From 2971cc9e4fe650f4b70288c05ace9a27fc5b40e8 Mon Sep 17 00:00:00 2001 From: Sierra Taylor Moxon Date: Tue, 12 Mar 2024 16:34:53 -0700 Subject: [PATCH 1/3] prep for 4.2.0-rc.1 release --- ChangeLog | 17 +++++++++ biolink-model.yaml | 3 +- class_prefixes.yaml | 2 +- information-resource.yaml | 2 +- project/graphql/biolink_model.graphql | 36 +++++++++---------- project/jsonld/biolink_model.context.jsonld | 8 +---- project/jsonld/biolink_model.jsonld | 37 +++++++++++--------- project/jsonschema/biolink_model.schema.json | 2 +- project/protobuf/biolink_model.proto | 36 +++++++++---------- project/shex/biolink_model.shex | 4 +-- semmed-exclude-list-model.yaml | 2 +- src/biolink_model/schema/biolink_model.yaml | 20 +++++------ 12 files changed, 91 insertions(+), 78 deletions(-) diff --git a/ChangeLog b/ChangeLog index 4ea2638b7..52be2d0bc 100644 --- a/ChangeLog +++ b/ChangeLog @@ -1,5 +1,22 @@ CHANGES ======= +4.2.0-rc.1 +---- + +## What's Changed +* Knowledge level agent type new dir by @sierra-moxon in https://github.com/biolink/biolink-model/pull/1470 +* check links in doc by @sierra-moxon in https://github.com/biolink/biolink-model/pull/1465 +* Fix catagory type for pydantic generated models, remove pydantic 1 generation by @sierra-moxon in https://github.com/biolink/biolink-model/pull/1468 +* Update links and autogenerated artifacts in README.md by @deepakunni3 in https://github.com/biolink/biolink-model/pull/1476 +* fix mislabeled ranges to domain by @sierra-moxon in https://github.com/biolink/biolink-model/pull/1475 +* relaxed mappings for a couple of chemicals, made them mappings of Che… by @sierra-moxon in https://github.com/biolink/biolink-model/pull/1474 +* remove skos:relatedMatch as an exact mapping to biolink relate… by @sierra-moxon in https://github.com/biolink/biolink-model/pull/1473 +* move semmed administered_to and associated_with to their new respecti… by @sierra-moxon in https://github.com/biolink/biolink-model/pull/1472 +* fix order of prefixes for small molecule and chemical entity by @sierra-moxon in https://github.com/biolink/biolink-model/pull/1471 + +**Full Changelog**: https://github.com/biolink/biolink-model/compare/v4.1.6...v4.2.0-rc.1 + + 4.1.6 ----- - remove commas from inverse mixin predicate diff --git a/biolink-model.yaml b/biolink-model.yaml index 51e4b6a02..037183c71 100644 --- a/biolink-model.yaml +++ b/biolink-model.yaml @@ -6,8 +6,7 @@ license: https://creativecommons.org/publicdomain/zero/1.0/ # Version should be kept in sync with primary Git repository release tag -version: 4.1.6 - +version: 4.2.0-rc.1 ## ------------ ## diff --git a/class_prefixes.yaml b/class_prefixes.yaml index 22aa30ff4..8eb4bd024 100644 --- a/class_prefixes.yaml +++ b/class_prefixes.yaml @@ -5,7 +5,7 @@ license: https://creativecommons.org/publicdomain/zero/1.0/ # Version should be kept in sync with primary Git repository release tag -version: 4.1.6 +version: 4.2.0-rc.1 default_prefix: biolink default_range: string diff --git a/information-resource.yaml b/information-resource.yaml index f00c47ffa..d35c4a42e 100644 --- a/information-resource.yaml +++ b/information-resource.yaml @@ -5,7 +5,7 @@ license: https://creativecommons.org/publicdomain/zero/1.0/ # Version should be kept in sync with primary Git repository release tag -version: 4.1.6 +version: 4.2.0-rc.1 ## ------------ diff --git a/project/graphql/biolink_model.graphql b/project/graphql/biolink_model.graphql index cc843ad6b..02f9c728a 100644 --- a/project/graphql/biolink_model.graphql +++ b/project/graphql/biolink_model.graphql @@ -929,7 +929,7 @@ type ChemicalEntity implements PhysicalEssence, ChemicalOrDrugOrTreatment, Chemi fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean @@ -1108,12 +1108,12 @@ type ChemicalMixture fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean hasChemicalRole: [ChemicalRole] - isSupplement: ChemicalMixture + isSupplement: String highestFDAApprovalStatus: String drugRegulatoryStatusWorldWide: String routesOfDelivery: [DrugDeliveryEnum] @@ -1632,12 +1632,12 @@ type ComplexMolecularMixture fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean hasChemicalRole: [ChemicalRole] - isSupplement: ChemicalMixture + isSupplement: String highestFDAApprovalStatus: String drugRegulatoryStatusWorldWide: String routesOfDelivery: [DrugDeliveryEnum] @@ -2139,12 +2139,12 @@ type Drug implements ChemicalOrDrugOrTreatment, OntologyClass fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean hasChemicalRole: [ChemicalRole] - isSupplement: ChemicalMixture + isSupplement: String highestFDAApprovalStatus: String drugRegulatoryStatusWorldWide: String routesOfDelivery: [DrugDeliveryEnum] @@ -2518,7 +2518,7 @@ type EnvironmentalFoodContaminant fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean @@ -2764,12 +2764,12 @@ type Food fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean hasChemicalRole: [ChemicalRole] - isSupplement: ChemicalMixture + isSupplement: String highestFDAApprovalStatus: String drugRegulatoryStatusWorldWide: String routesOfDelivery: [DrugDeliveryEnum] @@ -2789,7 +2789,7 @@ type FoodAdditive fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean @@ -4696,7 +4696,7 @@ type MolecularEntity fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean @@ -4718,12 +4718,12 @@ type MolecularMixture fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean hasChemicalRole: [ChemicalRole] - isSupplement: ChemicalMixture + isSupplement: String highestFDAApprovalStatus: String drugRegulatoryStatusWorldWide: String routesOfDelivery: [DrugDeliveryEnum] @@ -4824,7 +4824,7 @@ type NucleicAcidEntity implements GenomicEntity, ThingWithTaxon, PhysicalEssence fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean @@ -5830,12 +5830,12 @@ type ProcessedMaterial fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean hasChemicalRole: [ChemicalRole] - isSupplement: ChemicalMixture + isSupplement: String highestFDAApprovalStatus: String drugRegulatoryStatusWorldWide: String routesOfDelivery: [DrugDeliveryEnum] @@ -6372,7 +6372,7 @@ type SmallMolecule fullName: LabelType synonym: [LabelType] category: [Uriorcurie]! - tradeName: ChemicalEntity + tradeName: String availableFrom: [DrugAvailabilityEnum] maxToleratedDose: String isToxic: Boolean diff --git a/project/jsonld/biolink_model.context.jsonld b/project/jsonld/biolink_model.context.jsonld index e4ae7143e..b2c76d81b 100644 --- a/project/jsonld/biolink_model.context.jsonld +++ b/project/jsonld/biolink_model.context.jsonld @@ -1,7 +1,7 @@ { "comments": { "description": "Auto generated by LinkML jsonld context generator", - "generation_date": "2024-03-12T15:08:25", + "generation_date": "2024-03-12T16:34:03", "source": "biolink_model.yaml" }, "@context": { @@ -1287,9 +1287,6 @@ "is_substrate_of": { "@type": "@id" }, - "is_supplement": { - "@type": "@id" - }, "is_synonymous_variant_of": { "@type": "@id" }, @@ -1747,9 +1744,6 @@ "total_sample_size": { "@type": "xsd:integer" }, - "trade_name": { - "@type": "@id" - }, "transcribed_from": { "@type": "@id" }, diff --git a/project/jsonld/biolink_model.jsonld b/project/jsonld/biolink_model.jsonld index 258e68173..08d42f904 100644 --- a/project/jsonld/biolink_model.jsonld +++ b/project/jsonld/biolink_model.jsonld @@ -2,7 +2,7 @@ "name": "Biolink-Model", "description": "Entity and association taxonomy and datamodel for life-sciences data", "id": "https://w3id.org/biolink/biolink-model", - "version": "4.1.6", + "version": "4.2.0-rc.1", "imports": [ "linkml:types" ], @@ -3583,13 +3583,13 @@ "description": "", "from_schema": "https://w3id.org/biolink/biolink-model", "is_a": "node_property", - "domain": "NamedThing", + "domain": "ChemicalMixture", "slot_uri": "https://w3id.org/biolink/vocab/is_supplement", "owner": "ChemicalMixture", "domain_of": [ "ChemicalMixture" ], - "range": "ChemicalMixture", + "range": "string", "@type": "SlotDefinition" }, { @@ -3598,13 +3598,13 @@ "description": "", "from_schema": "https://w3id.org/biolink/biolink-model", "is_a": "node_property", - "domain": "NamedThing", + "domain": "ChemicalEntity", "slot_uri": "https://w3id.org/biolink/vocab/trade_name", "owner": "ChemicalEntity", "domain_of": [ "ChemicalEntity" ], - "range": "ChemicalEntity", + "range": "string", "@type": "SlotDefinition" }, { @@ -4675,10 +4675,7 @@ "description": "A relationship that is asserted between two named things", "from_schema": "https://w3id.org/biolink/biolink-model", "exact_mappings": [ - "http://www.w3.org/2004/02/skos/core#relatedMatch", - "http://identifiers.org/umls/related_to", - "https://skr3.nlm.nih.gov/SemMedDBASSOCIATED_WITH", - "https://skr3.nlm.nih.gov/SemMedDBADMINISTERED_TO" + "http://identifiers.org/umls/related_to" ], "narrow_mappings": [ "https://skr3.nlm.nih.gov/SemMedDBcompared_with", @@ -4859,6 +4856,9 @@ "http://purl.obolibrary.org/obo/RO_0004029", "http://snomed.info/id/47429007" ], + "broad_mappings": [ + "https://skr3.nlm.nih.gov/SemMedDBASSOCIATED_WITH" + ], "is_a": "related_to_at_instance_level", "domain": "NamedThing", "slot_uri": "https://w3id.org/biolink/vocab/associated_with", @@ -8087,6 +8087,9 @@ "used to treat", "given to treat" ], + "broad_mappings": [ + "https://skr3.nlm.nih.gov/SemMedDBADMINISTERED_TO" + ], "is_a": "related_to_at_instance_level", "mixins": [ "treats_or_applied_or_studied_to_treat" @@ -24894,7 +24897,6 @@ "CHEBI", "MESH", "CAS", - "UMLS", "ncats.drug", "PHARMGKB.CHEMICAL", "PUBCHEM.COMPOUND", @@ -24911,7 +24913,8 @@ "KEGG.GLYCAN", "KEGG.DRUG", "KEGG.ENVIRON", - "KEGG" + "KEGG", + "UMLS" ], "definition_uri": "https://w3id.org/biolink/vocab/ChemicalEntity", "description": "A chemical entity is a physical entity that pertains to chemistry or biochemistry.", @@ -24926,7 +24929,9 @@ "STY:T103" ], "narrow_mappings": [ - "WIKIDATA:Q43460564" + "WIKIDATA:Q43460564", + "STY:T123", + "STY:T131" ], "broad_mappings": [ "STY:T167" @@ -25003,8 +25008,6 @@ "STY:T196", "CHEBI:59999", "bioschemas:ChemicalSubstance", - "STY:T123", - "STY:T131", "STY:T125", "STY:T197", "STY:T109", @@ -34633,9 +34636,9 @@ ], "metamodel_version": "1.7.0", "source_file": "biolink_model.yaml", - "source_file_date": "2024-03-12T15:08:19", - "source_file_size": 391227, - "generation_date": "2024-03-12T15:08:27", + "source_file_date": "2024-03-12T16:33:54", + "source_file_size": 391247, + "generation_date": "2024-03-12T16:34:05", "@type": "SchemaDefinition", "@context": [ "project/jsonld/biolink_model.context.jsonld", diff --git a/project/jsonschema/biolink_model.schema.json b/project/jsonschema/biolink_model.schema.json index 5db8f1874..9d56be594 100644 --- a/project/jsonschema/biolink_model.schema.json +++ b/project/jsonschema/biolink_model.schema.json @@ -32419,5 +32419,5 @@ "metamodel_version": "1.7.0", "title": "Biolink-Model", "type": "object", - "version": "4.1.6" + "version": "4.2.0-rc.1" } \ No newline at end of file diff --git a/project/protobuf/biolink_model.proto b/project/protobuf/biolink_model.proto index 0644a2061..f786acf6a 100644 --- a/project/protobuf/biolink_model.proto +++ b/project/protobuf/biolink_model.proto @@ -824,7 +824,7 @@ message ChemicalEntity labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 @@ -987,12 +987,12 @@ message ChemicalMixture labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 repeated chemicalRole hasChemicalRole = 0 - chemicalMixture isSupplement = 0 + string isSupplement = 0 string highestFDAApprovalStatus = 0 string drugRegulatoryStatusWorldWide = 0 repeated drugDeliveryEnum routesOfDelivery = 0 @@ -1497,12 +1497,12 @@ message ComplexMolecularMixture labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 repeated chemicalRole hasChemicalRole = 0 - chemicalMixture isSupplement = 0 + string isSupplement = 0 string highestFDAApprovalStatus = 0 string drugRegulatoryStatusWorldWide = 0 repeated drugDeliveryEnum routesOfDelivery = 0 @@ -1985,12 +1985,12 @@ message Drug labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 repeated chemicalRole hasChemicalRole = 0 - chemicalMixture isSupplement = 0 + string isSupplement = 0 string highestFDAApprovalStatus = 0 string drugRegulatoryStatusWorldWide = 0 repeated drugDeliveryEnum routesOfDelivery = 0 @@ -2275,7 +2275,7 @@ message EnvironmentalFoodContaminant labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 @@ -2492,12 +2492,12 @@ message Food labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 repeated chemicalRole hasChemicalRole = 0 - chemicalMixture isSupplement = 0 + string isSupplement = 0 string highestFDAApprovalStatus = 0 string drugRegulatoryStatusWorldWide = 0 repeated drugDeliveryEnum routesOfDelivery = 0 @@ -2516,7 +2516,7 @@ message FoodAdditive labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 @@ -4252,7 +4252,7 @@ message MolecularEntity labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 @@ -4274,12 +4274,12 @@ message MolecularMixture labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 repeated chemicalRole hasChemicalRole = 0 - chemicalMixture isSupplement = 0 + string isSupplement = 0 string highestFDAApprovalStatus = 0 string drugRegulatoryStatusWorldWide = 0 repeated drugDeliveryEnum routesOfDelivery = 0 @@ -4374,7 +4374,7 @@ message NucleicAcidEntity labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 @@ -5218,12 +5218,12 @@ message ProcessedMaterial labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 repeated chemicalRole hasChemicalRole = 0 - chemicalMixture isSupplement = 0 + string isSupplement = 0 string highestFDAApprovalStatus = 0 string drugRegulatoryStatusWorldWide = 0 repeated drugDeliveryEnum routesOfDelivery = 0 @@ -5710,7 +5710,7 @@ message SmallMolecule labelType fullName = 0 repeated labelType synonym = 0 repeated uriorcurie category = 0 - chemicalEntity tradeName = 0 + string tradeName = 0 repeated drugAvailabilityEnum availableFrom = 0 string maxToleratedDose = 0 boolean isToxic = 0 diff --git a/project/shex/biolink_model.shex b/project/shex/biolink_model.shex index 0858054ce..74767b4a8 100644 --- a/project/shex/biolink_model.shex +++ b/project/shex/biolink_model.shex @@ -611,7 +611,7 @@ linkml:Sparqlpath xsd:string rdf:type [ ] ? ; & ; rdf:type [ ] ? ; - @ ? ; + @linkml:String ? ; @ * ; @linkml:String ? ; @linkml:Boolean ? ; @@ -708,7 +708,7 @@ linkml:Sparqlpath xsd:string CLOSED { ( $ ( & ; rdf:type [ ] ? ; - @ ? ; + @linkml:String ? ; @linkml:String ? ; @linkml:String ? ; @ * diff --git a/semmed-exclude-list-model.yaml b/semmed-exclude-list-model.yaml index c9b7b833c..4840ac57e 100644 --- a/semmed-exclude-list-model.yaml +++ b/semmed-exclude-list-model.yaml @@ -6,7 +6,7 @@ license: https://creativecommons.org/publicdomain/zero/1.0/ # Version should be kept in sync with primary Git repository release tag -version: 4.1.6 +version: 4.2.0-rc.1 ## ------------ diff --git a/src/biolink_model/schema/biolink_model.yaml b/src/biolink_model/schema/biolink_model.yaml index a10690ef1..037183c71 100644 --- a/src/biolink_model/schema/biolink_model.yaml +++ b/src/biolink_model/schema/biolink_model.yaml @@ -6,8 +6,7 @@ license: https://creativecommons.org/publicdomain/zero/1.0/ # Version should be kept in sync with primary Git repository release tag -version: 4.1.6 - +version: 4.2.0-rc.1 ## ------------ ## @@ -1174,12 +1173,12 @@ slots: is supplement: description: >- is_a: node property - range: chemical mixture + domain: chemical mixture trade name: description: >- is_a: node property - range: chemical entity + domain: chemical entity available from: description: >- @@ -1716,10 +1715,7 @@ slots: annotations: canonical_predicate: true exact_mappings: - - skos:relatedMatch - UMLS:related_to - - SEMMEDDB:ASSOCIATED_WITH - - SEMMEDDB:ADMINISTERED_TO broad_mappings: - owl:topObjectProperty narrow_mappings: @@ -1868,6 +1864,8 @@ slots: narrow_mappings: - RO:0004029 - SNOMEDCT:47429007 + broad_mappings: + - SEMMEDDB:ASSOCIATED_WITH superclass of: is_a: related to at concept level @@ -3656,6 +3654,8 @@ slots: canonical_predicate: true in_subset: - translator_minimal + broad_mappings: + - SEMMEDDB:ADMINISTERED_TO # TODO: need an inverse for taken to treat treatment applications from: @@ -7218,6 +7218,8 @@ classes: - STY:T167 # Substance, children include food, body substance, chemical. narrow_mappings: - WIKIDATA:Q43460564 + - STY:T123 # (bacs, full name: Biologically Active Substance) + - STY:T131 # (hops, full name: Hazardous or Poisonous Substance) in_subset: - translator_minimal id_prefixes: @@ -7225,7 +7227,6 @@ classes: - CHEBI - MESH - CAS # CAS numbers are given for things like plant extracts as well. - - UMLS - ncats.drug - PHARMGKB.CHEMICAL - PUBCHEM.COMPOUND @@ -7245,6 +7246,7 @@ classes: - KEGG.DRUG # D number - KEGG.ENVIRON # E number - KEGG + - UMLS small molecule: is_a: molecular entity @@ -7259,8 +7261,6 @@ classes: - STY:T196 # Element, Ion, or Isotope - CHEBI:59999 - bioschemas:ChemicalSubstance - - STY:T123 # (bacs, full name: Biologically Active Substance) - - STY:T131 # (hops, full name: Hazardous or Poisonous Substance) - STY:T125 # (horm, full name: Hormone) - STY:T197 # (inch, full name: Inorganic Chemical) - STY:T109 # (orch, full name: Organic Chemical) From 9433fead1bbdfa80dee53544efac6b62c05f4cbe Mon Sep 17 00:00:00 2001 From: Sierra Taylor Moxon Date: Tue, 12 Mar 2024 16:47:59 -0700 Subject: [PATCH 2/3] regen artifacts --- information_resource.py | 2 +- project/jsonld/biolink_model.context.jsonld | 2 +- project/jsonld/biolink_model.jsonld | 4 +- project/owl/biolink_model.owl.ttl | 5440 +-- project/shacl/biolink_model.shacl.ttl | 33966 +++++++++--------- src/biolink_model/datamodel/model.py | 2 +- src/biolink_model/scripts/classprefixes.py | 2 +- 7 files changed, 19709 insertions(+), 19709 deletions(-) diff --git a/information_resource.py b/information_resource.py index 8e01df9e0..2524ad853 100644 --- a/information_resource.py +++ b/information_resource.py @@ -1,5 +1,5 @@ # Auto generated from information-resource.yaml by pythongen.py version: 0.0.1 -# Generation date: 2024-03-12T16:43:07 +# Generation date: 2024-03-12T16:46:59 # Schema: Biolink-Model-Information-Resource # # id: https://w3id.org/biolink/information-resource.yaml diff --git a/project/jsonld/biolink_model.context.jsonld b/project/jsonld/biolink_model.context.jsonld index 3419d24c9..afe37adf9 100644 --- a/project/jsonld/biolink_model.context.jsonld +++ b/project/jsonld/biolink_model.context.jsonld @@ -1,7 +1,7 @@ { "comments": { "description": "Auto generated by LinkML jsonld context generator", - "generation_date": "2024-03-12T16:41:07", + "generation_date": "2024-03-12T16:45:01", "source": "biolink_model.yaml" }, "@context": { diff --git a/project/jsonld/biolink_model.jsonld b/project/jsonld/biolink_model.jsonld index ad4ca6e97..126233d7b 100644 --- a/project/jsonld/biolink_model.jsonld +++ b/project/jsonld/biolink_model.jsonld @@ -34636,9 +34636,9 @@ ], "metamodel_version": "1.7.0", "source_file": "biolink_model.yaml", - "source_file_date": "2024-03-12T16:41:01", + "source_file_date": "2024-03-12T16:44:55", "source_file_size": 391247, - "generation_date": "2024-03-12T16:41:10", + "generation_date": "2024-03-12T16:45:04", "@type": "SchemaDefinition", "@context": [ "project/jsonld/biolink_model.context.jsonld", diff --git a/project/owl/biolink_model.owl.ttl b/project/owl/biolink_model.owl.ttl index 8e7ec554e..0b16c4b01 100644 --- a/project/owl/biolink_model.owl.ttl +++ b/project/owl/biolink_model.owl.ttl @@ -2635,13 +2635,13 @@ biolink:AccessibleDnaRegion a owl:Class ; rdfs:label "accessible dna region" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], @@ -2690,20 +2690,11 @@ biolink:AccessibleDnaRegion a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity ontogenic association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject ], @@ -2716,6 +2707,15 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a owl:Class ; [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], biolink:AnatomicalEntityToAnatomicalEntityAssociation ; skos:definition "A relationship between two anatomical entities where the relationship is ontogenic, i.e. the two entities are related by development. A number of different relationship types can be used to specify the precise nature of the relationship." ; skos:inScheme . @@ -2723,31 +2723,31 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity part of association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], biolink:AnatomicalEntityToAnatomicalEntityAssociation ; skos:definition "A relationship between two anatomical entities where the relationship is mereological, i.e the two entities are related by parthood. This includes relationships between cellular components and cells, between cells and tissues, tissues and whole organisms" ; @@ -2764,26 +2764,26 @@ biolink:Bacterium a owl:Class ; biolink:BehaviorToBehavioralFeatureAssociation a owl:Class ; rdfs:label "behavior to behavioral feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Behavior ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:BehavioralFeature ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Behavior ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An association between an mixture behavior and a behavioral feature manifested by the individual exhibited or has exhibited the behavior." ; skos:inScheme . @@ -2811,7 +2811,10 @@ biolink:BioticExposure a owl:Class ; biolink:Book a owl:Class ; rdfs:label "book" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; + owl:onProperty biolink:type ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -2820,11 +2823,8 @@ biolink:Book a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:type ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:type ], biolink:Publication ; skos:definition "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; skos:inScheme . @@ -2839,10 +2839,10 @@ biolink:CaseToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "case to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:CaseToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + owl:someValuesFrom biolink:CaseToEntityAssociationMixin ], biolink:Association ; skos:definition "An association between a case (e.g. individual patient) and a phenotypic feature in which the individual has or has had the phenotype." ; skos:inScheme . @@ -2850,29 +2850,29 @@ biolink:CaseToPhenotypicFeatureAssociation a owl:Class ; biolink:CausalGeneToDiseaseAssociation a owl:Class ; rdfs:label "causal gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -2965,16 +2965,16 @@ biolink:Cell a owl:Class ; biolink:CellLineAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "cell line as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:CellLine ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:CellLine ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; @@ -2991,167 +2991,167 @@ biolink:CellLineToEntityAssociationMixin a owl:Class ; biolink:ChemicalAffectsGeneAssociation a owl:Class ; rdfs:label "chemical affects gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:object_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; + owl:minCardinality 0 ; owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:object_part_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:object_part_qualifier ], biolink:Association ; skos:definition "Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.)" ; skos:inScheme . @@ -3159,31 +3159,31 @@ biolink:ChemicalAffectsGeneAssociation a owl:Class ; biolink:ChemicalEntityAssessesNamedThingAssociation a owl:Class ; rdfs:label "chemical entity assesses named thing association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], biolink:Association ; skos:inScheme . @@ -3191,38 +3191,38 @@ biolink:ChemicalEntityAssessesNamedThingAssociation a owl:Class ; biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a owl:Class ; rdfs:label "chemical entity or gene or gene product regulates gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], @@ -3233,35 +3233,26 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a owl:Class ; biolink:ChemicalGeneInteractionAssociation a owl:Class ; rdfs:label "chemical gene interaction association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject_context_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -3270,70 +3261,79 @@ biolink:ChemicalGeneInteractionAssociation a owl:Class ; owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; owl:onProperty biolink:object_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 0 ; + owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object_context_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_part_qualifier ], biolink:Association ; skos:definition "describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction)" ; skos:exactMatch SIO:001257 ; @@ -3343,19 +3343,19 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation rdfs:label "chemical or drug or treatment side effect disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; skos:definition "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect." ; skos:inScheme . @@ -3384,37 +3384,37 @@ biolink:ChemicalToChemicalDerivationAssociation a owl:Class ; rdfs:label "chemical to chemical derivation association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:catalyst_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:catalyst_qualifier ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:catalyst_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:catalyst_qualifier ], biolink:ChemicalToChemicalAssociation ; skos:definition "A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 catalyst qualifier P" ; skos:inScheme . @@ -3422,20 +3422,20 @@ biolink:ChemicalToChemicalDerivationAssociation a owl:Class ; biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "chemical to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], biolink:Association ; skos:definition "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; skos:inScheme ; @@ -3447,23 +3447,23 @@ biolink:ChemicalToPathwayAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Pathway ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + owl:allValuesFrom biolink:Pathway ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "An interaction between a chemical entity and a biological process or pathway." ; skos:exactMatch SIO:001250 ; @@ -3498,10 +3498,10 @@ biolink:ChiSquaredAnalysisResult a owl:Class ; biolink:ClinicalFinding a owl:Class ; rdfs:label "clinical finding" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:ClinicalAttribute ; owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ClinicalAttribute ; + owl:minCardinality 0 ; owl:onProperty biolink:has_attribute ], biolink:PhenotypicFeature ; skos:definition "this category is currently considered broad enough to tag clinical lab measurements and other biological attributes taken as 'clinical traits' with some statistical score, for example, a p value in genetic associations." ; @@ -3570,38 +3570,38 @@ biolink:ConceptCountAnalysisResult a owl:Class ; biolink:ContributorAssociation a owl:Class ; rdfs:label "contributor association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualifiers ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Agent ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:InformationContentEntity ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:Agent ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:InformationContentEntity ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "Any association between an entity (such as a publication) and various agents that contribute to its realisation" ; skos:inScheme . @@ -3609,29 +3609,29 @@ biolink:ContributorAssociation a owl:Class ; biolink:CorrelatedGeneToDiseaseAssociation a owl:Class ; rdfs:label "correlated gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -3660,25 +3660,25 @@ biolink:DiseaseOrPhenotypicFeatureExposure a owl:Class ; biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a owl:Class ; rdfs:label "disease or phenotypic feature to genetic inheritance association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneticInheritance ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between either a disease or a phenotypic feature and its mode of (genetic) inheritance." ; @@ -3687,16 +3687,16 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a owl:Class ; biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a owl:Class ; rdfs:label "disease or phenotypic feature to location association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; @@ -3706,10 +3706,10 @@ biolink:DiseaseToExposureEventAssociation a owl:Class ; rdfs:label "disease to exposure event association" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin ], + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], biolink:Association ; skos:definition "An association between an exposure event and a disease." ; skos:inScheme . @@ -3717,32 +3717,32 @@ biolink:DiseaseToExposureEventAssociation a owl:Class ; biolink:DiseaseToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "disease to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:PhenotypicFeature ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:FrequencyQuantifier ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:subject ], biolink:Association ; skos:closeMatch dcid:DiseaseSymptomAssociation ; skos:definition "An association between a disease and a phenotypic feature in which the phenotypic feature is associated with the disease in some way." ; @@ -3800,10 +3800,10 @@ biolink:DrugToGeneAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], biolink:Association ; skos:definition "An interaction between a drug and a gene or gene product." ; @@ -3842,11 +3842,17 @@ biolink:DrugToGeneInteractionExposure a owl:Class ; biolink:DruggableGeneToDiseaseAssociation a owl:Class ; rdfs:label "druggable gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DruggableGeneCategoryEnum ; + owl:onProperty biolink:has_evidence ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], @@ -3857,20 +3863,14 @@ biolink:DruggableGeneToDiseaseAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DruggableGeneCategoryEnum ; - owl:onProperty biolink:has_evidence ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_evidence ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -3878,22 +3878,22 @@ biolink:EntityToDiseaseAssociation a owl:Class ; rdfs:label "entity to disease association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:clinical_approval_status ], + owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MaxResearchPhaseEnum ; + owl:maxCardinality 1 ; owl:onProperty biolink:max_research_phase ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:MaxResearchPhaseEnum ; owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; owl:allValuesFrom biolink:ClinicalApprovalStatusEnum ; owl:onProperty biolink:clinical_approval_status ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:max_research_phase ], biolink:Association ; skos:inScheme . @@ -3913,19 +3913,19 @@ biolink:EntityToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "entity to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:max_research_phase ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:clinical_approval_status ], + owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; owl:allValuesFrom biolink:MaxResearchPhaseEnum ; owl:onProperty biolink:max_research_phase ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; owl:allValuesFrom biolink:ClinicalApprovalStatusEnum ; owl:onProperty biolink:clinical_approval_status ], @@ -3969,19 +3969,19 @@ biolink:Event a owl:Class ; biolink:ExonToTranscriptRelationship a owl:Class ; rdfs:label "exon to transcript relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:Exon ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Exon ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:Transcript ; @@ -3994,25 +3994,25 @@ biolink:ExposureEventToOutcomeAssociation a owl:Class ; rdfs:label "exposure event to outcome association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:temporal_context_qualifier ], + owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:temporal_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:time_type ; owl:onProperty biolink:temporal_context_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:population_context_qualifier ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; owl:onProperty biolink:population_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:temporal_context_qualifier ], biolink:Association ; skos:definition "An association between an exposure event and an outcome." ; skos:inScheme . @@ -4020,16 +4020,16 @@ biolink:ExposureEventToOutcomeAssociation a owl:Class ; biolink:ExposureEventToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "exposure event to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:ExposureEvent ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ExposureEvent ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Any association between