-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvisu.py
143 lines (125 loc) · 4.67 KB
/
visu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import matplotlib.pyplot as plt
from matplotlib import rcParams
from sklearn.linear_model import LogisticRegression
# Set matplotlib to use Times New Roman
rcParams['font.family'] = 'serif'
rcParams['font.serif'] = ['Times New Roman']
import numpy as np
from matplotlib.colors import ListedColormap
from sklearn.datasets import make_circles, make_classification, make_moons
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
from sklearn.gaussian_process import GaussianProcessClassifier
from sklearn.gaussian_process.kernels import RBF
from sklearn.inspection import DecisionBoundaryDisplay
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
cm = plt.cm.RdBu
cm_bright = ListedColormap(["#FF0000", "#0000FF"])
from sklearn import svm
def show_db(out_dir, score, clf, X, y, X_train, y_train, X_test, y_test, df_meta):
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
fig, ax = plt.subplots()
fontsize = 8
is_linear_model = False
if hasattr(clf, 'kernel'):
if clf.kernel == 'linear':
is_linear_model = True
if isinstance(clf, LogisticRegression):
is_linear_model = True
if is_linear_model:
# get the separating hyperplane
w = clf.coef_[0]
a = -w[0] / w[1]
xx = np.linspace(-500, 500)
yy = a * xx - (clf.intercept_[0]) / w[1]
# plot the parallels to the separating hyperplane that pass through the
# support vectors (margin away from hyperplane in direction
# perpendicular to hyperplane). This is sqrt(1+a^2) away vertically in
# 2-d.
margin = 1 / np.sqrt(np.sum(clf.coef_ ** 2))
yy_down = yy - np.sqrt(1 + a ** 2) * margin
yy_up = yy + np.sqrt(1 + a ** 2) * margin
DecisionBoundaryDisplay.from_estimator(
clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5
)
# Plot the training points
ax.scatter(
X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k"
)
# Plot the testing points
colors = {0 : "r", 1: 'b'}
for g in [0, 1]:
ax.scatter(
X_test[y_test == g][:, 0],
X_test[y_test == g][:, 1],
c=colors[g],
cmap=cm_bright,
edgecolors="yellow",
alpha=0.6,
label=f"Class {g}"
)
plt.plot(xx, yy, "k-")
plt.plot(xx, yy_down, "k--")
plt.plot(xx, yy_up, "k--")
plt.legend()
# Annotate points with metadata
for i in range(len(X)):
ax.annotate(df_meta.iloc[i], (X[i, 0], X[i, 1]), ha='right', fontsize=fontsize)
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_title(score)
fig.tight_layout()
else:
DecisionBoundaryDisplay.from_estimator(
clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5
)
# Plot the training points
ax.scatter(
X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k"
)
# Plot the testing points
colors = {0 : "r", 1: 'b'}
for g in [0, 1]:
ax.scatter(
X_test[y_test == g][:, 0],
X_test[y_test == g][:, 1],
c=colors[g],
#cmap=cm_bright,
edgecolors="yellow",
alpha=0.6,
label=f"Class {g}"
)
# plot db lines:
XX, YY = np.mgrid[x_min:x_max:200j, y_min:y_max:200j]
Z = clf.decision_function(np.c_[XX.ravel(), YY.ravel()])
# Put the result into a color plot
Z = Z.reshape(XX.shape)
plt.contour(
XX,
YY,
Z,
colors=["k", "k", "k"],
linestyles=["--", "-", "--"],
levels=[-0.5, 0, 0.5],
)
# Annotate points with metadata
for i in range(len(X)):
ax.annotate(df_meta.iloc[i], (X[i, 0], X[i, 1]), ha='right', fontsize=fontsize)
ax.set_title(score)
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.legend()
fig.tight_layout()
out_dir.mkdir(parents=True, exist_ok=True)
fig.show()
filepath = out_dir / "db.png"
print(filepath)
fig.savefig(filepath, dpi=400)