
if c.isdigit():
self.repCount.push(c)
continue
if c == '$':
self._finishLine( self.repCount.calc() )
continue
if c == '!':
self._finishLine( self.height - self.y )
assert( self.y == self.height )
assert( len(self.bit_array) == self.width * self.height )
return self.bit_array
val = 1 if c == 'o' else 0 if c == 'b' else None
rep = self.repCount.calc()
assert( val is not None )
self.bit_array.extend( [val] * rep )
self.x += rep
assert( self.x <= self.width )
def _finishLine(self, rep):
assert( self.x <= self.width )
assert( self.y <= self.height )
self.bit_array.extend( [0] * (self.width - self.x + (rep - 1) * self.width) )
self.x = 0
self.y += rep
self.dfb_cur_str =''
assert( self.x <= self.width )
assert( self.y <= self.height )
def cutTopLeftCorner(bits, width, height):
new_bits = []
half_width, half_height = width // 2, height // 2
for y in range(half_width):
for x in range(half_height):
new_bits.append( bits[y * width + x] )
return new_bits, half_width, half_height
def convertBitsToUint32List(bits):
if len(bits) % 32 != 0:
bits = bits + [0]*(32 - len(bits) % 32)
return np.frombuffer(np.packbits(bits, bitorder='little').tobytes(), dtype=np.uint32)
def calcCompressedBitmap(data):
index = []
nodes = []
node2index = {}
for item in data:
idx = node2index.get(item)
if idx is None:
idx = len(nodes)
nodes.append(item)
node2index[item] = idx
index.append(idx)
if len(index) % 32 != 0:
index.extend([0]*(32 - len(index) % 32))
packedIndex = np.frombuffer(bytearray(index), dtype=np.uint32)
return packedIndex, nodes
def saveAsActveCellsList(bits, width, height):
MAX_ARR_SIZE = 2000
needComma = False
with open('active_cells_out.txt', 'w') as f:
n = 0
for y in range(height):
for x in range(width):
if bits[y * width + x]:
if n % MAX_ARR_SIZE == 0:
print('\n\n#define ACTIVE_CELLS{} '.format(n // MAX_ARR_SIZE), end='', file=f )
needComma = False
if needComma:
print(', ', end='', file=f )
if (n % MAX_ARR_SIZE) % 7 == 0:
print('\\', file=f)
print('ivec2({:3},{:3})'.format(x, y), end='', file=f )
#print('0x{:08X}u '.format((x % 256 << 8) | (y % 256)), end='', file=f )
needComma = True
n += 1
def saveAsActveCellsLogicOps(bits, width, height):
with open('active_cells_logical_out.txt', 'w') as f:
n = 0
for y in range(height):
for x in range(width):
if bits[y * width + x]:
print('if( uv.x == {:3} && uv.y == {:3} ) return resOk; \\'.format(x, y), file=f )
def saveHexIntArray(data, file):
n = 0
needComma = False
for item in data:
if needComma:
print(', ', end='', file=file )
if n % 9 == 0:
print('\\', file=file)
print('0x{:08X}u'.format(item), end='', file=file )
needComma = True
n += 1
def saveAsBitmap(data):
with open('bitmap_out.txt', 'w') as f:
print('#define BITMAP ', end='', file=f )
saveHexIntArray(data, f)
def saveCompressedBitmap(index, nodes):
with open('bitmap_compressed_out.txt', 'w') as f:
print('#define COMPRESSED_BITMAP_NODES ', end='', file=f )
saveHexIntArray(nodes, f)
print('\n\n#define COMPRESSED_BITMAP_INDEX ', end='', file=f )
saveHexIntArray(index, f)
def main():
import pi_star as d
parser = RLEParser()
bits = parser.parse( d.rle_string, d.width, d.height )
if d.width == d.height and d.width % 2 == 0 and True:
print( 'Cut top-left corner due to symmetry' )
bits, d.width, d.height = cutTopLeftCorner(bits, d.width, d.height)
print( 'Total cells: {} [{} x {}]'.format(len(bits), d.width, d.height) )
print( 'Alive cells: {}'.format(sum(bits)) )
saveAsActveCellsList(bits, d.width, d.height)
saveAsActveCellsLogicOps(bits, d.width, d.height)
words = convertBitsToUint32List(bits)
print( 'Bitmap size: {}'.format(len(words)) )
print( 'Bitmap unique elements: {}'.format(len(set(words))) )
saveAsBitmap(words)
pkIdx, pkNodes = calcCompressedBitmap(words)
print( 'Packed bitmap size: [{} + {}]'.format(len(pkIdx), len(pkNodes)) )
saveCompressedBitmap(pkIdx, pkNodes)
if __name__ == '__main__':
main( )