an environment and a phenotypic feature, where being in the environment influences the phenotype." ; @@ -4088,176 +4088,176 @@ biolink:Fungus a owl:Class ; biolink:GeneAffectsChemicalAssociation a owl:Class ; rdfs:label "gene affects chemical association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_derivative_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:object_part_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:subject_part_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; - owl:onProperty biolink:object_derivative_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:onProperty biolink:causal_mechanism_qualifier ], biolink:Association ; skos:definition "Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.)" ; skos:inScheme . @@ -4266,60 +4266,60 @@ biolink:GeneAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "gene as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:GeneToDiseaseAssociation ; skos:inScheme . biolink:GeneHasVariantThatContributesToDiseaseAssociation a owl:Class ; rdfs:label "gene has variant that contributes to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -4588,49 +4588,49 @@ biolink:GeneToExpressionSiteAssociation a owl:Class ; rdfs:seeAlso ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:stage_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:quantifier_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:stage_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:LifeStage ; owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:quantifier_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom owl:Thing ; owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:stage_qualifier ], biolink:Association ; skos:definition "An association between a gene and a gene expression site, possibly qualified by stage/timing info." ; skos:editorialNote "TBD: introduce subclasses for distinction between wild-type and experimental conditions?" ; @@ -4639,6 +4639,9 @@ biolink:GeneToExpressionSiteAssociation a owl:Class ; biolink:GeneToGeneCoexpressionAssociation a owl:Class ; rdfs:label "gene to gene coexpression association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; @@ -4647,9 +4650,6 @@ biolink:GeneToGeneCoexpressionAssociation a owl:Class ; [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneExpressionMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], biolink:GeneToGeneAssociation ; skos:definition "Indicates that two genes are co-expressed, generally under the same conditions." ; skos:inScheme . @@ -4657,19 +4657,22 @@ biolink:GeneToGeneCoexpressionAssociation a owl:Class ; biolink:GeneToGeneFamilyAssociation a owl:Class ; rdfs:label "gene to gene family association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneFamily ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneFamily ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -4680,9 +4683,6 @@ biolink:GeneToGeneFamilyAssociation a owl:Class ; [ a owl:Restriction ; owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; skos:inScheme . @@ -4691,25 +4691,25 @@ biolink:GeneToGeneHomologyAssociation a owl:Class ; rdfs:label "gene to gene homology association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], @@ -4723,32 +4723,32 @@ biolink:GeneToGeneHomologyAssociation a owl:Class ; biolink:GeneToGeneProductRelationship a owl:Class ; rdfs:label "gene to gene product relationship" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:GeneProductMixin ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneProductMixin ; - owl:onProperty biolink:object ], biolink:SequenceFeatureRelationship ; skos:definition "A gene is transcribed and potentially translated to a gene product" ; skos:inScheme . @@ -4756,23 +4756,23 @@ biolink:GeneToGeneProductRelationship a owl:Class ; biolink:GeneToGoTermAssociation a owl:Class ; rdfs:label "gene to go term association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:altLabel "functional association" ; skos:exactMatch WBVocab:Gene-GO-Association ; @@ -4781,17 +4781,17 @@ biolink:GeneToGoTermAssociation a owl:Class ; biolink:GeneToPathwayAssociation a owl:Class ; rdfs:label "gene to pathway association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Pathway ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Pathway ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], @@ -4800,7 +4800,7 @@ biolink:GeneToPathwayAssociation a owl:Class ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], biolink:Association ; skos:definition "An interaction between a gene or gene product and a biological process or pathway." ; skos:inScheme . @@ -4808,7 +4808,10 @@ biolink:GeneToPathwayAssociation a owl:Class ; biolink:GeneToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "gene to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; @@ -4817,20 +4820,17 @@ biolink:GeneToPhenotypicFeatureAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:PhenotypicFeature ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; skos:exactMatch WBVocab:Gene-Phenotype-Association ; skos:inScheme . @@ -4839,10 +4839,10 @@ biolink:Genome a owl:Class ; rdfs:label "genome" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], @@ -4858,22 +4858,22 @@ biolink:GenomicBackgroundExposure a owl:Class ; rdfs:label "genomic background exposure" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ThingWithTaxon ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin ], + owl:someValuesFrom biolink:ExposureEvent ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:ThingWithTaxon ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ExposureEvent ], + owl:someValuesFrom biolink:GeneGroupingMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:PhysicalEssence ], biolink:Attribute ; skos:definition "A genomic background exposure is where an individual's specific genomic background of genes, sequence variants or other pre-existing genomic conditions constitute a kind of 'exposure' to the organism, leading to or influencing an outcome." ; skos:inScheme . @@ -4881,17 +4881,17 @@ biolink:GenomicBackgroundExposure a owl:Class ; biolink:GenotypeAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "genotype as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], @@ -4901,31 +4901,31 @@ biolink:GenotypeAsAModelOfDiseaseAssociation a owl:Class ; biolink:GenotypeToGeneAssociation a owl:Class ; rdfs:label "genotype to gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Any association between a genotype and a gene. The genotype have have multiple variants in that gene or a single one. There is no assumption of cardinality" ; @@ -4934,11 +4934,11 @@ biolink:GenotypeToGeneAssociation a owl:Class ; biolink:GenotypeToGenotypePartAssociation a owl:Class ; rdfs:label "genotype to genotype part association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:object ], @@ -4947,19 +4947,19 @@ biolink:GenotypeToGenotypePartAssociation a owl:Class ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "Any association between one genotype and a genotypic entity that is a sub-component of it" ; skos:inScheme . @@ -4967,12 +4967,6 @@ biolink:GenotypeToGenotypePartAssociation a owl:Class ; biolink:GenotypeToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "genotype to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; @@ -4982,14 +4976,20 @@ biolink:GenotypeToPhenotypicFeatureAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], biolink:Association ; skos:definition "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; skos:inScheme . @@ -4997,8 +4997,14 @@ biolink:GenotypeToPhenotypicFeatureAssociation a owl:Class ; biolink:GenotypeToVariantAssociation a owl:Class ; rdfs:label "genotype to variant association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], @@ -5006,23 +5012,17 @@ biolink:GenotypeToVariantAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], biolink:Association ; skos:definition "Any association between a genotype and a sequence variant." ; skos:inScheme . @@ -5061,13 +5061,13 @@ biolink:GeographicExposure a owl:Class ; biolink:GeographicLocationAtTime a owl:Class ; rdfs:label "geographic location at time" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; + owl:maxCardinality 1 ; owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:time_type ; owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:timepoint ], biolink:GeographicLocation ; skos:definition "a location that can be described in lat/long coordinates, for a particular time" ; @@ -5089,13 +5089,13 @@ biolink:Haplotype a owl:Class ; rdfs:label "haplotype" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], biolink:BiologicalEntity ; skos:definition "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; skos:exactMatch , @@ -5126,32 +5126,32 @@ biolink:Human a owl:Class ; biolink:InformationContentEntityToNamedThingAssociation a owl:Class ; rdfs:label "information content entity to named thing association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "association between a named thing and a information content entity where the specific context of the relationship between that named thing and the publication is unknown. For example, model organisms databases often capture the knowledge that a gene is found in a journal article, but not specifically the context in which that gene was documented in the article. In these cases, this association with the accompanying predicate 'mentions' could be used. Conversely, for more specific associations (like 'gene to disease association', the publication should be captured as an edge property)." ; skos:inScheme . @@ -5230,16 +5230,16 @@ biolink:MacromolecularComplex a owl:Class ; biolink:MacromolecularMachineToBiologicalProcessAssociation a owl:Class ; rdfs:label "macromolecular machine to biological process association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalProcess ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:BiologicalProcess ; owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a biological process or pathway (as represented in the GO biological process branch), where the entity carries out some part of the process, regulates it, or acts upstream of it." ; @@ -5248,16 +5248,16 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a owl:Class ; biolink:MacromolecularMachineToCellularComponentAssociation a owl:Class ; rdfs:label "macromolecular machine to cellular component association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:CellularComponent ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:CellularComponent ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; @@ -5266,17 +5266,17 @@ biolink:MacromolecularMachineToCellularComponentAssociation a owl:Class ; biolink:MacromolecularMachineToMolecularActivityAssociation a owl:Class ; rdfs:label "macromolecular machine to molecular activity association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a molecular activity (as represented in the GO molecular function branch), where the entity carries out the activity, or contributes to its execution." ; skos:inScheme . @@ -5284,32 +5284,32 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a owl:Class ; biolink:MaterialSampleDerivationAssociation a owl:Class ; rdfs:label "material sample derivation association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:MaterialSample ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MaterialSample ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "An association between a material sample and the material entity from which it is derived." ; skos:inScheme . @@ -5379,17 +5379,17 @@ biolink:MolecularActivityToChemicalEntityAssociation a owl:Class ; owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; skos:inScheme . @@ -5397,20 +5397,20 @@ biolink:MolecularActivityToChemicalEntityAssociation a owl:Class ; biolink:MolecularActivityToMolecularActivityAssociation a owl:Class ; rdfs:label "molecular activity to molecular activity association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:MolecularActivity ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularActivity ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularActivity ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -5421,31 +5421,31 @@ biolink:MolecularActivityToMolecularActivityAssociation a owl:Class ; biolink:MolecularActivityToPathwayAssociation a owl:Class ; rdfs:label "molecular activity to pathway association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Pathway ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularActivity ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:Pathway ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Association that holds the relationship between a reaction and the pathway it participates in." ; @@ -5455,76 +5455,76 @@ biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a owl:Class ; rdfs:label "named thing associated with likelihood of named thing association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:population_context_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; - owl:onProperty biolink:population_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:population_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:population_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:inScheme . @@ -5539,13 +5539,13 @@ biolink:NucleosomeModification a owl:Class ; rdfs:label "nucleosome modification" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneProductIsoformMixin ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EpigenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:GeneProductIsoformMixin ], biolink:BiologicalEntity ; skos:definition "A chemical modification of a histone protein within a nucleosome octomer or a substitution of a histone with a variant histone isoform. e.g. Histone 4 Lysine 20 methylation (H4K20me), histone variant H2AZ substituting H2A." ; skos:inScheme . @@ -5559,76 +5559,76 @@ biolink:ObservedExpectedFrequencyAnalysisResult a owl:Class ; biolink:OrganismTaxonToEnvironmentAssociation a owl:Class ; rdfs:label "organism taxon to environment association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:inScheme . biolink:OrganismTaxonToOrganismTaxonInteraction a owl:Class ; rdfs:label "organism taxon to organism taxon interaction" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:associated_environmental_context ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:associated_environmental_context ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:associated_environmental_context ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:associated_environmental_context ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:associated_environmental_context ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], biolink:OrganismTaxonToOrganismTaxonAssociation ; skos:definition "An interaction relationship between two taxa. This may be a symbiotic relationship (encompassing mutualism and parasitism), or it may be non-symbiotic. Example: plague transmitted_by flea; cattle domesticated_by Homo sapiens; plague infects Homo sapiens" ; skos:inScheme . @@ -5637,7 +5637,7 @@ biolink:OrganismTaxonToOrganismTaxonSpecialization a owl:Class ; rdfs:label "organism taxon to organism taxon specialization" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -5647,21 +5647,21 @@ biolink:OrganismTaxonToOrganismTaxonSpecialization a owl:Class ; [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], biolink:OrganismTaxonToOrganismTaxonAssociation ; skos:definition "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; skos:inScheme . @@ -5669,9 +5669,6 @@ biolink:OrganismTaxonToOrganismTaxonSpecialization a owl:Class ; biolink:OrganismToOrganismAssociation a owl:Class ; rdfs:label "organism to organism association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:allValuesFrom biolink:IndividualOrganism ; owl:onProperty biolink:object ], [ a owl:Restriction ; @@ -5679,10 +5676,13 @@ biolink:OrganismToOrganismAssociation a owl:Class ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -5692,7 +5692,7 @@ biolink:OrganismToOrganismAssociation a owl:Class ; biolink:OrganismalEntityAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "organismal entity as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; @@ -5701,7 +5701,7 @@ biolink:OrganismalEntityAsAModelOfDiseaseAssociation a owl:Class ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismalEntity ; @@ -5713,49 +5713,49 @@ biolink:PairwiseMolecularInteraction a owl:Class ; rdfs:label "pairwise molecular interaction" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:interacting_molecules_category ], + owl:allValuesFrom biolink:MolecularEntity ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:interacting_molecules_category ], + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; + owl:minCardinality 0 ; owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], biolink:PairwiseGeneToGeneInteraction ; skos:definition "An interaction at the molecular level between two physical entities" ; skos:inScheme . @@ -5847,20 +5847,20 @@ biolink:Phenomenon a owl:Class ; biolink:PhenotypicFeatureToDiseaseAssociation a owl:Class ; rdfs:label "phenotypic feature to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], biolink:Association ; skos:inScheme . @@ -5915,31 +5915,31 @@ biolink:PopulationToPopulationAssociation a owl:Class ; rdfs:label "population to population association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "An association between a two populations" ; skos:inScheme . @@ -5957,193 +5957,193 @@ biolink:PredicateMapping a owl:Class ; rdfs:label "predicate mapping" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:narrow_match ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:exact_match ], + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:exact_match ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:mapped_predicate ], + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:exact_match ], + owl:minCardinality 0 ; + owl:onProperty biolink:broad_match ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; owl:onProperty biolink:broad_match ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:broad_match ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:narrow_match ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:exact_match ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:mapped_predicate ], + owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:narrow_match ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:object_part_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:broad_match ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:exact_match ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:causal_mechanism_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:exact_match ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:object_context_qualifier ], linkml:ClassDefinition ; skos:definition "A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place." ; skos:inScheme . @@ -6182,10 +6182,10 @@ biolink:ProteinFamily a owl:Class ; rdfs:label "protein family" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GeneGroupingMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], biolink:BiologicalEntity ; skos:exactMatch , WIKIDATA:Q2278983 ; @@ -6249,10 +6249,10 @@ biolink:ReactionToCatalystAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], biolink:ReactionToParticipantAssociation ; skos:inScheme . @@ -6261,13 +6261,13 @@ biolink:ReagentTargetedGene a owl:Class ; rdfs:label "reagent targeted gene" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:PhysicalEssence ], biolink:BiologicalEntity ; skos:altLabel "sequence targeting reagent" ; skos:definition "A gene altered in its expression level in the context of some experiment as a result of being targeted by gene-knockdown reagent(s) such as a morpholino or RNAi." ; @@ -6317,17 +6317,17 @@ biolink:SequenceVariantModulatesTreatmentAssociation a owl:Class ; owl:allValuesFrom biolink:Treatment ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -6339,47 +6339,47 @@ biolink:SequenceVariantModulatesTreatmentAssociation a owl:Class ; biolink:Serial a owl:Class ; rdfs:label "serial" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:issue ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:issue ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:iso_abbreviation ], + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:onProperty biolink:volume ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:iso_abbreviation ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:type ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:type ], + owl:onProperty biolink:issue ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:volume ], + owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:type ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:volume ], + owl:onProperty biolink:iso_abbreviation ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:issue ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:type ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:issue ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:volume ], biolink:Publication ; skos:altLabel "journal" ; skos:definition "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; @@ -6398,13 +6398,13 @@ biolink:SiRNA a owl:Class ; biolink:SmallMolecule a owl:Class ; rdfs:label "small molecule" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:id ], biolink:MolecularEntity ; skos:altLabel "chemical substance" ; @@ -6497,22 +6497,22 @@ biolink:TaxonToTaxonAssociation a owl:Class ; rdfs:label "taxon to taxon association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . @@ -6532,23 +6532,23 @@ biolink:TextMiningResult a owl:Class ; biolink:TranscriptToGeneRelationship a owl:Class ; rdfs:label "transcript to gene relationship" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:Transcript ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], biolink:SequenceFeatureRelationship ; skos:definition "A gene is a collection of transcripts" ; skos:inScheme . @@ -6557,16 +6557,16 @@ biolink:TranscriptionFactorBindingSite a owl:Class ; rdfs:label "transcription factor binding site" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], biolink:RegulatoryRegion ; skos:altLabel "binding site", "tf binding site" ; @@ -6577,11 +6577,11 @@ biolink:TranscriptionFactorBindingSite a owl:Class ; biolink:VariantAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "variant as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], @@ -6589,7 +6589,7 @@ biolink:VariantAsAModelOfDiseaseAssociation a owl:Class ; owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], biolink:VariantToDiseaseAssociation ; skos:inScheme . @@ -6617,44 +6617,62 @@ biolink:VariantToPhenotypicFeatureAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], biolink:Association ; skos:inScheme . biolink:VariantToPopulationAssociation a owl:Class ; rdfs:label "variant to population association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_count ], + owl:onProperty biolink:has_quotient ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQuantifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:has_count ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_quotient ], [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_count ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_total ], @@ -6666,28 +6684,10 @@ biolink:VariantToPopulationAssociation a owl:Class ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQualifierMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_count ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:has_total ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_total ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_quotient ], + owl:someValuesFrom biolink:FrequencyQuantifier ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:has_quotient ], + owl:someValuesFrom biolink:FrequencyQualifierMixin ], biolink:Association ; skos:definition "An association between a variant and a population, where the variant has particular frequency in the population" ; skos:inScheme . @@ -7261,40 +7261,40 @@ biolink:AdministrativeEntity a owl:Class ; biolink:Article a owl:Class ; rdfs:label "article" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:issue ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:published_in ], + owl:maxCardinality 1 ; + owl:onProperty biolink:issue ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:volume ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:iso_abbreviation ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:iso_abbreviation ], + owl:minCardinality 1 ; + owl:onProperty biolink:published_in ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:volume ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:issue ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:published_in ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:volume ], + owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:issue ], + owl:onProperty biolink:volume ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:published_in ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:published_in ], biolink:Publication ; skos:definition "a piece of writing on a particular topic presented as a stand-alone section of a larger publication" ; @@ -7306,10 +7306,10 @@ biolink:Behavior a owl:Class ; rdfs:label "behavior" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:ActivityAndBehavior ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ActivityAndBehavior ], + owl:someValuesFrom biolink:OntologyClass ], biolink:BiologicalProcess ; skos:exactMatch STY:T053, ; @@ -7328,32 +7328,32 @@ biolink:BehavioralFeature a owl:Class ; biolink:BookChapter a owl:Class ; rdfs:label "book chapter" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:chapter ], + owl:minCardinality 1 ; + owl:onProperty biolink:published_in ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:volume ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:chapter ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:published_in ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:volume ], + owl:onProperty biolink:chapter ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:published_in ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:published_in ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:chapter ], + owl:onProperty biolink:volume ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:volume ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:chapter ], biolink:Publication ; skos:inScheme . @@ -7377,13 +7377,13 @@ biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:CellLineToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; @@ -7404,14 +7404,14 @@ biolink:ChemicalEntityToEntityAssociationMixin a owl:Class ; biolink:ChemicalExposure a owl:Class ; rdfs:label "chemical exposure" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:QuantityValue ; + owl:onProperty biolink:has_quantitative_value ], + [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ExposureEvent ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_quantitative_value ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:QuantityValue ; - owl:onProperty biolink:has_quantitative_value ], biolink:Attribute ; skos:definition "A chemical exposure is an intake of a particular chemical entity." ; skos:exactMatch ECTO:9000000, @@ -7421,29 +7421,29 @@ biolink:ChemicalExposure a owl:Class ; biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "chemical or drug or treatment to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:FDAIDAAdverseEventEnum ; + owl:onProperty biolink:FDA_adverse_event_level ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:FDA_adverse_event_level ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + owl:onProperty biolink:FDA_adverse_event_level ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:FDA_adverse_event_level ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:FDAIDAAdverseEventEnum ; - owl:onProperty biolink:FDA_adverse_event_level ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], biolink:Association ; skos:definition "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary undesirable effect." ; skos:inScheme . @@ -7569,10 +7569,10 @@ biolink:GeneFamily a owl:Class ; rdfs:label "gene family" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GeneGroupingMixin ], biolink:BiologicalEntity ; skos:altLabel "orthogroup", "protein family" ; @@ -7587,59 +7587,56 @@ biolink:GeneFamily a owl:Class ; biolink:GenomicSequenceLocalization a owl:Class ; rdfs:label "genomic sequence localization" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:strand ], - [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:start_interbase_coordinate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PhaseEnum ; owl:onProperty biolink:phase ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:genome_build ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:end_interbase_coordinate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:start_interbase_coordinate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:StrandEnum ; owl:onProperty biolink:strand ], [ a owl:Restriction ; owl:allValuesFrom biolink:StrandEnum ; owl:onProperty biolink:genome_build ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NucleicAcidEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:phase ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:end_interbase_coordinate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:end_interbase_coordinate ], + owl:onProperty biolink:start_interbase_coordinate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:genome_build ], + owl:allValuesFrom biolink:PhaseEnum ; + owl:onProperty biolink:phase ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:strand ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:phase ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NucleicAcidEntity ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:end_interbase_coordinate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:genome_build ], + owl:onProperty biolink:strand ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], @@ -7647,17 +7644,20 @@ biolink:GenomicSequenceLocalization a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:end_interbase_coordinate ], + owl:allValuesFrom biolink:NucleicAcidEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:start_interbase_coordinate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:start_interbase_coordinate ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NucleicAcidEntity ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:genome_build ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:end_interbase_coordinate ], biolink:SequenceAssociation ; skos:broadMatch dcid:Chromosome ; skos:definition "A relationship between a sequence feature and a nucleic acid entity it is localized to. The reference entity may be a chromosome, chromosome region or information entity such as a contig." ; @@ -7667,38 +7667,38 @@ biolink:GenomicSequenceLocalization a owl:Class ; biolink:GenotypeToDiseaseAssociation a owl:Class ; rdfs:label "genotype to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom owl:Thing ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], biolink:Association ; skos:inScheme ; skos:note "TODO decide no how to model pathogenicity" . @@ -7711,14 +7711,11 @@ biolink:GenotypeToEntityAssociationMixin a owl:Class ; biolink:GeographicLocation a owl:Class ; rdfs:label "geographic location" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:float ; - owl:onProperty biolink:latitude ], - [ a owl:Restriction ; owl:allValuesFrom xsd:float ; owl:onProperty biolink:longitude ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:longitude ], + owl:allValuesFrom xsd:float ; + owl:onProperty biolink:latitude ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:latitude ], @@ -7728,6 +7725,9 @@ biolink:GeographicLocation a owl:Class ; [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:longitude ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:longitude ], biolink:PlanetaryEntity ; skos:definition "a location that can be described in lat/long coordinates" ; skos:exactMatch STY:T083, @@ -7776,10 +7776,10 @@ biolink:OrganismTaxonToEntityAssociation a owl:Class ; biolink:PairwiseGeneToGeneInteraction a owl:Class ; rdfs:label "pairwise gene to gene interaction" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -7793,10 +7793,10 @@ biolink:Polypeptide a owl:Class ; rdfs:label "polypeptide" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], biolink:BiologicalEntity ; skos:altLabel "amino acid entity" ; skos:definition "A polypeptide is a molecular entity characterized by availability in protein databases of amino-acid-based sequence representations of its precise primary structure; for convenience of representation, partial sequences of various kinds are included, even if they do not represent a physical molecule." ; @@ -7808,41 +7808,41 @@ biolink:Polypeptide a owl:Class ; biolink:ReactionToParticipantAssociation a owl:Class ; rdfs:label "reaction to participant association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:stoichiometry ], + [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:reaction_side ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:stoichiometry ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty biolink:stoichiometry ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:reaction_direction ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:reaction_side ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:stoichiometry ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:reaction_direction ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ReactionSideEnum ; + owl:onProperty biolink:reaction_side ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:stoichiometry ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ReactionSideEnum ; - owl:onProperty biolink:reaction_side ], [ a owl:Restriction ; owl:allValuesFrom biolink:ReactionDirectionEnum ; owl:onProperty biolink:reaction_direction ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:reaction_direction ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularEntity ; + owl:onProperty biolink:subject ], biolink:ChemicalToChemicalAssociation ; skos:inScheme . @@ -7874,11 +7874,14 @@ biolink:StudyPopulation a owl:Class ; biolink:Treatment a owl:Class ; rdfs:label "treatment" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Device ; - owl:onProperty biolink:has_device ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_drug ], [ a owl:Restriction ; owl:allValuesFrom biolink:Procedure ; owl:onProperty biolink:has_procedure ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Device ; + owl:onProperty biolink:has_device ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_device ], @@ -7887,15 +7890,12 @@ biolink:Treatment a owl:Class ; owl:onProperty biolink:has_procedure ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Drug ; - owl:onProperty biolink:has_drug ], + owl:someValuesFrom biolink:ExposureEvent ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ExposureEvent ], + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:Drug ; owl:onProperty biolink:has_drug ], biolink:NamedThing ; skos:altLabel "medical action", @@ -7910,37 +7910,37 @@ biolink:VariantToDiseaseAssociation a owl:Class ; rdfs:label "variant to disease association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], biolink:Association ; skos:inScheme ; skos:note "TODO decide no how to model pathogenicity" . @@ -7948,26 +7948,26 @@ biolink:VariantToDiseaseAssociation a owl:Class ; biolink:VariantToGeneAssociation a owl:Class ; rdfs:label "variant to gene association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium)" ; skos:inScheme . @@ -8610,7 +8610,7 @@ biolink:ActivityAndBehavior a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -8619,14 +8619,14 @@ biolink:AnatomicalEntityToAnatomicalEntityAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object ], biolink:Association ; skos:inScheme . @@ -8658,14 +8658,17 @@ biolink:ChemicalRole a owl:Class ; biolink:ChemicalToChemicalAssociation a owl:Class ; rdfs:label "chemical to chemical association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], @@ -8673,20 +8676,17 @@ biolink:ChemicalToChemicalAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], biolink:Association ; skos:definition "A relationship between two chemical entities. This can encompass actual interactions as well as temporal causal edges, e.g. one chemical converted to another." ; skos:inScheme . @@ -8764,56 +8764,56 @@ biolink:FrequencyQualifierMixin a owl:Class ; biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "gene to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], biolink:Association ; skos:inScheme ; skos:narrowMatch WBVocab:Gene-Phenotype-Association, @@ -8861,26 +8861,26 @@ biolink:NoncodingRNAProduct a owl:Class ; biolink:OrganismTaxonToOrganismTaxonAssociation a owl:Class ; rdfs:label "organism taxon to organism taxon association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], biolink:Association ; skos:definition "A relationship between two organism taxon nodes" ; skos:inScheme . @@ -8928,7 +8928,7 @@ biolink:RegulatoryRegion a owl:Class ; rdfs:label "regulatory region" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], @@ -8937,7 +8937,7 @@ biolink:RegulatoryRegion a owl:Class ; owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:PhysicalEssence ], biolink:BiologicalEntity ; skos:altLabel "regulatory element" ; skos:definition "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; @@ -9259,13 +9259,13 @@ biolink:CellularComponent a owl:Class ; biolink:DatasetDistribution a owl:Class ; rdfs:label "dataset distribution" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:distribution_download_url ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:distribution_download_url ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:distribution_download_url ], biolink:InformationContentEntity ; skos:definition "an item that holds distribution level information about a dataset." ; @@ -9275,22 +9275,22 @@ biolink:DatasetDistribution a owl:Class ; biolink:DatasetSummary a owl:Class ; rdfs:label "dataset summary" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:source_web_page ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:source_logo ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:source_web_page ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:source_logo ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:source_web_page ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:source_logo ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:source_logo ], biolink:InformationContentEntity ; skos:definition "an item that holds summary level information about a dataset." ; @@ -9318,23 +9318,23 @@ biolink:GeneProductIsoformMixin a owl:Class ; biolink:GeneToGeneAssociation a owl:Class ; rdfs:label "gene to gene association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], biolink:Association ; skos:altLabel "molecular or genetic interaction" ; skos:definition "abstract parent class for different kinds of gene-gene or gene product to gene product relationships. Includes homology and interaction." ; @@ -9416,20 +9416,20 @@ biolink:Protein a owl:Class ; biolink:QuantityValue a owl:Class ; rdfs:label "quantity value" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_numeric_value ], - [ a owl:Restriction ; owl:allValuesFrom ; owl:onProperty biolink:has_unit ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:has_unit ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:has_numeric_value ], [ a owl:Restriction ; owl:allValuesFrom xsd:double ; owl:onProperty biolink:has_numeric_value ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_unit ], + owl:onProperty biolink:has_numeric_value ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_unit ], @@ -9440,23 +9440,23 @@ biolink:QuantityValue a owl:Class ; biolink:SequenceFeatureRelationship a owl:Class ; rdfs:label "sequence feature relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:NucleicAcidEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NucleicAcidEntity ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:NucleicAcidEntity ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "For example, a particular exon is part of a particular transcript or gene" ; skos:exactMatch CHADO:feature_relationship ; @@ -9576,31 +9576,31 @@ biolink:DatasetVersion a owl:Class ; rdfs:label "dataset version" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_dataset ], + owl:onProperty biolink:ingest_date ], [ a owl:Restriction ; owl:allValuesFrom biolink:DatasetDistribution ; owl:onProperty biolink:has_distribution ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_distribution ], + owl:onProperty biolink:has_dataset ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:allValuesFrom biolink:Dataset ; + owl:onProperty biolink:has_dataset ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:ingest_date ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_distribution ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Dataset ; - owl:onProperty biolink:has_dataset ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_distribution ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:ingest_date ], + owl:onProperty biolink:has_dataset ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:ingest_date ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_dataset ], biolink:InformationContentEntity ; skos:definition "an item that holds version level information about a dataset." ; skos:inScheme . @@ -9629,17 +9629,17 @@ biolink:FDAIDAAdverseEventEnum a owl:Class ; biolink:FunctionalAssociation a owl:Class ; rdfs:label "functional association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:MacromolecularMachineMixin ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MacromolecularMachineMixin ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -10030,38 +10030,38 @@ biolink:CellularOrganism a owl:Class ; biolink:ChemicalMixture a owl:Class ; rdfs:label "chemical mixture" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:drug_regulatory_status_world_wide ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:is_supplement ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:drug_regulatory_status_world_wide ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:is_supplement ], - [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:highest_FDA_approval_status ], [ a owl:Restriction ; owl:allValuesFrom biolink:DrugDeliveryEnum ; owl:onProperty biolink:routes_of_delivery ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:routes_of_delivery ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:is_supplement ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:drug_regulatory_status_world_wide ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:is_supplement ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:highest_FDA_approval_status ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:highest_FDA_approval_status ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:routes_of_delivery ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:is_supplement ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:drug_regulatory_status_world_wide ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:drug_regulatory_status_world_wide ], biolink:ChemicalEntity ; skos:closeMatch dcid:ChemicalCompound ; skos:definition "A chemical mixture is a chemical entity composed of two or more molecular entities." ; @@ -10088,15 +10088,18 @@ biolink:GeneToDiseaseAssociation a owl:Class ; rdfs:label "gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; @@ -10106,10 +10109,7 @@ biolink:GeneToDiseaseAssociation a owl:Class ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; skos:closeMatch dcid:DiseaseGeneAssociation ; skos:exactMatch SIO:000983 ; @@ -10129,37 +10129,37 @@ biolink:KnowledgeLevelEnum a owl:Class ; biolink:MolecularActivity a owl:Class ; rdfs:label "molecular activity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent ], - [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_output ], + owl:onProperty biolink:has_input ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MacromolecularMachineMixin ; + owl:minCardinality 0 ; owl:onProperty biolink:enabled_by ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_output ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; - owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularEntity ; owl:onProperty biolink:has_output ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:enabled_by ], + owl:onProperty biolink:has_input ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Occurrent ], [ a owl:Restriction ; owl:minCardinality 0 ; + owl:onProperty biolink:has_output ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MacromolecularMachineMixin ; + owl:onProperty biolink:enabled_by ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MolecularEntity ; owl:onProperty biolink:has_input ], biolink:BiologicalProcessOrActivity ; skos:altLabel "molecular event", @@ -10180,37 +10180,37 @@ biolink:PhysicalEssenceOrOccurrent a owl:Class ; biolink:RetrievalSource a owl:Class ; rdfs:label "retrieval source" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:upstream_resource_ids ], + owl:maxCardinality 1 ; + owl:onProperty biolink:resource_role ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:resource_id ], + owl:minCardinality 0 ; + owl:onProperty biolink:upstream_resource_ids ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:upstream_resource_ids ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:resource_id ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:resource_id ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:resource_role ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:resource_role ], + owl:minCardinality 0 ; + owl:onProperty biolink:xref ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:resource_role ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:upstream_resource_ids ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:xref ], + owl:minCardinality 1 ; + owl:onProperty biolink:resource_id ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:upstream_resource_ids ], biolink:InformationContentEntity ; skos:definition "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved." ; @@ -10572,68 +10572,68 @@ biolink:Drug a owl:Class ; biolink:Entity a owl:Class ; rdfs:label "entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Attribute ; + owl:minCardinality 0 ; owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:deprecated ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:boolean ; owl:onProperty biolink:deprecated ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:name ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:iri ], + owl:onProperty biolink:description ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:deprecated ], + owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:category ], + owl:maxCardinality 1 ; + owl:onProperty biolink:deprecated ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], + owl:onProperty biolink:type ], [ a owl:Restriction ; owl:allValuesFrom biolink:narrative_text ; owl:onProperty biolink:description ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:deprecated ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:onProperty biolink:iri ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_attribute ], + owl:onProperty biolink:iri ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:type ], + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:category ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:iri ], + owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Attribute ; + owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:type ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:name ], + owl:allValuesFrom biolink:iri_type ; + owl:onProperty biolink:iri ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:description ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:category ], + owl:minCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom biolink:iri_type ; - owl:onProperty biolink:iri ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:description ], + owl:minCardinality 0 ; + owl:onProperty biolink:category ], linkml:ClassDefinition ; skos:definition "Root Biolink Model class for all things and informational relationships, real or imagined." ; skos:inScheme . @@ -10649,23 +10649,23 @@ biolink:EntityToPhenotypicFeatureAssociationMixin a owl:Class ; biolink:Genotype a owl:Class ; rdfs:label "genotype" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_zygosity ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Zygosity ; owl:onProperty biolink:has_zygosity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Zygosity ; - owl:onProperty biolink:has_zygosity ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:has_zygosity ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], biolink:BiologicalEntity ; skos:definition "An information content entity that describes a genome by specifying the total variation in genomic sequence and/or gene expression, relative to some established background" ; skos:exactMatch , @@ -10824,16 +10824,16 @@ biolink:NucleicAcidEntity a owl:Class ; rdfs:label "nucleic acid entity" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ThingWithTaxon ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:ThingWithTaxon ], biolink:MolecularEntity ; skos:altLabel "genomic entity", "sequence feature" ; @@ -10846,14 +10846,14 @@ biolink:NucleicAcidEntity a owl:Class ; biolink:OrganismalEntity a owl:Class ; rdfs:label "organismal entity" ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SubjectOfInvestigation ], + [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_attribute ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SubjectOfInvestigation ], biolink:BiologicalEntity ; skos:definition "A named entity that is either a part of an organism, a whole organism, population or clade of organisms, excluding chemical entities" ; skos:exactMatch , @@ -10953,38 +10953,38 @@ biolink:GeneOrGeneProductOrChemicalPartQualifierEnum a owl:Class ; biolink:BiologicalProcessOrActivity a owl:Class ; rdfs:label "biological process or activity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:minCardinality 0 ; owl:onProperty biolink:has_output ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Occurrent ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_input ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:allValuesFrom biolink:PhysicalEntity ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:has_output ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_output ], - [ a owl:Restriction ; - owl:minCardinality 0 ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_input ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent ], + owl:onProperty biolink:has_output ], biolink:BiologicalEntity ; skos:definition "Either an individual molecular activity, or a collection of causally connected molecular activities in a biological system." ; skos:inScheme . @@ -10995,35 +10995,35 @@ biolink:Agent a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:affiliation ], + owl:maxCardinality 1 ; + owl:onProperty biolink:address ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:minCardinality 0 ; + owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:affiliation ], + owl:minCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:address ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:address ], + owl:onProperty biolink:affiliation ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:address ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:address ], + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:affiliation ], biolink:AdministrativeEntity ; skos:altLabel "group" ; skos:definition "person, group, organization or project that provides a piece of information (i.e. a knowledge association)" ; @@ -11127,10 +11127,10 @@ biolink:BiologicalProcess a owl:Class ; rdfs:label "biological process" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:Occurrent ], biolink:BiologicalProcessOrActivity ; skos:broadMatch WIKIDATA:P682 ; skos:definition "One or more causally connected executions of molecular functions" ; @@ -11142,14 +11142,14 @@ biolink:BiologicalProcess a owl:Class ; biolink:MolecularEntity a owl:Class ; rdfs:label "molecular entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:is_metabolite ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:is_metabolite ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:is_metabolite ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:boolean ; + owl:onProperty biolink:is_metabolite ], biolink:ChemicalEntity ; skos:definition "A molecular entity is a chemical entity composed of individual or covalently bonded atoms." ; skos:inScheme ; @@ -11182,41 +11182,41 @@ biolink:OrganismTaxon a owl:Class ; biolink:InformationContentEntity a owl:Class ; rdfs:label "information content entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:rights ], - [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:rights ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:license ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:date ; + owl:onProperty biolink:creation_date ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:format ], + owl:onProperty biolink:rights ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:license ], + owl:maxCardinality 1 ; + owl:onProperty biolink:creation_date ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:creation_date ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:creation_date ], + owl:minCardinality 0 ; + owl:onProperty biolink:license ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:format ], [ a owl:Restriction ; owl:minCardinality 0 ; + owl:onProperty biolink:rights ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:license ], [ a owl:Restriction ; - owl:allValuesFrom xsd:date ; - owl:onProperty biolink:creation_date ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:rights ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:format ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:rights ], + owl:maxCardinality 1 ; + owl:onProperty biolink:format ], biolink:NamedThing ; skos:altLabel "information", "information artefact", @@ -11278,20 +11278,29 @@ biolink:predicate_type a rdfs:Datatype ; biolink:Attribute a owl:Class ; rdfs:label "attribute" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_quantitative_value ], + owl:maxCardinality 1 ; + owl:onProperty biolink:has_qualitative_value ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; + owl:maxCardinality 1 ; owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; - owl:allValuesFrom biolink:QuantityValue ; - owl:onProperty biolink:has_quantitative_value ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_attribute_type ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:has_qualitative_value ], [ a owl:Restriction ; owl:allValuesFrom biolink:iri_type ; owl:onProperty biolink:iri ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:iri ], @@ -11299,29 +11308,20 @@ biolink:Attribute a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:has_qualitative_value ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:QuantityValue ; + owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_qualitative_value ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:name ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:iri ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:has_qualitative_value ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:name ], biolink:NamedThing ; skos:definition "A property or characteristic of an entity. For example, an apple may have properties such as color, shape, age, crispiness. An environmental sample may have attributes such as depth, lat, long, material." ; skos:exactMatch SIO:000614 ; @@ -11330,35 +11330,35 @@ biolink:Attribute a owl:Class ; biolink:Gene a owl:Class ; rdfs:label "gene" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:minCardinality 0 ; + owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneOrGeneProduct ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:symbol ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:symbol ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:symbol ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:symbol ], biolink:BiologicalEntity ; skos:broadMatch ; skos:definition "A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions." ; @@ -11372,38 +11372,38 @@ biolink:Gene a owl:Class ; biolink:SequenceVariant a owl:Class ; rdfs:label "sequence variant" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_gene ], - [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:has_gene ], + owl:minCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:onProperty biolink:has_biological_sequence ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_gene ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_biological_sequence ], + owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:has_gene ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_biological_sequence ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssence ], biolink:BiologicalEntity ; skos:altLabel "allele" ; skos:closeMatch , @@ -11447,68 +11447,68 @@ biolink:AnatomicalEntity a owl:Class ; biolink:Publication a owl:Class ; rdfs:label "publication" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:mesh_terms ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:pages ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:id ], + owl:onProperty biolink:publication_type ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:summary ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:xref ], + owl:onProperty biolink:summary ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:name ], + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:keywords ], + owl:allValuesFrom biolink:Agent ; + owl:onProperty biolink:authors ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:summary ], + owl:onProperty biolink:publication_type ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:mesh_terms ], + owl:onProperty biolink:authors ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:pages ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:keywords ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:pages ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:name ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:summary ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:publication_type ], + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:mesh_terms ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:pages ], + owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Agent ; - owl:onProperty biolink:authors ], + owl:maxCardinality 1 ; + owl:onProperty biolink:summary ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:keywords ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:summary ], + owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:publication_type ], + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:authors ], + owl:onProperty biolink:mesh_terms ], biolink:InformationContentEntity ; skos:definition "Any ‘published’ piece of information. Publications are considered broadly to include any document or document part made available in print or on the web - which may include scientific journal issues, individual articles, and books - as well as things like pre-prints, white papers, patents, drug labels, web pages, protocol documents, and even a part of a publication if of significant knowledge scope (e.g. a figure, figure legend, or section highlighted by NLP)." ; skos:exactMatch IAO:0000311 ; @@ -11541,56 +11541,56 @@ biolink:BiologicalEntity a owl:Class ; biolink:ChemicalEntity a owl:Class ; rdfs:label "chemical entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:max_tolerated_dose ], + owl:minCardinality 0 ; + owl:onProperty biolink:is_toxic ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:trade_name ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalRole ; - owl:onProperty biolink:has_chemical_role ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], + owl:allValuesFrom xsd:boolean ; + owl:onProperty biolink:is_toxic ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:maxCardinality 1 ; + owl:onProperty biolink:is_toxic ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:max_tolerated_dose ], + owl:onProperty biolink:trade_name ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:DrugAvailabilityEnum ; owl:onProperty biolink:available_from ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_chemical_role ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DrugAvailabilityEnum ; + owl:minCardinality 0 ; owl:onProperty biolink:available_from ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:trade_name ], + owl:onProperty biolink:max_tolerated_dose ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:is_toxic ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:is_toxic ], + owl:onProperty biolink:max_tolerated_dose ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:is_toxic ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:max_tolerated_dose ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:trade_name ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:max_tolerated_dose ], + owl:maxCardinality 1 ; + owl:onProperty biolink:trade_name ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalRole ; + owl:onProperty biolink:has_chemical_role ], biolink:NamedThing ; skos:broadMatch STY:T167 ; skos:definition "A chemical entity is a physical entity that pertains to chemistry or biochemistry." ; @@ -11725,218 +11725,218 @@ biolink:association_slot a owl:DatatypeProperty ; biolink:Association a owl:Class ; rdfs:label "association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:negated ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_namespace ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_category_closure ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:retrieval_source_ids ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:boolean ; owl:onProperty biolink:negated ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_evidence ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_label_closure ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_label_closure ], + owl:onProperty biolink:publications ], [ a owl:Restriction ; - owl:allValuesFrom biolink:EvidenceType ; - owl:onProperty biolink:has_evidence ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_closure ], + owl:onProperty biolink:aggregator_knowledge_source ], [ a owl:Restriction ; - owl:allValuesFrom biolink:RetrievalSource ; - owl:onProperty biolink:retrieval_source_ids ], + owl:maxCardinality 1 ; + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_closure ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:publications ], + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_category_closure ], + owl:onProperty biolink:object_category ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:original_subject ], + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:knowledge_source ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:object_category ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:original_object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualifier ], + owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_category ], + owl:onProperty biolink:original_subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualifiers ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:original_subject ], + owl:onProperty biolink:negated ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_category ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_closure ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_namespace ], + owl:onProperty biolink:object_label_closure ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:primary_knowledge_source ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:primary_knowledge_source ], + owl:onProperty biolink:object_closure ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_category ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:subject_category_closure ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:original_object ], + owl:onProperty biolink:qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:subject_category_closure ], + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:original_subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Publication ; - owl:onProperty biolink:publications ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:timepoint ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:category ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:object_category_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:timepoint ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:knowledge_source ], + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:original_predicate ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:original_object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_namespace ], + owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_label_closure ], + owl:onProperty biolink:object_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_label_closure ], + owl:onProperty biolink:qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:original_predicate ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_label_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:type ], + owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_namespace ], + owl:onProperty biolink:subject_namespace ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:time_type ; + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:qualifier ], + owl:onProperty biolink:negated ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:type ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:EvidenceType ; + owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:original_object ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_closure ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:aggregator_knowledge_source ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:type ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_namespace ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_category ], + owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:negated ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:aggregator_knowledge_source ], + owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:category ], + owl:onProperty biolink:knowledge_source ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_namespace ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_label_closure ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:qualifiers ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:original_predicate ], + owl:onProperty biolink:category ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:knowledge_source ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:original_object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_closure ], + owl:onProperty biolink:object_label_closure ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:subject_category ], + owl:allValuesFrom biolink:RetrievalSource ; + owl:onProperty biolink:retrieval_source_ids ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:primary_knowledge_source ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:knowledge_source ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:aggregator_knowledge_source ], + owl:onProperty biolink:category ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_category ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; - owl:onProperty biolink:timepoint ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:original_subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_category ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_category_closure ], + owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_category_closure ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:retrieval_source_ids ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Publication ; + owl:onProperty biolink:publications ], biolink:Entity ; skos:definition "A typed association between two entities, supported by evidence" ; skos:exactMatch OBAN:association, @@ -11956,20 +11956,11 @@ biolink:related_to_at_instance_level a owl:DatatypeProperty, biolink:NamedThing a owl:Class ; rdfs:label "named thing" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:category ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:category ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:synonym ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:provided_by ], - [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:full_name ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:full_name ], @@ -11978,16 +11969,25 @@ biolink:NamedThing a owl:Class ; owl:onProperty biolink:provided_by ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:full_name ], + owl:onProperty biolink:synonym ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:provided_by ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:allValuesFrom biolink:label_type ; owl:onProperty biolink:synonym ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; + owl:minCardinality 1 ; + owl:onProperty biolink:category ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:full_name ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:xref ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:category ], biolink:Entity ; skos:definition "a databased entity or concept/class" ; skos:exactMatch STY:T071, @@ -12039,36 +12039,27 @@ biolink:subject a owl:ObjectProperty ; skos:inScheme . [] a owl:Restriction ; - rdfs:subClassOf biolink:Gene ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Gene . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:RelationshipQuantifier . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation ; + rdfs:subClassOf biolink:CellLineAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . + owl:someValuesFrom biolink:CellLineAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExposureEventToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:MolecularActivityToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExposureEventToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:MolecularActivityToPathwayAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicQuality ; + rdfs:subClassOf biolink:DatasetDistribution ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicQuality . + owl:someValuesFrom biolink:DatasetDistribution . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], @@ -12076,127 +12067,154 @@ biolink:subject a owl:ObjectProperty ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; + owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin . + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:CodingSequence ; + rdfs:subClassOf biolink:ClinicalModifier ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CodingSequence . + owl:someValuesFrom biolink:ClinicalModifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToLocationAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent . + rdfs:subClassOf biolink:DrugToGeneAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DrugToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Fungus ; + rdfs:subClassOf biolink:PhenotypicQuality ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Fungus . + owl:someValuesFrom biolink:PhenotypicQuality . [] a owl:Restriction ; - rdfs:subClassOf biolink:Genotype ; + rdfs:subClassOf biolink:RegulatoryRegion ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Genotype . + owl:someValuesFrom biolink:RegulatoryRegion . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ClinicalIntervention ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ClinicalIntervention . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:double ; - owl:onProperty biolink:has_percentage ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_count ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_quotient ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_total ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty biolink:has_total ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_percentage ], + owl:allValuesFrom biolink:Outcome ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_quotient ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_count ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_total ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:double ; - owl:onProperty biolink:has_quotient ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_percentage ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty biolink:has_count ] ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQuantifier . + owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:CorrelatedGeneToDiseaseAssociation ; + rdfs:subClassOf biolink:ObservedExpectedFrequencyAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CorrelatedGeneToDiseaseAssociation . + owl:someValuesFrom biolink:ObservedExpectedFrequencyAnalysisResult . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin . + owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Snv ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Snv . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide . [] a owl:Restriction ; rdfs:subClassOf biolink:GeneToGeneHomologyAssociation ; @@ -12204,430 +12222,587 @@ biolink:subject a owl:ObjectProperty ; owl:someValuesFrom biolink:GeneToGeneHomologyAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalAffectsGeneAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalAffectsGeneAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ActivityAndBehavior . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismalEntity ; + rdfs:subClassOf biolink:CommonDataElement ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismalEntity . + owl:someValuesFrom biolink:CommonDataElement . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicLocationAtTime ; + rdfs:subClassOf biolink:GeneToGeneFamilyAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicLocationAtTime . + owl:someValuesFrom biolink:GeneToGeneFamilyAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Treatment ; + rdfs:subClassOf biolink:ClinicalTrial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Treatment . + owl:someValuesFrom biolink:ClinicalTrial . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceAssociation ; + rdfs:subClassOf biolink:ConfidenceLevel ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceAssociation . + owl:someValuesFrom biolink:ConfidenceLevel . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalFeature ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PathologicalEntityMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Vertebrate ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalFeature . + owl:someValuesFrom biolink:Vertebrate . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExonToTranscriptRelationship ; + rdfs:subClassOf biolink:BiologicalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExonToTranscriptRelationship . + owl:someValuesFrom biolink:BiologicalProcess . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGoTermAssociation ; + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToFeatureOrDiseaseQualifiersMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:VariantToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGoTermAssociation . + owl:someValuesFrom biolink:VariantToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicExposure ; + rdfs:subClassOf biolink:GenotypeToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicExposure . + owl:someValuesFrom biolink:GenotypeToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToChemicalEntityAssociation ; + rdfs:subClassOf biolink:Procedure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToChemicalEntityAssociation . + owl:someValuesFrom biolink:Procedure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Cohort ; + rdfs:subClassOf biolink:ClinicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Cohort . + owl:someValuesFrom biolink:ClinicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalExposure ; + rdfs:subClassOf biolink:PathologicalProcessExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalExposure . + owl:someValuesFrom biolink:PathologicalProcessExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Agent ; + rdfs:subClassOf biolink:PlanetaryEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Agent . + owl:someValuesFrom biolink:PlanetaryEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToVariantAssociation ; + rdfs:subClassOf biolink:FunctionalAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToVariantAssociation . + owl:someValuesFrom biolink:FunctionalAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalTrial ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneProductIsoformMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:MolecularActivityToChemicalEntityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalTrial . + owl:someValuesFrom biolink:MolecularActivityToChemicalEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalProcess ; + rdfs:subClassOf biolink:GenomicSequenceLocalization ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalProcess . + owl:someValuesFrom biolink:GenomicSequenceLocalization . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellularOrganism ; + rdfs:subClassOf biolink:Hospitalization ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellularOrganism . + owl:someValuesFrom biolink:Hospitalization . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonSpecialization ; + rdfs:subClassOf biolink:SmallMolecule ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonSpecialization . + owl:someValuesFrom biolink:SmallMolecule . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; + rdfs:subClassOf biolink:NucleicAcidEntity ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:NucleicAcidEntity . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:NamedThing ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:NamedThing . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ReactionToParticipantAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ReactionToParticipantAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:in_taxon ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:in_taxon_label ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:in_taxon ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:in_taxon_label ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:in_taxon ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:in_taxon_label ] ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ThingWithTaxon . + owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToGeneAssociation ; + rdfs:subClassOf biolink:Gene ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToGeneAssociation . + owl:someValuesFrom biolink:Gene . [] a owl:Restriction ; - rdfs:subClassOf biolink:ConceptCountAnalysisResult ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ConceptCountAnalysisResult . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssence . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToDiseaseAssociation ; + rdfs:subClassOf biolink:Dataset ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToDiseaseAssociation . + owl:someValuesFrom biolink:Dataset . [] a owl:Restriction ; - rdfs:subClassOf biolink:Zygosity ; + rdfs:subClassOf biolink:MolecularEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Zygosity . + owl:someValuesFrom biolink:MolecularEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Vertebrate ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Vertebrate . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:ConfidenceLevel ; + rdfs:subClassOf biolink:Food ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ConfidenceLevel . + owl:someValuesFrom biolink:Food . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Drug ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:allValuesFrom biolink:PhenotypicFeature ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:BiologicalSex ; + owl:onProperty biolink:sex_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DrugToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalAttribute ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalAttribute . + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:PosttranslationalModification ; + rdfs:subClassOf biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PosttranslationalModification . + owl:someValuesFrom biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToBiologicalProcessAssociation ; + rdfs:subClassOf biolink:TranscriptionFactorBindingSite ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToBiologicalProcessAssociation . + owl:someValuesFrom biolink:TranscriptionFactorBindingSite . [] a owl:Restriction ; - rdfs:subClassOf biolink:ComplexChemicalExposure ; + rdfs:subClassOf biolink:ChemicalMixture ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ComplexChemicalExposure . + owl:someValuesFrom biolink:ChemicalMixture . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:in_taxon ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:in_taxon ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:in_taxon_label ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:in_taxon_label ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:in_taxon_label ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ] ; + owl:minCardinality 0 ; + owl:onProperty biolink:in_taxon ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin . + owl:someValuesFrom biolink:ThingWithTaxon . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:allValuesFrom owl:Thing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . + owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment . + rdfs:subClassOf biolink:GeographicLocation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeographicLocation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinDomain ; + rdfs:subClassOf biolink:ChemicalAffectsGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinDomain . + owl:someValuesFrom biolink:ChemicalAffectsGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToPopulationAssociation ; + rdfs:subClassOf biolink:ProcessedMaterial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToPopulationAssociation . + owl:someValuesFrom biolink:ProcessedMaterial . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneCoexpressionAssociation ; + rdfs:subClassOf biolink:AdministrativeEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneCoexpressionAssociation . + owl:someValuesFrom biolink:AdministrativeEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProcessedMaterial ; + rdfs:subClassOf biolink:BehaviorToBehavioralFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProcessedMaterial . + owl:someValuesFrom biolink:BehaviorToBehavioralFeatureAssociation . [] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct . + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:GenotypeToVariantAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:GenotypeToVariantAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalFinding ; + rdfs:subClassOf biolink:BehavioralExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalFinding . + owl:someValuesFrom biolink:BehavioralExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToPathwayAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToPathwayAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToDiseaseAssociation ; + rdfs:subClassOf biolink:SequenceVariantModulatesTreatmentAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToDiseaseAssociation . + owl:someValuesFrom biolink:SequenceVariantModulatesTreatmentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:ReagentTargetedGene ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:ReagentTargetedGene . [] a owl:Restriction ; - rdfs:subClassOf biolink:Entity ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Entity . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Phenomenon ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Phenomenon . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Patent ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Patent . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinFamily ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinFamily . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Transcript ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Transcript . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Serial ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Serial . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToChemicalDerivationAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToChemicalDerivationAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Case ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:CaseToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_biological_sequence ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:biological_sequence ; - owl:onProperty biolink:has_biological_sequence ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_biological_sequence ] ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:WebPage ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:WebPage . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToMolecularActivityAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToMolecularActivityAssociation . + owl:someValuesFrom biolink:FeatureOrDiseaseQualifiersToEntityMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetVersion ; + rdfs:subClassOf biolink:NucleicAcidSequenceMotif ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetVersion . + owl:someValuesFrom biolink:NucleicAcidSequenceMotif . [] a owl:Restriction ; - rdfs:subClassOf biolink:PlanetaryEntity ; + rdfs:subClassOf biolink:GeneToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PlanetaryEntity . + owl:someValuesFrom biolink:GeneToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:BehaviorToBehavioralFeatureAssociation ; + rdfs:subClassOf biolink:Protein ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehaviorToBehavioralFeatureAssociation . + owl:someValuesFrom biolink:Protein . [] a owl:Restriction ; - rdfs:subClassOf biolink:Disease ; + rdfs:subClassOf biolink:ConceptCountAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Disease . + owl:someValuesFrom biolink:ConceptCountAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:IndividualOrganism ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:IndividualOrganism . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToGeneAssociation ; + rdfs:subClassOf biolink:OrganismTaxon ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToGeneAssociation . + owl:someValuesFrom biolink:OrganismTaxon . [] a owl:Restriction ; - rdfs:subClassOf biolink:DruggableGeneToDiseaseAssociation ; + rdfs:subClassOf biolink:Patent ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DruggableGeneToDiseaseAssociation . + owl:someValuesFrom biolink:Patent . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToGeneExpressionAssociation ; + rdfs:subClassOf biolink:BiologicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToGeneExpressionAssociation . + owl:someValuesFrom biolink:BiologicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Bacterium ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Bacterium . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Occurrent . [] a owl:Restriction ; - rdfs:subClassOf biolink:AdministrativeEntity ; + rdfs:subClassOf biolink:GenotypeToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AdministrativeEntity . + owl:someValuesFrom biolink:GenotypeToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeature ; + rdfs:subClassOf biolink:GeographicExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeature . + owl:someValuesFrom biolink:GeographicExposure . [] a owl:Restriction ; rdfs:subClassOf biolink:CellLine ; @@ -12635,386 +12810,353 @@ biolink:subject a owl:ObjectProperty ; owl:someValuesFrom biolink:CellLine . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenomicSequenceLocalization ; + rdfs:subClassOf biolink:StudyResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenomicSequenceLocalization . + owl:someValuesFrom biolink:StudyResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:RNAProduct ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantAsAModelOfDiseaseAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_gene_or_gene_product ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:has_gene_or_gene_product ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin . + owl:someValuesFrom biolink:RNAProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicFeature ; + rdfs:subClassOf biolink:VariantToGeneExpressionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicFeature . + owl:someValuesFrom biolink:VariantToGeneExpressionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExposureEventToOutcomeAssociation ; + rdfs:subClassOf biolink:PopulationOfIndividualOrganisms ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExposureEventToOutcomeAssociation . + owl:someValuesFrom biolink:PopulationOfIndividualOrganisms . [] a owl:Restriction ; - rdfs:subClassOf biolink:BioticExposure ; + rdfs:subClassOf biolink:ComplexMolecularMixture ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BioticExposure . + owl:someValuesFrom biolink:ComplexMolecularMixture . [] a owl:Restriction ; - rdfs:subClassOf biolink:SocioeconomicAttribute ; + rdfs:subClassOf biolink:LogOddsAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SocioeconomicAttribute . + owl:someValuesFrom biolink:LogOddsAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalModifier ; + rdfs:subClassOf biolink:EnvironmentalFoodContaminant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalModifier . + owl:someValuesFrom biolink:EnvironmentalFoodContaminant . [] a owl:Restriction ; - rdfs:subClassOf biolink:TranscriptionFactorBindingSite ; + rdfs:subClassOf biolink:Book ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TranscriptionFactorBindingSite . + owl:someValuesFrom biolink:Book . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularEntity ; + rdfs:subClassOf biolink:AnatomicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularEntity . + owl:someValuesFrom biolink:AnatomicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypicSex ; + rdfs:subClassOf biolink:GeneFamily ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypicSex . + owl:someValuesFrom biolink:GeneFamily . [] a owl:Restriction ; - rdfs:subClassOf biolink:LogOddsAnalysisResult ; + rdfs:subClassOf biolink:MolecularMixture ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:LogOddsAnalysisResult . + owl:someValuesFrom biolink:MolecularMixture . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhysiologicalProcess ; + rdfs:subClassOf biolink:StudyPopulation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhysiologicalProcess . + owl:someValuesFrom biolink:StudyPopulation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicFeatureToDiseaseAssociation ; + rdfs:subClassOf biolink:PhenotypicSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicFeatureToDiseaseAssociation . + owl:someValuesFrom biolink:PhenotypicSex . [] a owl:Restriction ; - rdfs:subClassOf biolink:EntityToDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EntityToDiseaseAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MaterialSample ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:MaterialSampleToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureExposure ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneOrGeneProduct . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:PhenotypicFeatureToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureExposure . + owl:someValuesFrom biolink:PhenotypicFeatureToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Food ; + rdfs:subClassOf biolink:Agent ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Food . + owl:someValuesFrom biolink:Agent . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToPathwayAssociation ; + rdfs:subClassOf biolink:Plant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToPathwayAssociation . + owl:someValuesFrom biolink:Plant . [] a owl:Restriction ; - rdfs:subClassOf biolink:TextMiningResult ; + rdfs:subClassOf biolink:StudyVariable ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TextMiningResult . + owl:someValuesFrom biolink:StudyVariable . [] a owl:Restriction ; - rdfs:subClassOf biolink:PreprintPublication ; + rdfs:subClassOf biolink:Phenomenon ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PreprintPublication . + owl:someValuesFrom biolink:Phenomenon . [] a owl:Restriction ; - rdfs:subClassOf biolink:PopulationOfIndividualOrganisms ; + rdfs:subClassOf biolink:PairwiseGeneToGeneInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PopulationOfIndividualOrganisms . + owl:someValuesFrom biolink:PairwiseGeneToGeneInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalProcess ; + rdfs:subClassOf biolink:ClinicalFinding ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalProcess . + owl:someValuesFrom biolink:ClinicalFinding . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneFamilyAssociation ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToLocationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneFamilyAssociation . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:EnvironmentalFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:EnvironmentalFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:RetrievalSource ; + rdfs:subClassOf biolink:Invertebrate ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RetrievalSource . + owl:someValuesFrom biolink:Invertebrate . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalRole ; + rdfs:subClassOf biolink:ComplexChemicalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalRole . + owl:someValuesFrom biolink:ComplexChemicalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReagentTargetedGene ; + rdfs:subClassOf biolink:ContributorAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReagentTargetedGene . + owl:someValuesFrom biolink:ContributorAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToFeatureOrDiseaseQualifiersMixin . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SensitivityQuantifier . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Haplotype ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Haplotype . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:MaterialSample ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MaterialSampleToEntityAssociationMixin . + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:biological_sequence ; + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ExposureEvent ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ] ; + owl:onProperty biolink:has_biological_sequence ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin . + owl:someValuesFrom biolink:EpigenomicEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellularComponent ; + rdfs:subClassOf biolink:Bacterium ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellularComponent . + owl:someValuesFrom biolink:Bacterium . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugExposure ; + rdfs:subClassOf biolink:ClinicalAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugExposure . + owl:someValuesFrom biolink:ClinicalAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSample ; + rdfs:subClassOf biolink:Genotype ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSample . + owl:someValuesFrom biolink:Genotype . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalProcessExposure ; + rdfs:subClassOf biolink:VariantAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalProcessExposure . + owl:someValuesFrom biolink:VariantAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Behavior ; + rdfs:subClassOf biolink:BioticExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Behavior . + owl:someValuesFrom biolink:BioticExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntityAssessesNamedThingAssociation ; + rdfs:subClassOf biolink:IndividualOrganism ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntityAssessesNamedThingAssociation . + owl:someValuesFrom biolink:IndividualOrganism . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityToEntityAssociationMixin . + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Virus ; + rdfs:subClassOf biolink:Device ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Virus . + owl:someValuesFrom biolink:Device . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:SocioeconomicAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:SocioeconomicAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:MicroRNA ; + rdfs:subClassOf biolink:ExposureEventToOutcomeAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MicroRNA . + owl:someValuesFrom biolink:ExposureEventToOutcomeAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiagnosticAid ; + rdfs:subClassOf biolink:MacromolecularMachineToBiologicalProcessAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiagnosticAid . + owl:someValuesFrom biolink:MacromolecularMachineToBiologicalProcessAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:EntityToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:ClinicalCourse ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:ClinicalCourse . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ProteinFamily ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ProteinFamily . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:TranscriptToGeneRelationship ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:TranscriptToGeneRelationship . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:MacromolecularComplex ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:MacromolecularComplex . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:PathologicalProcess ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:PathologicalProcess . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeneToGeneCoexpressionAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeneToGeneCoexpressionAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Haplotype ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Haplotype . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:SocioeconomicExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:SocioeconomicExposure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:MicroRNA ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:MicroRNA . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Mammal ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Mammal . + +[] a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SubjectOfInvestigation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Case ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ] ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:CaseToEntityAssociationMixin . + owl:someValuesFrom biolink:GeneToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalIntervention ; + rdfs:subClassOf biolink:Publication ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalIntervention . + owl:someValuesFrom biolink:Publication . [] a owl:Restriction ; rdfs:subClassOf biolink:BookChapter ; @@ -13022,971 +13164,770 @@ biolink:subject a owl:ObjectProperty ; owl:someValuesFrom biolink:BookChapter . [] a owl:Restriction ; - rdfs:subClassOf biolink:Event ; + rdfs:subClassOf biolink:ProteinIsoform ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Event . + owl:someValuesFrom biolink:ProteinIsoform . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin . + rdfs:subClassOf biolink:GenotypeToGenotypePartAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GenotypeToGenotypePartAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation ; + rdfs:subClassOf biolink:SeverityValue ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . + owl:someValuesFrom biolink:SeverityValue . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugLabel ; + rdfs:subClassOf biolink:LifeStage ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugLabel . + owl:someValuesFrom biolink:LifeStage . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence . + rdfs:subClassOf biolink:Virus ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Virus . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonInteraction ; + rdfs:subClassOf biolink:VariantToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonInteraction . + owl:someValuesFrom biolink:VariantToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SiRNA ; + rdfs:subClassOf biolink:GenomicBackgroundExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SiRNA . + owl:someValuesFrom biolink:GenomicBackgroundExposure . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Outcome ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin . + rdfs:subClassOf biolink:ExonToTranscriptRelationship ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ExonToTranscriptRelationship . [] a owl:Restriction ; - rdfs:subClassOf biolink:Attribute ; + rdfs:subClassOf biolink:Human ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Attribute . + owl:someValuesFrom biolink:Human . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:DiseaseToPhenotypicFeatureAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DiseaseToPhenotypicFeatureAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeneToDiseaseAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeneToDiseaseAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:frequency_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:allValuesFrom biolink:CellLine ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:frequency_qualifier ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom ; - owl:onProperty biolink:frequency_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQualifierMixin . + owl:someValuesFrom biolink:CellLineToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Procedure ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PathognomonicityQuantifier . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:PhysiologicalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Procedure . + owl:someValuesFrom biolink:PhysiologicalProcess . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin . + rdfs:subClassOf biolink:DatasetVersion ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DatasetVersion . [] a owl:Restriction ; - rdfs:subClassOf biolink:RegulatoryRegion ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonSpecialization ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RegulatoryRegion . + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonSpecialization . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinIsoform ; + rdfs:subClassOf biolink:FoodAdditive ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinIsoform . + owl:someValuesFrom biolink:FoodAdditive . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalAnatomicalStructure ; + rdfs:subClassOf biolink:RetrievalSource ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalAnatomicalStructure . + owl:someValuesFrom biolink:RetrievalSource . [] a owl:Restriction ; - rdfs:subClassOf biolink:RNAProductIsoform ; + rdfs:subClassOf biolink:Snv ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RNAProductIsoform . + owl:someValuesFrom biolink:Snv . [] a owl:Restriction ; - rdfs:subClassOf biolink:Mammal ; + rdfs:subClassOf biolink:NoncodingRNAProduct ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Mammal . + owl:someValuesFrom biolink:NoncodingRNAProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:Case ; + rdfs:subClassOf biolink:MaterialSample ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Case . + owl:someValuesFrom biolink:MaterialSample . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicLocation ; + rdfs:subClassOf biolink:EvidenceType ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicLocation . + owl:someValuesFrom biolink:EvidenceType . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenomicBackgroundExposure ; + rdfs:subClassOf biolink:CaseToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenomicBackgroundExposure . + owl:someValuesFrom biolink:CaseToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneticInheritance ; + rdfs:subClassOf biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneticInheritance . + owl:someValuesFrom biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PopulationToPopulationAssociation ; + rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PopulationToPopulationAssociation . + owl:someValuesFrom biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:SmallMolecule ; + rdfs:subClassOf biolink:MaterialSampleDerivationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SmallMolecule . + owl:someValuesFrom biolink:MaterialSampleDerivationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ComplexMolecularMixture ; + rdfs:subClassOf biolink:GeneAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ComplexMolecularMixture . + owl:someValuesFrom biolink:GeneAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalGeneInteractionAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalGeneInteractionAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:RelationshipQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:TranscriptToGeneRelationship ; + rdfs:subClassOf biolink:SiRNA ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TranscriptToGeneRelationship . + owl:someValuesFrom biolink:SiRNA . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:ChiSquaredAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:ChiSquaredAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:GrossAnatomicalStructure ; + rdfs:subClassOf biolink:ChemicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GrossAnatomicalStructure . + owl:someValuesFrom biolink:ChemicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Exon ; + rdfs:subClassOf biolink:TextMiningResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Exon . + owl:someValuesFrom biolink:TextMiningResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicSex ; + rdfs:subClassOf biolink:GeneToGoTermAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicSex . + owl:someValuesFrom biolink:GeneToGoTermAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:allValuesFrom biolink:time_type ; + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ] ; + owl:onProperty biolink:timepoint ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FeatureOrDiseaseQualifiersToEntityMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalEntity ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalEntity . + owl:someValuesFrom biolink:ExposureEvent . [] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetSummary ; + rdfs:subClassOf biolink:CellularComponent ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetSummary . + owl:someValuesFrom biolink:CellularComponent . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SubjectOfInvestigation . + owl:someValuesFrom biolink:PhysicalEssenceOrOccurrent . [] a owl:Restriction ; - rdfs:subClassOf biolink:SocioeconomicExposure ; + rdfs:subClassOf biolink:GeneToExpressionSiteAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SocioeconomicExposure . + owl:someValuesFrom biolink:GeneToExpressionSiteAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntity ; + rdfs:subClassOf biolink:AccessibleDnaRegion ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntity . + owl:someValuesFrom biolink:AccessibleDnaRegion . [] a owl:Restriction ; - rdfs:subClassOf biolink:Polypeptide ; + rdfs:subClassOf biolink:Pathway ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Polypeptide . + owl:someValuesFrom biolink:Pathway . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalMeasurement ; + rdfs:subClassOf biolink:BehavioralFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalMeasurement . + owl:someValuesFrom biolink:BehavioralFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:RNAProduct ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RNAProduct . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:NucleosomeModification ; + rdfs:subClassOf biolink:Zygosity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleosomeModification . + owl:someValuesFrom biolink:Zygosity . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneHasVariantThatContributesToDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneHasVariantThatContributesToDiseaseAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Outcome . [] a owl:Restriction ; - rdfs:subClassOf biolink:StudyVariable ; + rdfs:subClassOf biolink:DatasetSummary ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyVariable . + owl:someValuesFrom biolink:DatasetSummary . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:CorrelatedGeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:CorrelatedGeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Device ; + rdfs:subClassOf biolink:PhenotypicFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Device . + owl:someValuesFrom biolink:PhenotypicFeature . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PathognomonicityQuantifier . + rdfs:subClassOf biolink:CodingSequence ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:CodingSequence . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin . - -[] a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssenceOrOccurrent . + owl:someValuesFrom biolink:ChemicalEntityToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularMixture ; + rdfs:subClassOf biolink:Polypeptide ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularMixture . + owl:someValuesFrom biolink:Polypeptide . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismAttribute ; + rdfs:subClassOf biolink:JournalArticle ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismAttribute . + owl:someValuesFrom biolink:JournalArticle . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation ; + rdfs:subClassOf biolink:PhysicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . + owl:someValuesFrom biolink:PhysicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToChemicalAssociation ; + rdfs:subClassOf biolink:PreprintPublication ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToChemicalAssociation . + owl:someValuesFrom biolink:PreprintPublication . [] a owl:Restriction ; - rdfs:subClassOf biolink:ObservedExpectedFrequencyAnalysisResult ; + rdfs:subClassOf biolink:GeneToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ObservedExpectedFrequencyAnalysisResult . + owl:someValuesFrom biolink:GeneToPathwayAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugToGeneAssociation ; + rdfs:subClassOf biolink:BiologicalProcessOrActivity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugToGeneAssociation . + owl:someValuesFrom biolink:BiologicalProcessOrActivity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Plant ; + rdfs:subClassOf biolink:Article ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Plant . + owl:someValuesFrom biolink:Article . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalFoodContaminant ; + rdfs:subClassOf biolink:ChemicalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalFoodContaminant . + owl:someValuesFrom biolink:ChemicalExposure . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Book ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Book . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:StudyResult ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyResult . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetDistribution ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetDistribution . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismToOrganismAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismToOrganismAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:NucleicAcidSequenceMotif ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleicAcidSequenceMotif . + owl:someValuesFrom biolink:SpecificityQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:Dataset ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Dataset . + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ExposureEvent ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToExpressionSiteAssociation ; + rdfs:subClassOf biolink:ExposureEventToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToExpressionSiteAssociation . + owl:someValuesFrom biolink:ExposureEventToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToCellularComponentAssociation ; + rdfs:subClassOf biolink:GeneToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToCellularComponentAssociation . + owl:someValuesFrom biolink:GeneToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularComplex ; + rdfs:subClassOf biolink:Study ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularComplex . + owl:someValuesFrom biolink:Study . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:EntityToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:LifeStage ; + rdfs:subClassOf biolink:ChemicalGeneInteractionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:LifeStage . + owl:someValuesFrom biolink:ChemicalGeneInteractionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AccessibleDnaRegion ; + rdfs:subClassOf biolink:ChemicalRole ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AccessibleDnaRegion . + owl:someValuesFrom biolink:ChemicalRole . [] a owl:Restriction ; - rdfs:subClassOf biolink:CaseToPhenotypicFeatureAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CaseToPhenotypicFeatureAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:biological_sequence ; - owl:onProperty biolink:has_biological_sequence ], + owl:allValuesFrom biolink:PhenotypicFeature ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_biological_sequence ], + owl:allValuesFrom biolink:BiologicalSex ; + owl:onProperty biolink:sex_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_biological_sequence ] ; + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:sex_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EpigenomicEntity . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Publication ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Publication . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:NamedThing ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NamedThing . + owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceVariantModulatesTreatmentAssociation ; + rdfs:subClassOf biolink:ProteinDomain ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceVariantModulatesTreatmentAssociation . + owl:someValuesFrom biolink:ProteinDomain . [] a owl:Restriction ; - rdfs:subClassOf biolink:JournalArticle ; + rdfs:subClassOf biolink:RelativeFrequencyAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:JournalArticle . + owl:someValuesFrom biolink:RelativeFrequencyAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneProductRelationship ; + rdfs:subClassOf biolink:MolecularActivityToMolecularActivityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneProductRelationship . + owl:someValuesFrom biolink:MolecularActivityToMolecularActivityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation ; + rdfs:subClassOf biolink:Event ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . + owl:someValuesFrom biolink:Event . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalAnatomicalExposure ; + rdfs:subClassOf biolink:Disease ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalAnatomicalExposure . + owl:someValuesFrom biolink:Disease . [] a owl:Restriction ; - rdfs:subClassOf biolink:NucleicAcidEntity ; + rdfs:subClassOf biolink:ClinicalMeasurement ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleicAcidEntity . + owl:someValuesFrom biolink:ClinicalMeasurement . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:synonym ], - [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:synonym ], + owl:minCardinality 0 ; + owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:xref ] ; + owl:onProperty biolink:synonym ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:synonym ] ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneProductMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalSex ; + rdfs:subClassOf biolink:VariantToPopulationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalSex . + owl:someValuesFrom biolink:VariantToPopulationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Activity ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Activity . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SensitivityQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:Onset ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:Onset . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToEnvironmentAssociation ; + rdfs:subClassOf biolink:Drug ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToEnvironmentAssociation . + owl:someValuesFrom biolink:Drug . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass . + rdfs:subClassOf biolink:CellularOrganism ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:CellularOrganism . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin . + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Human ; + rdfs:subClassOf biolink:WebPage ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Human . + owl:someValuesFrom biolink:WebPage . [] a owl:Restriction ; - rdfs:subClassOf biolink:CommonDataElement ; + rdfs:subClassOf biolink:InformationContentEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CommonDataElement . + owl:someValuesFrom biolink:InformationContentEntity . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:sex_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:sex_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalSex ; - owl:onProperty biolink:sex_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin . + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SpecificityQuantifier . + rdfs:subClassOf biolink:SequenceAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:SequenceAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:StudyPopulation ; + rdfs:subClassOf biolink:OrganismAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyPopulation . + owl:someValuesFrom biolink:OrganismAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation ; + rdfs:subClassOf biolink:PosttranslationalModification ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . + owl:someValuesFrom biolink:PosttranslationalModification . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:RNAProductIsoform ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:RNAProductIsoform . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalSex ; - owl:onProperty biolink:sex_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:biological_sequence ; + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:sex_qualifier ], + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:sex_qualifier ] ; + owl:onProperty biolink:has_biological_sequence ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:DrugToGeneInteractionExposure ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugToGeneInteractionExposure . + owl:someValuesFrom biolink:GenomicEntity . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ActivityAndBehavior . + rdfs:subClassOf biolink:ChemicalEntityAssessesNamedThingAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ChemicalEntityAssessesNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalMixture ; + rdfs:subClassOf biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalMixture . + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:LifeStage ; + owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:expression_site ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:phenotypic_state ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:expression_site ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:CellLineAsAModelOfDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLineAsAModelOfDiseaseAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:expression_site ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:phenotypic_state ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:phenotypic_state ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ] ; + owl:minCardinality 0 ; + owl:onProperty biolink:quantifier_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin . + owl:someValuesFrom biolink:GeneExpressionMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeographicLocationAtTime ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeographicLocationAtTime . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeneAffectsChemicalAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeneAffectsChemicalAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Cell ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Cell . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:DruggableGeneToDiseaseAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DruggableGeneToDiseaseAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:allValuesFrom biolink:symbol_type ; + owl:maxCardinality 1 ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:symbol_type ; owl:onProperty biolink:name ] ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:MacromolecularMachineMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalProcessOrActivity ; + rdfs:subClassOf biolink:Fungus ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalProcessOrActivity . + owl:someValuesFrom biolink:Fungus . [] a owl:Restriction ; - rdfs:subClassOf biolink:InformationContentEntityToNamedThingAssociation ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:InformationContentEntityToNamedThingAssociation . + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:Protein ; + rdfs:subClassOf biolink:Serial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Protein . + owl:someValuesFrom biolink:Serial . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneProductIsoformMixin . + rdfs:subClassOf biolink:Association ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Association . [] a owl:Restriction ; - rdfs:subClassOf biolink:BehavioralFeature ; + rdfs:subClassOf biolink:ChemicalToChemicalAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehavioralFeature . + owl:someValuesFrom biolink:ChemicalToChemicalAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReactionToParticipantAssociation ; + rdfs:subClassOf biolink:Genome ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReactionToParticipantAssociation . + owl:someValuesFrom biolink:Genome . [] a owl:Restriction ; - rdfs:subClassOf biolink:PairwiseMolecularInteraction ; + rdfs:subClassOf biolink:Attribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PairwiseMolecularInteraction . + owl:someValuesFrom biolink:Attribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntity ; + rdfs:subClassOf biolink:DiseaseToExposureEventAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntity . + owl:someValuesFrom biolink:DiseaseToExposureEventAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:TaxonToTaxonAssociation ; + rdfs:subClassOf biolink:DrugLabel ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TaxonToTaxonAssociation . + owl:someValuesFrom biolink:DrugLabel . [] a owl:Restriction ; - rdfs:subClassOf biolink:NoncodingRNAProduct ; + rdfs:subClassOf biolink:Exon ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NoncodingRNAProduct . + owl:someValuesFrom biolink:Exon . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChiSquaredAnalysisResult ; + rdfs:subClassOf biolink:Transcript ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChiSquaredAnalysisResult . + owl:someValuesFrom biolink:Transcript . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Outcome . + rdfs:subClassOf biolink:SequenceFeatureRelationship ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:SequenceFeatureRelationship . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:phenotypic_state ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:phenotypic_state ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:stage_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:LifeStage ; - owl:onProperty biolink:stage_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:stage_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:expression_site ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:phenotypic_state ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:expression_site ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:expression_site ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneExpressionMixin . + rdfs:subClassOf biolink:NucleosomeModification ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:NucleosomeModification . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Drug ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:CellLine ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ] ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:CellLineToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Drug ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Drug . + owl:someValuesFrom biolink:DrugToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:RelativeFrequencyAnalysisResult ; + rdfs:subClassOf biolink:GenotypicSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RelativeFrequencyAnalysisResult . + owl:someValuesFrom biolink:GenotypicSex . [] a owl:Restriction ; - rdfs:subClassOf biolink:ContributorAssociation ; + rdfs:subClassOf biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ContributorAssociation . + owl:someValuesFrom biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; rdfs:subClassOf biolink:OrganismalEntityAsAModelOfDiseaseAssociation ; @@ -13994,174 +13935,202 @@ biolink:subject a owl:ObjectProperty ; owl:someValuesFrom biolink:OrganismalEntityAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Association ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Association . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Article ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Article . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseToExposureEventAssociation ; + rdfs:subClassOf biolink:DrugExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseToExposureEventAssociation . + owl:someValuesFrom biolink:DrugExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalCourse ; + rdfs:subClassOf biolink:MacromolecularMachineToMolecularActivityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalCourse . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneOrGeneProduct . + owl:someValuesFrom biolink:MacromolecularMachineToMolecularActivityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSampleDerivationAssociation ; + rdfs:subClassOf biolink:EntityToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSampleDerivationAssociation . + owl:someValuesFrom biolink:EntityToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxon ; + rdfs:subClassOf biolink:OrganismalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxon . + owl:someValuesFrom biolink:OrganismalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneAffectsChemicalAssociation ; + rdfs:subClassOf biolink:GenotypeAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneAffectsChemicalAssociation . + owl:someValuesFrom biolink:GenotypeAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceVariant ; + rdfs:subClassOf biolink:DrugToGeneInteractionExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceVariant . + owl:someValuesFrom biolink:DrugToGeneInteractionExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneFamily ; + rdfs:subClassOf biolink:PairwiseMolecularInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneFamily . + owl:someValuesFrom biolink:PairwiseMolecularInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalExposure ; + rdfs:subClassOf biolink:ChemicalToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalExposure . + owl:someValuesFrom biolink:ChemicalToPathwayAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:EvidenceType ; + rdfs:subClassOf biolink:Activity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EvidenceType . + owl:someValuesFrom biolink:Activity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Pathway ; + rdfs:subClassOf biolink:MolecularActivity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Pathway . + owl:someValuesFrom biolink:MolecularActivity . [] a owl:Restriction ; - rdfs:subClassOf biolink:CausalGeneToDiseaseAssociation ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CausalGeneToDiseaseAssociation . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityAssociation . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PathologicalEntityMixin . + rdfs:subClassOf biolink:GeneHasVariantThatContributesToDiseaseAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeneHasVariantThatContributesToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToGenotypePartAssociation ; + rdfs:subClassOf biolink:Behavior ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToGenotypePartAssociation . + owl:someValuesFrom biolink:Behavior . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToDiseaseAssociation ; + rdfs:subClassOf biolink:OrganismToOrganismAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToDiseaseAssociation . + owl:someValuesFrom biolink:OrganismToOrganismAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:InformationContentEntity ; + rdfs:subClassOf biolink:Cohort ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:InformationContentEntity . + owl:someValuesFrom biolink:Cohort . [] a owl:Restriction ; - rdfs:subClassOf biolink:FunctionalAssociation ; + rdfs:subClassOf biolink:PathologicalAnatomicalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:FunctionalAssociation . + owl:someValuesFrom biolink:PathologicalAnatomicalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToMolecularActivityAssociation ; + rdfs:subClassOf biolink:EnvironmentalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToMolecularActivityAssociation . + owl:someValuesFrom biolink:EnvironmentalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Hospitalization ; + rdfs:subClassOf biolink:Entity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Hospitalization . + owl:someValuesFrom biolink:Entity . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:GeneticInheritance ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:GeneticInheritance . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhysicalEntity ; + rdfs:subClassOf biolink:ChemicalToChemicalDerivationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhysicalEntity . + owl:someValuesFrom biolink:ChemicalToChemicalDerivationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:FoodAdditive ; + rdfs:subClassOf biolink:SequenceVariant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:FoodAdditive . + owl:someValuesFrom biolink:SequenceVariant . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReactionToCatalystAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReactionToCatalystAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_percentage ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:double ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:double ; + owl:onProperty biolink:has_percentage ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_percentage ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:FrequencyQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalProcess ; + rdfs:subClassOf biolink:PathologicalAnatomicalStructure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalProcess . + owl:someValuesFrom biolink:PathologicalAnatomicalStructure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Genome ; + rdfs:subClassOf biolink:Case ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Genome . + owl:someValuesFrom biolink:Case . [] a owl:Restriction ; - rdfs:subClassOf biolink:BehavioralExposure ; + rdfs:subClassOf biolink:PopulationToPopulationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehavioralExposure . + owl:someValuesFrom biolink:PopulationToPopulationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PairwiseGeneToGeneInteraction ; + rdfs:subClassOf biolink:BiologicalSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PairwiseGeneToGeneInteraction . + owl:someValuesFrom biolink:BiologicalSex . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityAssociation ; + rdfs:subClassOf biolink:ReactionToCatalystAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityAssociation . + owl:someValuesFrom biolink:ReactionToCatalystAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Invertebrate ; + rdfs:subClassOf biolink:Treatment ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Invertebrate . + owl:someValuesFrom biolink:Treatment . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneAssociation ; + rdfs:subClassOf biolink:EnvironmentalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneAssociation . + owl:someValuesFrom biolink:EnvironmentalProcess . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalEntity ; + rdfs:subClassOf biolink:GrossAnatomicalStructure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalEntity . + owl:someValuesFrom biolink:GrossAnatomicalStructure . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; @@ -14169,80 +14138,111 @@ biolink:subject a owl:ObjectProperty ; [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:MacromolecularMachineToCellularComponentAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:MacromolecularMachineToCellularComponentAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:frequency_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom ; + owl:onProperty biolink:frequency_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:frequency_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . + owl:someValuesFrom biolink:FrequencyQualifierMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Onset ; + rdfs:subClassOf biolink:CausalGeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Onset . + owl:someValuesFrom biolink:CausalGeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivity ; + rdfs:subClassOf biolink:GenotypeToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivity . + owl:someValuesFrom biolink:GenotypeToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToPathwayAssociation ; + rdfs:subClassOf biolink:InformationContentEntityToNamedThingAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToPathwayAssociation . + owl:someValuesFrom biolink:InformationContentEntityToNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Study ; + rdfs:subClassOf biolink:GeneToGeneProductRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Study . + owl:someValuesFrom biolink:GeneToGeneProductRelationship . [] a owl:Restriction ; - rdfs:subClassOf biolink:SeverityValue ; + rdfs:subClassOf biolink:OrganismTaxonToEnvironmentAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SeverityValue . + owl:someValuesFrom biolink:OrganismTaxonToEnvironmentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceFeatureRelationship ; + rdfs:subClassOf biolink:DiagnosticAid ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceFeatureRelationship . + owl:someValuesFrom biolink:DiagnosticAid . [] a owl:Restriction ; - rdfs:subClassOf biolink:Cell ; + rdfs:subClassOf biolink:VariantToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Cell . + owl:someValuesFrom biolink:VariantToPhenotypicFeatureAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:timepoint ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; - owl:onProperty biolink:timepoint ], + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:has_gene_or_gene_product ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:timepoint ] ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_gene_or_gene_product ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ExposureEvent . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeAsAModelOfDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:GeneGroupingMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonAssociation ; + rdfs:subClassOf biolink:TaxonToTaxonAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonAssociation . + owl:someValuesFrom biolink:TaxonToTaxonAssociation . diff --git a/project/shacl/biolink_model.shacl.ttl b/project/shacl/biolink_model.shacl.ttl index 3c1d2ff40..1af09745e 100644 --- a/project/shacl/biolink_model.shacl.ttl +++ b/project/shacl/biolink_model.shacl.ttl @@ -10,123 +10,123 @@ biolink:AccessibleDnaRegion a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) of a chromatinized genome that has been measured to be more accessible to an enzyme such as DNase-I or Tn5 Transpose" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:id ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:order 9 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 1 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 8 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ] ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ] ; sh:targetClass biolink:AccessibleDnaRegion . biolink:Activity a sh:NodeShape ; sh:closed true ; sh:description "An activity is something that occurs over a period of time and acts upon or with entities; it may include consuming, processing, transforming, modifying, relocating, using, or generating entities." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ] ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Activity . biolink:ActivityAndBehavior a sh:NodeShape ; @@ -138,100 +138,106 @@ biolink:ActivityAndBehavior a sh:NodeShape ; biolink:AdministrativeEntity a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 8 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ] ; sh:targetClass biolink:AdministrativeEntity . biolink:AnatomicalEntityToAnatomicalEntityAssociation a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:AnatomicalEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:AnatomicalEntity ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -239,269 +245,294 @@ biolink:AnatomicalEntityToAnatomicalEntityAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ] ; + sh:order 4 ; + sh:path biolink:qualifier ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityAssociation . biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:closed true ; sh:description "A relationship between two anatomical entities where the relationship is ontogenic, i.e. the two entities are related by development. A number of different relationship types can be used to specify the precise nature of the relationship." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the structure at an earlier time" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:class biolink:AnatomicalEntity ; - sh:description "the structure at a later time" ; + sh:description "the structure at an earlier time" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "the structure at a later time" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . + +biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "A relationship between two anatomical entities where the relationship is mereological, i.e the two entities are related by parthood. This includes relationships between cellular components and cells, between cells and tissues, tissues and whole organisms" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; @@ -512,144 +543,91 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ] ; - sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . - -biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A relationship between two anatomical entities where the relationship is mereological, i.e the two entities are related by parthood. This includes relationships between cellular components and cells, between cells and tissues, tissues and whole organisms" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "the part" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the whole" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the part" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; @@ -658,44 +636,66 @@ biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; - sh:path biolink:subject_closure ] ; + sh:path biolink:subject_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "the whole" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . biolink:Annotation a sh:NodeShape ; @@ -709,178 +709,209 @@ biolink:Article a sh:NodeShape ; sh:description "a piece of writing on a particular topic presented as a stand-alone section of a larger publication" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 15 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:summary ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 9 ; - sh:path biolink:xref ], + sh:order 3 ; + sh:path biolink:issue ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 7 ; - sh:path biolink:keywords ], + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 10 ; + sh:path dct:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 20 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:issue ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 15 ; - sh:path biolink:provided_by ], + sh:order 14 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:volume ], + sh:order 21 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 17 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:license ], + sh:minCount 1 ; + sh:order 18 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 21 ; - sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 23 ; sh:path dct:description ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path rdfs:label ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:authors ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:full_name ], + sh:order 22 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:order 5 ; sh:path biolink:pages ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 17 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 7 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:iso_abbreviation ], [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:format ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:has_attribute ], + sh:order 6 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:rights ], [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:published_in ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 8 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:license ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 19 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 10 ; - sh:path dct:type ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:order 2 ; + sh:path biolink:volume ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 18 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 16 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:creation_date ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 8 ; - sh:path biolink:mesh_terms ] ; + sh:order 13 ; + sh:path biolink:format ] ; sh:targetClass biolink:Article . biolink:Association a sh:NodeShape ; sh:closed true ; sh:description "A typed association between two entities, supported by evidence" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a point in time" ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -889,125 +920,101 @@ biolink:Association a sh:NodeShape ; [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ] ; + sh:path biolink:object_category_closure ] ; sh:targetClass biolink:Association . biolink:Bacterium a sh:NodeShape ; sh:closed true ; sh:description "A member of a group of unicellular microorganisms lacking a nuclear membrane, that reproduce by binary fission and are often motile." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; @@ -1018,208 +1025,169 @@ biolink:Bacterium a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ] ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:Bacterium . biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an mixture behavior and a behavioral feature manifested by the individual exhibited or has exhibited the behavior." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; + sh:property [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:negated ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:BehavioralFeature ; - sh:description "behavioral feature that is the object of the association" ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:Behavior ; - sh:description "behavior that is the subject of the association" ; + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:class biolink:BehavioralFeature ; + sh:description "behavioral feature that is the object of the association" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:description "a point in time" ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:order 31 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -1230,77 +1198,125 @@ biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Behavior ; + sh:description "behavior that is the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + sh:order 3 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ] ; + sh:order 36 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ] ; sh:targetClass biolink:BehaviorToBehavioralFeatureAssociation . biolink:BehavioralExposure a sh:NodeShape ; sh:closed true ; sh:description "A behavioral exposure is a factor relating to behavior impacting an individual." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -1308,15 +1324,10 @@ biolink:BehavioralExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; @@ -1326,35 +1337,24 @@ biolink:BehavioralExposure a sh:NodeShape ; sh:order 8 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ] ; + sh:order 5 ; + sh:path biolink:iri ] ; sh:targetClass biolink:BehavioralExposure . biolink:BehavioralOutcome a sh:NodeShape ; @@ -1366,71 +1366,75 @@ biolink:BehavioralOutcome a sh:NodeShape ; biolink:BiologicalEntity a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ] ; + sh:order 1 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:BiologicalEntity . biolink:BiologicalProcessOrActivity a sh:NodeShape ; sh:closed true ; sh:description "Either an individual molecular activity, or a collection of causally connected molecular activities in a biological system." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], [ sh:class biolink:PhysicalEntity ; @@ -1438,247 +1442,243 @@ biolink:BiologicalProcessOrActivity a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:enabled_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_input ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], + sh:order 13 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], + sh:order 14 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 3 ; sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_output ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ] ; sh:targetClass biolink:BiologicalProcessOrActivity . biolink:BioticExposure a sh:NodeShape ; sh:closed true ; sh:description "An external biotic exposure is an intake of (sometimes pathological) biological organisms (including viruses)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 1 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ] ; + sh:path rdfs:label ] ; sh:targetClass biolink:BioticExposure . biolink:Book a sh:NodeShape ; sh:closed true ; sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 7 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; - sh:order 16 ; - sh:path biolink:category ], + sh:order 6 ; + sh:path dct:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], [ sh:description "mesh terms tagging a publication" ; sh:order 4 ; sh:path biolink:mesh_terms ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:summary ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path dct:description ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:format ], + sh:order 10 ; + sh:path biolink:creation_date ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "Should generally be set to an ontology class defined term for 'book'." ; + sh:order 17 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "Books should have industry-standard identifier such as from ISBN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 14 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:rights ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 6 ; - sh:path dct:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path biolink:format ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:string ; - sh:description "Should generally be set to an ontology class defined term for 'book'." ; - sh:order 17 ; - sh:path rdf:type ], + sh:order 15 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:creation_date ] ; + sh:order 18 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Book . biolink:BookChapter a sh:NodeShape ; @@ -1688,127 +1688,127 @@ biolink:BookChapter a sh:NodeShape ; sh:maxCount 1 ; sh:order 21 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 4 ; - sh:path biolink:pages ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 17 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:summary ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 6 ; - sh:path biolink:keywords ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 18 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:format ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 19 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:rights ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 22 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:license ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 14 ; sh:path biolink:provided_by ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:authors ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 9 ; + sh:path dct:type ], + [ sh:datatype xsd:string ; + sh:description "chapter of a book" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:chapter ], [ sh:datatype xsd:string ; sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:volume ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:full_name ], + sh:order 12 ; + sh:path biolink:format ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:authors ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 20 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; + [ sh:description "mesh terms tagging a publication" ; + sh:order 7 ; + sh:path biolink:mesh_terms ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:license ], + sh:order 15 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 19 ; + sh:path biolink:category ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 9 ; - sh:path dct:type ], + sh:order 17 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 6 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; - sh:description "chapter of a book" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:chapter ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 7 ; - sh:path biolink:mesh_terms ], + sh:order 11 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 4 ; + sh:path biolink:pages ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 16 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:order 20 ; + sh:path rdf:type ], [ sh:description "The enclosing parent book containing the chapter should have industry-standard identifier from ISBN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; - sh:path biolink:published_in ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 16 ; - sh:path biolink:synonym ] ; + sh:path biolink:published_in ] ; sh:targetClass biolink:BookChapter . biolink:CaseToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An abstract association for use where the case is the subject" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:Case ; sh:description "the case (e.g. patient) that has the property" ; sh:maxCount 1 ; @@ -1822,102 +1822,112 @@ biolink:CaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a case (e.g. individual patient) and a phenotypic feature in which the individual has or has had the phenotype." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:order 44 ; sh:path biolink:frequency_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:Case ; - sh:description "the case (e.g. patient) that has the property" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:double ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:object_label_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_quotient ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -1925,154 +1935,121 @@ biolink:CaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], + sh:order 7 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 26 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 31 ; + sh:path rdfs:label ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 36 ; sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], - [ sh:description "a point in time" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ] ; - sh:targetClass biolink:CaseToPhenotypicFeatureAssociation . - -biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:order 17 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 30 ; - sh:path biolink:iri ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path rdf:type ], + [ sh:class biolink:Case ; + sh:description "the case (e.g. patient) that has the property" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:order 0 ; + sh:path rdf:subject ] ; + sh:targetClass biolink:CaseToPhenotypicFeatureAssociation . + +biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -2080,189 +2057,212 @@ biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is shown to cause the disease." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 37 ; sh:path biolink:has_count ], [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 40 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], + sh:order 38 ; + sh:path biolink:has_total ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_quotient ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:order 34 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is shown to cause the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ] ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ] ; sh:targetClass biolink:CausalGeneToDiseaseAssociation . biolink:Cell a sh:NodeShape ; @@ -2277,154 +2277,155 @@ biolink:Cell a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ] ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Cell . biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:order 39 ; sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:subject_direction_qualifier ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 38 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:CellLine ; + sh:description "A cell line derived from an organismal entity with a disease state that is used as a model of that disease." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -2435,138 +2436,114 @@ biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:CellLine ; - sh:description "A cell line derived from an organismal entity with a disease state that is used as a model of that disease." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:qualified_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ] ; + sh:order 31 ; + sh:path dct:description ] ; sh:targetClass biolink:CellLineAsAModelOfDiseaseAssociation . biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -2578,134 +2555,152 @@ biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ] ; + sh:order 11 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . biolink:CellLineToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An relationship between a cell line and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:CellLine ; + sh:property [ sh:class biolink:CellLine ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -2718,36 +2713,38 @@ biolink:CellLineToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ] ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:CellLineToEntityAssociationMixin . biolink:CellularOrganism a sh:NodeShape ; sh:closed true ; sh:description "" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], @@ -2756,124 +2753,112 @@ biolink:CellularOrganism a sh:NodeShape ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ] ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ] ; sh:targetClass biolink:CellularOrganism . biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:original_predicate ], + sh:order 26 ; + sh:path biolink:timepoint ], [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 19 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 41 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 31 ; - sh:path biolink:object_category ], + sh:order 36 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 25 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:knowledge_source ], + sh:order 46 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_namespace ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:order 24 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path biolink:object_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_part_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 39 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:AnatomicalEntity ; + sh:order 12 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:object_context_qualifier ], + sh:order 47 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 32 ; + sh:path biolink:subject_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 44 ; - sh:path rdf:type ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:causal_mechanism_qualifier ], [ sh:class biolink:ChemicalEntity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -2881,64 +2866,57 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path rdf:subject ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], + sh:order 5 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:original_subject ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:negated ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 40 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 25 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; - sh:in ( "metabolite" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 32 ; - sh:path biolink:subject_closure ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:in ( "metabolite" ) ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:primary_knowledge_source ], + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 35 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:subject_context_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 47 ; - sh:path biolink:has_attribute ], + sh:order 34 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -2946,204 +2924,233 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 17 ; sh:path rdf:object ], - [ sh:class biolink:OrganismTaxon ; - sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:species_context_qualifier ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:timepoint ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:object_form_or_variant_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 38 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:qualified_predicate ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:object_aspect_qualifier ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 16 ; sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 46 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 33 ; - sh:path biolink:object_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 43 ; - sh:path biolink:category ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 42 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 39 ; + sh:path biolink:object_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 45 ; + sh:path rdfs:label ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:object_part_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 31 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 29 ; sh:path biolink:original_object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:publications ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 43 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 48 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 45 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 41 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 44 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 38 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:qualifiers ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:species_context_qualifier ], [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:anatomical_context_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 9 ; + sh:path biolink:object_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 48 ; - sh:path biolink:deprecated ] ; + sh:order 23 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:AnatomicalEntity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:subject_context_qualifier ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:publications ] ; sh:targetClass biolink:ChemicalAffectsGeneAssociation . biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 31 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; @@ -3152,36 +3159,16 @@ biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:ChemicalEntity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -3189,16 +3176,29 @@ biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ] ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ] ; sh:targetClass biolink:ChemicalEntityAssessesNamedThingAssociation . biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape ; @@ -3206,143 +3206,152 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:description "A regulatory relationship between two genes" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:description "a point in time" ; sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:description "the direction is always from regulator to regulated" ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 32 ; sh:path dct:description ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 29 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 26 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:description "the direction is always from regulator to regulated" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -3350,30 +3359,21 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ] ; + sh:order 28 ; + sh:path biolink:iri ] ; sh:targetClass biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . biolink:ChemicalEntityOrProteinOrPolypeptide a sh:NodeShape ; @@ -3411,170 +3411,203 @@ biolink:ChemicalExposure a sh:NodeShape ; sh:closed true ; sh:description "A chemical exposure is an intake of a particular chemical entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:property [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_attribute_type ], + sh:order 1 ; + sh:path biolink:timepoint ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 10 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], - [ sh:description "a point in time" ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:timepoint ], + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path biolink:has_quantitative_value ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_attribute_type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path biolink:has_quantitative_value ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ] ; sh:targetClass biolink:ChemicalExposure . biolink:ChemicalGeneInteractionAssociation a sh:NodeShape ; sh:closed true ; sh:description "describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; - sh:in ( "metabolite" ) ; + sh:property [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], + sh:order 4 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 40 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_evidence ], + sh:minCount 1 ; + sh:order 34 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:subject_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 36 ; + sh:path biolink:category ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:order 7 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 9 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path rdf:subject ], + sh:order 24 ; + sh:path biolink:object_category ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_closure ], + [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:object_context_qualifier ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:negated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:order 15 ; + sh:path biolink:has_evidence ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_form_or_variant_qualifier ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:object_part_qualifier ], - [ sh:class biolink:AnatomicalEntity ; + sh:order 30 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:subject_context_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 29 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 18 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:in ( "metabolite" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category ], + sh:order 13 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 34 ; - sh:path biolink:id ], + sh:order 22 ; + sh:path biolink:original_object ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -3582,117 +3615,84 @@ biolink:ChemicalGeneInteractionAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 10 ; sh:path rdf:object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 36 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:qualifier ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:subject_context_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:subject_category_closure ], + sh:order 23 ; + sh:path biolink:subject_category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:knowledge_source ], + sh:order 17 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:timepoint ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 16 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path rdf:subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 20 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 32 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 31 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:has_attribute ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:order 28 ; + sh:path biolink:object_category_closure ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], + sh:order 5 ; + sh:path biolink:object_part_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 37 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 18 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:negated ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:anatomical_context_qualifier ], - [ sh:class biolink:AnatomicalEntity ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:object_context_qualifier ] ; + sh:path rdf:type ] ; sh:targetClass biolink:ChemicalGeneInteractionAssociation . biolink:ChemicalMixture a sh:NodeShape ; @@ -3700,97 +3700,97 @@ biolink:ChemicalMixture a sh:NodeShape ; sh:description "A chemical mixture is a chemical entity composed of two or more molecular entities." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_chemical_role ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 15 ; sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:max_tolerated_dose ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], + sh:order 20 ; + sh:path biolink:deprecated ], [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; sh:order 3 ; sh:path biolink:routes_of_delivery ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:order 16 ; sh:path rdf:type ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:trade_name ], + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:is_toxic ], - [ sh:datatype xsd:string ; - sh:description "" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_supplement ] ; + sh:order 18 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:iri ] ; sh:targetClass biolink:ChemicalMixture . biolink:ChemicalOrDrugOrTreatment a sh:NodeShape ; @@ -3802,398 +3802,468 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation sh:closed true ; sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:property [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:order 17 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:description "" ; sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:FDA_adverse_event_level ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:order 32 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:path biolink:object_closure ] ; + sh:targetClass biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . + +biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary undesirable effect." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "" ; + sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 0 ; + sh:path biolink:FDA_adverse_event_level ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:order 32 ; + sh:path dct:description ], [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; - sh:order 0 ; + sh:order 1 ; sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 31 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . - -biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary undesirable effect." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:order 34 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:description "" ; - sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ] ; + sh:targetClass biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . + +biolink:ChemicalToChemicalAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "A relationship between two chemical entities. This can encompass actual interactions as well as temporal causal edges, e.g. one chemical converted to another." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:FDA_adverse_event_level ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ] ; - sh:targetClass biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . - -biolink:ChemicalToChemicalAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A relationship between two chemical entities. This can encompass actual interactions as well as temporal causal edges, e.g. one chemical converted to another." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical element that is the target of the statement" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; @@ -4204,293 +4274,223 @@ biolink:ChemicalToChemicalAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:ChemicalToChemicalAssociation . + +biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 catalyst qualifier P" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical element that is the target of the statement" ; + sh:description "the upstream chemical entity" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 4 ; + sh:order 5 ; sh:path biolink:qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ] ; - sh:targetClass biolink:ChemicalToChemicalAssociation . - -biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 catalyst qualifier P" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:ChemicalEntity ; - sh:description "the upstream chemical entity" ; + sh:description "the downstream chemical entity" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], + sh:order 3 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:negated ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:order 7 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 31 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the downstream chemical entity" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 2 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "this connects the derivation edge to the chemical entity that catalyzes the reaction that causes the subject chemical to transform into the object chemical." ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path biolink:catalyst_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "this connects the derivation edge to the chemical entity that catalyzes the reaction that causes the subject chemical to transform into the object chemical." ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path biolink:catalyst_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ] ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:ChemicalToChemicalDerivationAssociation . biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; @@ -4498,158 +4498,116 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:description "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "the disease or phenotype that is affected by the chemical" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a human-readable description of an entity" ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; @@ -4658,29 +4616,71 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ] ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "the disease or phenotype that is affected by the chemical" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ] ; sh:targetClass biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . biolink:ChemicalToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An interaction between a chemical entity and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -4693,134 +4693,126 @@ biolink:ChemicalToPathwayAssociation a sh:NodeShape ; sh:description "An interaction between a chemical entity and a biological process or pathway." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical entity that is affecting the pathway" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; @@ -4832,48 +4824,91 @@ biolink:ChemicalToPathwayAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical entity that is affecting the pathway" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ] ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ] ; sh:targetClass biolink:ChemicalToPathwayAssociation . biolink:ChiSquaredAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a chi squared analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; @@ -4888,204 +4923,190 @@ biolink:ChiSquaredAnalysisResult a sh:NodeShape ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ] ; + sh:order 15 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:ChiSquaredAnalysisResult . biolink:ClinicalCourse a sh:NodeShape ; sh:closed true ; sh:description "The course a disease typically takes from its onset, progression in time, and eventual resolution or death of the affected individual" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; + sh:property [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; - sh:path biolink:has_qualitative_value ] ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:ClinicalCourse . biolink:ClinicalEntity a sh:NodeShape ; sh:closed true ; sh:description "Any entity or process that exists in the clinical domain and outside the biological realm. Diseases are placed under biological entities" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:property [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ] ; + sh:order 2 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:ClinicalEntity . biolink:ClinicalFinding a sh:NodeShape ; sh:closed true ; sh:description "this category is currently considered broad enough to tag clinical lab measurements and other biological attributes taken as 'clinical traits' with some statistical score, for example, a p value in genetic associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:class biolink:ClinicalAttribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; @@ -5095,98 +5116,102 @@ biolink:ClinicalFinding a sh:NodeShape ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; - sh:path biolink:category ], - [ sh:class biolink:ClinicalAttribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; + sh:path biolink:category ] ; sh:targetClass biolink:ClinicalFinding . biolink:ClinicalIntervention a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ] ; sh:targetClass biolink:ClinicalIntervention . biolink:ClinicalMeasurement a sh:NodeShape ; sh:closed true ; sh:description "A clinical measurement is a special kind of attribute which results from a laboratory observation from a subject individual or sample. Measurements can be connected to their subject by the 'has attribute' slot." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; @@ -5198,19 +5223,10 @@ biolink:ClinicalMeasurement a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -5221,39 +5237,27 @@ biolink:ClinicalMeasurement a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ] ; + sh:path biolink:has_qualitative_value ] ; sh:targetClass biolink:ClinicalMeasurement . biolink:ClinicalModifier a sh:NodeShape ; sh:closed true ; sh:description "Used to characterize and specify the phenotypic abnormalities defined in the phenotypic abnormality sub-ontology, with respect to severity, laterality, and other aspects" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -5266,148 +5270,124 @@ biolink:ClinicalModifier a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ] ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:ClinicalModifier . biolink:ClinicalTrial a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ] ; - sh:targetClass biolink:ClinicalTrial . - -biolink:CodingSequence a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 8 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; + sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 9 ; + sh:order 6 ; sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ] ; + sh:targetClass biolink:ClinicalTrial . + +biolink:CodingSequence a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 6 ; sh:path biolink:synonym ], @@ -5415,54 +5395,83 @@ biolink:CodingSequence a sh:NodeShape ; sh:maxCount 1 ; sh:order 11 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:has_biological_sequence ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 4 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:CodingSequence . biolink:Cohort a sh:NodeShape ; sh:closed true ; sh:description "A group of people banded together or treated as a group who share common characteristics. A cohort 'study' is a particular form of longitudinal study that samples a cohort, performing a cross-section at intervals through time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -5474,46 +5483,53 @@ biolink:Cohort a sh:NodeShape ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ] ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:Cohort . biolink:CommonDataElement a sh:NodeShape ; sh:closed true ; sh:description "A Common Data Element (CDE) is a standardized, precisely defined question, paired with a set of allowable responses, used systematically across different sites, studies, or clinical trials to ensure consistent data collection. Multiple CDEs (from one or more Collections) can be curated into Forms. (https://cde.nlm.nih.gov/home)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -5523,16 +5539,11 @@ biolink:CommonDataElement a sh:NodeShape ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -5541,38 +5552,27 @@ biolink:CommonDataElement a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; @@ -5583,171 +5583,171 @@ biolink:ComplexChemicalExposure a sh:NodeShape ; sh:closed true ; sh:description "A complex chemical exposure is an intake of a chemical mixture (e.g. gasoline), other than a drug." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:order 5 ; + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], + sh:order 10 ; + sh:path biolink:category ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ] ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:ComplexChemicalExposure . biolink:ComplexMolecularMixture a sh:NodeShape ; sh:closed true ; sh:description "A complex molecular mixture is a chemical mixture composed of two or more molecular entities with unknown concentration and stoichiometry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], + sh:order 18 ; + sh:path dct:description ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:trade_name ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 5 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:path biolink:available_from ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], + sh:order 14 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:is_toxic ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], + sh:description "" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:max_tolerated_dose ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ] ; + sh:order 20 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:ComplexMolecularMixture . biolink:ConceptCountAnalysisResult a sh:NodeShape ; @@ -5756,84 +5756,58 @@ biolink:ConceptCountAnalysisResult a sh:NodeShape ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 13 ; + sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:order 11 ; - sh:path rdf:type ] ; - sh:targetClass biolink:ConceptCountAnalysisResult . - -biolink:ConfidenceLevel a sh:NodeShape ; - sh:closed true ; - sh:description "Level of confidence in a statement" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:path rdf:type ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -5842,324 +5816,334 @@ biolink:ConfidenceLevel a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ] ; + sh:targetClass biolink:ConceptCountAnalysisResult . + +biolink:ConfidenceLevel a sh:NodeShape ; + sh:closed true ; + sh:description "Level of confidence in a statement" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "a human-readable description of an entity" ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ] ; + sh:order 12 ; + sh:path rdfs:label ] ; sh:targetClass biolink:ConfidenceLevel . biolink:ContributorAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between an entity (such as a publication) and various agents that contribute to its realisation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:property [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], + [ sh:class biolink:Agent ; + sh:description "agent helping to realise the given entity (e.g. such as a publication)" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:description "generally one of the predicate values 'provider', 'publisher', 'editor' or 'author'" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "this field can be used to annotate special characteristics of an agent relationship, such as the fact that a given author agent of a publication is the 'corresponding author'" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:InformationContentEntity ; - sh:description "information content entity which an agent has helped realise" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "this field can be used to annotate special characteristics of an agent relationship, such as the fact that a given author agent of a publication is the 'corresponding author'" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:Agent ; - sh:description "agent helping to realise the given entity (e.g. such as a publication)" ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:InformationContentEntity ; + sh:description "information content entity which an agent has helped realise" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ] ; + sh:order 21 ; + sh:path biolink:subject_namespace ] ; sh:targetClass biolink:ContributorAssociation . biolink:CorrelatedGeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], + sh:order 17 ; + sh:path biolink:original_object ], [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:order 39 ; sh:path biolink:has_quotient ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 21 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; @@ -6172,14 +6156,18 @@ biolink:CorrelatedGeneToDiseaseAssociation a sh:NodeShape ; sh:order 22 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "gene in which variation is shown to correlate with the disease." ; sh:maxCount 1 ; @@ -6187,241 +6175,226 @@ biolink:CorrelatedGeneToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], + sh:order 34 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:object_direction_qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 40 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ] ; + sh:order 38 ; + sh:path biolink:has_total ] ; sh:targetClass biolink:CorrelatedGeneToDiseaseAssociation . biolink:DatasetSummary a sh:NodeShape ; sh:closed true ; sh:description "an item that holds summary level information about a dataset." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:creation_date ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:has_attribute ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:source_web_page ], + sh:order 1 ; + sh:path schema1:logo ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:license ], + sh:order 0 ; + sh:path biolink:source_web_page ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 17 ; sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 1 ; - sh:path schema1:logo ], + sh:order 2 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:creation_date ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:format ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 10 ; - sh:path biolink:id ] ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ] ; sh:targetClass biolink:DatasetSummary . biolink:DatasetVersion a sh:NodeShape ; sh:closed true ; sh:description "an item that holds version level information about a dataset." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:category ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 15 ; sh:path rdfs:label ], - [ sh:class biolink:Dataset ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_dataset ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:ingest_date ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:license ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 14 ; - sh:path rdf:type ], + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:rights ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], @@ -6434,155 +6407,182 @@ biolink:DatasetVersion a sh:NodeShape ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:deprecated ], [ sh:class biolink:DatasetDistribution ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path dct:distribution ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:ingest_date ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:category ], + [ sh:class biolink:Dataset ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_dataset ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 16 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], + sh:order 14 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:rights ] ; + sh:order 5 ; + sh:path biolink:format ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:iri ] ; sh:targetClass biolink:DatasetVersion . biolink:DiagnosticAid a sh:NodeShape ; sh:closed true ; sh:description "A device or substance used to help diagnose disease or injury" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ] ; + sh:path rdfs:label ] ; sh:targetClass biolink:DiagnosticAid . biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; sh:closed true ; sh:description "A disease or phenotypic feature state, when viewed as an exposure, represents an precondition, leading to or influencing an outcome, e.g. HIV predisposing an individual to infections; a relative deficiency of skin pigmentation predisposing an individual to skin cancer." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ] ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureExposure . biolink:DiseaseOrPhenotypicFeatureOutcome a sh:NodeShape ; @@ -6594,13 +6594,11 @@ biolink:DiseaseOrPhenotypicFeatureOutcome a sh:NodeShape ; biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -6608,457 +6606,342 @@ biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between either a disease or a phenotypic feature and its mode of (genetic) inheritance." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:GeneticInheritance ; - sh:description "genetic inheritance associated with the specified disease or phenotypic feature." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ] ; - sh:targetClass biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . - -biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:RetrievalSource ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + [ sh:class biolink:GeneticInheritance ; + sh:description "genetic inheritance associated with the specified disease or phenotypic feature." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "a point in time" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ] ; + sh:targetClass biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . + +biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "anatomical entity in which the disease or feature is found." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ] ; - sh:targetClass biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . - -biolink:DiseaseToEntityAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Disease ; - sh:description "disease class" ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ] ; - sh:targetClass biolink:DiseaseToEntityAssociationMixin . - -biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between an exposure event and a disease." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:Disease ; - sh:description "disease class" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "anatomical entity in which the disease or feature is found." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -7069,192 +6952,216 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:ExposureEvent ; + sh:path biolink:original_object ] ; + sh:targetClass biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . + +biolink:DiseaseToEntityAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Disease ; + sh:description "disease class" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; + sh:targetClass biolink:DiseaseToEntityAssociationMixin . + +biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between an exposure event and a disease." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "a human-readable description of an entity" ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:ExposureEvent ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ] ; - sh:targetClass biolink:DiseaseToExposureEventAssociation . - -biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a disease and a phenotypic feature in which the phenotypic feature is associated with the disease in some way." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:publications ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 31 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 26 ; + sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Disease ; + sh:description "disease class" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_source ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; + sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:has_percentage ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path rdfs:label ], - [ sh:datatype xsd:double ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_quotient ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:description "a human-readable description of an entity" ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ] ; + sh:targetClass biolink:DiseaseToExposureEventAssociation . + +biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a disease and a phenotypic feature in which the phenotypic feature is associated with the disease in some way." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 36 ; sh:path dct:description ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:qualifiers ], + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -7262,168 +7169,257 @@ biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:Disease ; + sh:description "disease class" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 4 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:deprecated ], + sh:order 17 ; + sh:path biolink:original_subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 30 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:has_count ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 33 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 29 ; - sh:path biolink:object_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 34 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 22 ; sh:path biolink:subject_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:Disease ; - sh:description "disease class" ; + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:subject ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:sex_qualifier ], + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path biolink:iri ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path rdf:predicate ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:negated ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:original_object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_total ], + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ] ; + sh:order 10 ; + sh:path biolink:qualifiers ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 33 ; + sh:path biolink:category ] ; sh:targetClass biolink:DiseaseToPhenotypicFeatureAssociation . biolink:DrugExposure a sh:NodeShape ; sh:closed true ; sh:description "A drug exposure is an intake of a particular drug." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 1 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -7431,134 +7427,136 @@ biolink:DrugExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_attribute_type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 1 ; - sh:path biolink:has_quantitative_value ] ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:DrugExposure . biolink:DrugLabel a sh:NodeShape ; sh:closed true ; sh:description "a document accompanying a drug or its container that provides written, printed or graphic information about the drug, including drug contents, specific instructions or warnings for administration, storage and disposal instructions, etc." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:order 19 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; - sh:path dct:type ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:format ], + sh:order 16 ; + sh:path biolink:category ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; + sh:order 17 ; + sh:path rdf:type ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:rights ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], + sh:order 18 ; + sh:path rdfs:label ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 11 ; sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:license ], - [ sh:description "a long-form human readable name for a thing" ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], + sh:order 15 ; + sh:path biolink:iri ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:summary ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 16 ; - sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 8 ; + sh:path biolink:rights ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:creation_date ], + sh:order 7 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:order 17 ; - sh:path rdf:type ] ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:DrugLabel . biolink:DrugToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An interaction between a drug and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:Drug ; sh:description "the drug that is an interactor" ; sh:maxCount 1 ; @@ -7566,11 +7564,13 @@ biolink:DrugToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:DrugToEntityAssociationMixin . biolink:DrugToGeneAssociation a sh:NodeShape ; @@ -7578,200 +7578,217 @@ biolink:DrugToGeneAssociation a sh:NodeShape ; sh:description "An interaction between a drug and a gene or gene product." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the gene or gene product that is affected by the drug" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "a point in time" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Drug ; - sh:description "the drug that is an interactor" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; - sh:path biolink:object_category ] ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Drug ; + sh:description "the drug that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the gene or gene product that is affected by the drug" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:DrugToGeneAssociation . biolink:DrugToGeneInteractionExposure a sh:NodeShape ; sh:closed true ; sh:description "drug to gene interaction exposure is a drug exposure is where the interactions of the drug with specific genes are known to constitute an 'exposure' to the organism, leading to or influencing an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:full_name ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ], + sh:order 14 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 11 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 8 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 11 ; - sh:path biolink:synonym ], + sh:order 6 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -7779,242 +7796,225 @@ biolink:DrugToGeneInteractionExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_attribute_type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 8 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 9 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path rdf:type ], [ sh:class biolink:Gene ; sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_gene_or_gene_product ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ] ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path rdfs:label ] ; sh:targetClass biolink:DrugToGeneInteractionExposure . biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:object_direction_qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 38 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:has_percentage ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 17 ; sh:path biolink:original_object ], + [ sh:description "connects an association to an instance of supporting evidence" ; + sh:in ( "tclin" "tbio" "tchem" "tdark" ) ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 20 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], + sh:order 5 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 30 ; sh:path biolink:iri ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -8023,43 +8023,35 @@ biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:description "connects an association to an instance of supporting evidence" ; - sh:in ( "tclin" "tbio" "tchem" "tdark" ) ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ] ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ] ; sh:targetClass biolink:DruggableGeneToDiseaseAssociation . biolink:Entity a sh:NodeShape ; sh:closed false ; sh:description "Root Biolink Model class for all things and informational relationships, real or imagined." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 6 ; @@ -8069,6 +8061,16 @@ biolink:Entity a sh:NodeShape ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 1 ; @@ -8076,144 +8078,74 @@ biolink:Entity a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 3 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 2 ; - sh:path biolink:category ] ; + sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Entity . biolink:EntityToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 30 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:deprecated ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:max_research_phase ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], + sh:order 6 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 34 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 28 ; - sh:path biolink:id ], + sh:order 5 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:object_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 30 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8221,6 +8153,10 @@ biolink:EntityToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 33 ; @@ -8230,28 +8166,89 @@ biolink:EntityToDiseaseAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "" ; + sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 0 ; + sh:path biolink:clinical_approval_status ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 28 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 29 ; sh:path biolink:iri ], - [ sh:description "" ; - sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:clinical_approval_status ], + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:max_research_phase ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -8259,26 +8256,33 @@ biolink:EntityToDiseaseAssociation a sh:NodeShape ; sh:order 18 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ] ; + sh:order 32 ; + sh:path rdfs:label ] ; sh:targetClass biolink:EntityToDiseaseAssociation . biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "mixin class for any association whose object (target node) is a disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:minCount 1 ; + sh:order 7 ; + sh:path rdf:predicate ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 5 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:object_direction_qualifier ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8286,25 +8290,16 @@ biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path rdf:subject ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualified_predicate ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:frequency_qualifier ], + sh:order 1 ; + sh:path biolink:subject_direction_qualifier ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -8312,11 +8307,16 @@ biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path rdf:object ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:object_direction_qualifier ] ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:object_aspect_qualifier ] ; sh:targetClass biolink:EntityToDiseaseAssociationMixin . biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin a sh:NodeShape ; @@ -8329,18 +8329,18 @@ biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:path rdf:subject ] ; sh:targetClass biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . biolink:EntityToExposureEventAssociationMixin a sh:NodeShape ; @@ -8354,29 +8354,28 @@ biolink:EntityToExposureEventAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ] ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:EntityToExposureEventAssociationMixin . biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; sh:closed false ; sh:description "Qualifiers for entity to disease or phenotype associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:property [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:object_direction_qualifier ], + sh:order 5 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8384,23 +8383,16 @@ biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualified_predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; @@ -8411,15 +8403,23 @@ biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path rdf:predicate ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 3 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:frequency_qualifier ] ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path rdf:object ] ; sh:targetClass biolink:EntityToFeatureOrDiseaseQualifiersMixin . biolink:EntityToOutcomeAssociationMixin a sh:NodeShape ; @@ -8450,11 +8450,17 @@ biolink:EntityToOutcomeAssociationMixin a sh:NodeShape ; biolink:EntityToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path rdf:subject ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:timepoint ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8467,362 +8473,356 @@ biolink:EntityToPhenotypicFeatureAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:negated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:iri ], + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:knowledge_source ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:object_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 30 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "" ; + sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 0 ; + sh:path biolink:clinical_approval_status ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], + sh:order 32 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 29 ; + sh:path biolink:iri ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:object_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 34 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:description "" ; - sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:clinical_approval_status ], - [ sh:description "a human-readable description of an entity" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 6 ; + sh:path biolink:qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:max_research_phase ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 28 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 30 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 18 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ] ; + sh:order 10 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:EntityToPhenotypicFeatureAssociation . biolink:EntityToPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:BiologicalSex ; + sh:property [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:sex_qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:order 7 ; + sh:path biolink:has_percentage ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:object_direction_qualifier ], + sh:order 9 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:qualified_predicate ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 6 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:has_total ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 10 ; - sh:path biolink:object_aspect_qualifier ] ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:object_direction_qualifier ] ; sh:targetClass biolink:EntityToPhenotypicFeatureAssociationMixin . biolink:EnvironmentalExposure a sh:NodeShape ; sh:closed true ; sh:description "A environmental exposure is a factor relating to abiotic processes in the environment including sunlight (UV-B), atmospheric (heat, cold, general pollution) and water-born contaminants." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:QuantityValue ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:EnvironmentalExposure . biolink:EnvironmentalFeature a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -8837,120 +8837,118 @@ biolink:EnvironmentalFeature a sh:NodeShape ; biolink:EnvironmentalFoodContaminant a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], + sh:order 9 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:trade_name ], + sh:order 2 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:is_toxic ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 1 ; + sh:path biolink:available_from ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:max_tolerated_dose ], + sh:order 0 ; + sh:path biolink:trade_name ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_chemical_role ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 6 ; sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:id ] ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:EnvironmentalFoodContaminant . biolink:EnvironmentalProcess a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], @@ -8958,12 +8956,14 @@ biolink:EnvironmentalProcess a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ] ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ] ; sh:targetClass biolink:EnvironmentalProcess . biolink:EpidemiologicalOutcome a sh:NodeShape ; @@ -8985,157 +8985,94 @@ biolink:Event a sh:NodeShape ; sh:closed true ; sh:description "Something that happens at a given place and time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ] ; + sh:order 5 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Event . biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:closed true ; sh:description "A transcript is formed from multiple exons" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:Transcript ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Exon ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -9143,247 +9080,310 @@ biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "a point in time" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Transcript ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ] ; sh:targetClass biolink:ExonToTranscriptRelationship . biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an exposure event and an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 20 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 1 ; + sh:path biolink:temporal_context_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], + sh:order 34 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:knowledge_source ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:qualifiers ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 31 ; sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 35 ; + sh:path biolink:deprecated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], - [ sh:description "a point in time" ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:population_context_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], + sh:order 2 ; + sh:path rdf:subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 29 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:negated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 30 ; + sh:path biolink:category ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:has_evidence ], - [ sh:description "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:temporal_context_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 0 ; + sh:path biolink:population_context_qualifier ], + [ sh:class biolink:Outcome ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], + sh:nodeKind sh:BlankNode ; + sh:order 4 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 10 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 28 ; sh:path biolink:id ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:subject ], + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:Outcome ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 4 ; - sh:path rdf:object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 30 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 3 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ] ; + sh:order 23 ; + sh:path biolink:subject_namespace ] ; sh:targetClass biolink:ExposureEventToOutcomeAssociation . biolink:ExposureEventToPhenotypicFeatureAssociation a sh:NodeShape ; @@ -9394,238 +9394,231 @@ biolink:ExposureEventToPhenotypicFeatureAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 11 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a point in time" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], - [ sh:class biolink:ExposureEvent ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 30 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], + sh:order 3 ; + sh:path biolink:sex_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:ExposureEvent ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 27 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:negated ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:datatype xsd:double ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], + sh:order 32 ; + sh:path dct:description ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_percentage ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ] ; + sh:order 9 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:ExposureEventToPhenotypicFeatureAssociation . biolink:FeatureOrDiseaseQualifiersToEntityMixin a sh:NodeShape ; sh:closed false ; sh:description "Qualifiers for disease or phenotype to entity associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path rdf:predicate ], + sh:order 4 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -9633,75 +9626,61 @@ biolink:FeatureOrDiseaseQualifiersToEntityMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:object_aspect_qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:frequency_qualifier ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:object_direction_qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:frequency_qualifier ], + sh:minCount 1 ; + sh:order 7 ; + sh:path rdf:predicate ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:subject_direction_qualifier ] ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ] ; sh:targetClass biolink:FeatureOrDiseaseQualifiersToEntityMixin . biolink:Food a sh:NodeShape ; sh:closed true ; sh:description "A substance consumed by a living organism as a source of nutrition" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], + sh:order 17 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; @@ -9710,20 +9689,6 @@ biolink:Food a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 16 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 15 ; @@ -9733,14 +9698,59 @@ biolink:Food a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:is_toxic ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], + sh:order 20 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; @@ -9749,318 +9759,308 @@ biolink:Food a sh:NodeShape ; [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ] ; + sh:path biolink:full_name ] ; sh:targetClass biolink:Food . biolink:FoodAdditive a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:description "" ; + sh:property [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 1 ; sh:path biolink:available_from ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:boolean ; - sh:description "" ; + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:is_toxic ], + sh:order 2 ; + sh:path biolink:max_tolerated_dose ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + sh:order 14 ; + sh:path dct:description ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 13 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:trade_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], + sh:order 12 ; + sh:path rdf:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:is_toxic ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:id ] ; + sh:order 0 ; + sh:path biolink:trade_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ] ; sh:targetClass biolink:FoodAdditive . biolink:FrequencyQualifierMixin a sh:NodeShape ; sh:closed false ; sh:description "Qualifier for frequency type associations" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:subject ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ] ; + sh:order 3 ; + sh:path rdf:object ] ; sh:targetClass biolink:FrequencyQualifierMixin . biolink:FrequencyQuantifier a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:integer ; + sh:property [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:has_count ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:has_total ] ; + sh:path biolink:has_total ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:has_percentage ] ; sh:targetClass biolink:FrequencyQuantifier . biolink:FunctionalAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a macromolecular machine mixin (gene, gene product or complex of gene products) and either a molecular activity, a biological process or a cellular location in which a function is executed." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "class describing the activity, process or localization of the gene product" ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:FunctionalAssociation . biolink:Fungus a sh:NodeShape ; @@ -10070,98 +10070,133 @@ biolink:Fungus a sh:NodeShape ; sh:property [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 11 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:Fungus . biolink:GeneAffectsChemicalAssociation a sh:NodeShape ; sh:closed true ; sh:description "Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path rdf:object ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:order 4 ; + sh:path biolink:subject_context_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 39 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:publications ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_part_qualifier ], + sh:order 12 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 46 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:primary_knowledge_source ], + sh:order 37 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 42 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 28 ; sh:path biolink:original_subject ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 47 ; - sh:path dct:description ], + sh:order 47 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:species_context_qualifier ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path rdf:object ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:subject_direction_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -10169,87 +10204,116 @@ biolink:GeneAffectsChemicalAssociation a sh:NodeShape ; sh:order 32 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:subject_namespace ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 40 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:knowledge_source ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 34 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 39 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 31 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; + sh:in ( "metabolite" ) ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:negated ], + sh:order 11 ; + sh:path biolink:object_derivative_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:original_object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:original_predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 45 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 40 ; - sh:path biolink:object_label_closure ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:order 25 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 41 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:causal_mechanism_qualifier ], + sh:order 7 ; + sh:path biolink:object_part_qualifier ], [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:subject_context_qualifier ], - [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:object_namespace ], + sh:order 9 ; + sh:path biolink:object_context_qualifier ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 20 ; sh:path biolink:qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:has_evidence ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 44 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 48 ; + sh:path biolink:has_attribute ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:object_category_closure ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 17 ; sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 49 ; - sh:path biolink:deprecated ], + sh:order 24 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:iri ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -10257,177 +10321,121 @@ biolink:GeneAffectsChemicalAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 16 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 34 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:object_category_closure ], [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:object_context_qualifier ], - [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; - sh:in ( "metabolite" ) ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:object_derivative_qualifier ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 13 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 42 ; - sh:path biolink:id ], + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 35 ; sh:path biolink:subject_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:qualifiers ], [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:object_form_or_variant_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:publications ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 48 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 8 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 46 ; - sh:path rdfs:label ], + sh:order 49 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 26 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:qualified_predicate ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 45 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 33 ; sh:path biolink:subject_closure ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 44 ; - sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 41 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:anatomical_context_qualifier ], - [ sh:class biolink:OrganismTaxon ; - sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:species_context_qualifier ] ; + sh:order 29 ; + sh:path biolink:original_predicate ] ; sh:targetClass biolink:GeneAffectsChemicalAssociation . biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:class biolink:GeneOrGeneProduct ; + sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 31 ; sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:description "The relationship to the disease" ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_subject ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -10435,171 +10443,163 @@ biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:order 9 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 30 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 34 ; + sh:path dct:description ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], + sh:order 17 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:timepoint ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ] ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_total ] ; sh:targetClass biolink:GeneAsAModelOfDiseaseAssociation . biolink:GeneExpressionMixin a sh:NodeShape ; @@ -10618,18 +10618,18 @@ biolink:GeneExpressionMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:quantifier_qualifier ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:phenotypic_state ], [ sh:class biolink:AnatomicalEntity ; sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path biolink:expression_site ] ; + sh:path biolink:expression_site ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:phenotypic_state ] ; sh:targetClass biolink:GeneExpressionMixin . biolink:GeneGroupingMixin a sh:NodeShape ; @@ -10646,53 +10646,62 @@ biolink:GeneGroupingMixin a sh:NodeShape ; biolink:GeneHasVariantThatContributesToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:knowledge_source ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 45 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ], + sh:order 11 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 18 ; sh:path biolink:original_object ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:object_namespace ], + sh:order 17 ; + sh:path biolink:original_predicate ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 29 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], + sh:order 15 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; @@ -10704,201 +10713,201 @@ biolink:GeneHasVariantThatContributesToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_total ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_quotient ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:publications ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 30 ; + sh:path biolink:id ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 22 ; sh:path biolink:object_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 16 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 33 ; - sh:path rdf:type ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 25 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 26 ; + sh:path biolink:object_namespace ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 42 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:sex_qualifier ], - [ sh:description "a human-readable description of an entity" ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path dct:description ], + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 27 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_count ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 4 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 45 ; - sh:path biolink:frequency_qualifier ], + sh:order 39 ; + sh:path biolink:has_total ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 19 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_source ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 7 ; + sh:path biolink:negated ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:object_direction_qualifier ], + sh:order 38 ; + sh:path biolink:has_count ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 32 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 24 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 1 ; - sh:path rdf:subject ] ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ] ; sh:targetClass biolink:GeneHasVariantThatContributesToDiseaseAssociation . biolink:GeneProductIsoformMixin a sh:NodeShape ; sh:closed false ; sh:description "This is an abstract class that can be mixed in with different kinds of gene products to indicate that the gene product is intended to represent a specific isoform rather than a canonical or reference or generic product. The designation of canonical or reference may be arbitrary, or it may represent the superclass of all isoforms." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 2 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:GeneProductIsoformMixin . biolink:GeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 33 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model" ; sh:maxCount 1 ; @@ -10906,122 +10915,32 @@ biolink:GeneToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:order 30 ; + sh:path biolink:iri ], [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:order 39 ; sh:path biolink:has_quotient ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], + sh:order 35 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -11029,186 +10948,262 @@ biolink:GeneToDiseaseAssociation a sh:NodeShape ; sh:order 29 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 40 ; sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 17 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:sex_qualifier ] ; - sh:targetClass biolink:GeneToDiseaseAssociation . - -biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:order 37 ; + sh:path biolink:has_count ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 13 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ] ; + sh:targetClass biolink:GeneToDiseaseAssociation . + +biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 42 ; sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_total ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -11216,29 +11211,25 @@ biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; @@ -11249,101 +11240,103 @@ biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 33 ; sh:path rdfs:label ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the phenotypic feature" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 1 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:qualifiers ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the phenotypic feature" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 21 ; - sh:path biolink:object_closure ] ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ] ; sh:targetClass biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . biolink:GeneToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; @@ -11354,114 +11347,83 @@ biolink:GeneToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; sh:order 0 ; - sh:path rdf:subject ] ; + sh:path rdf:subject ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:GeneToEntityAssociationMixin . biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a gene and a gene expression site, possibly qualified by stage/timing info." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:order 29 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 28 ; - sh:path biolink:id ], + sh:order 32 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:publications ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:LifeStage ; + sh:description "stage at which the gene is expressed in the site" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:stage_qualifier ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_object ], + sh:order 35 ; + sh:path biolink:deprecated ], [ sh:description "expression relationship" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -11473,41 +11435,35 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:quantifier_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 30 ; - sh:path biolink:category ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "Gene or gene product positively within the specified anatomical entity (or subclass, i.e. cellular component) location." ; sh:maxCount 1 ; @@ -11515,6 +11471,55 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 28 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 30 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path dct:description ], [ sh:class biolink:AnatomicalEntity ; sh:description "location in which the gene is expressed" ; sh:maxCount 1 ; @@ -11522,178 +11527,154 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path rdf:object ], - [ sh:class biolink:LifeStage ; - sh:description "stage at which the gene is expressed in the site" ; - sh:maxCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:stage_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 34 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ] ; + sh:order 7 ; + sh:path biolink:qualifiers ] ; sh:targetClass biolink:GeneToExpressionSiteAssociation . biolink:GeneToGeneAssociation a sh:NodeShape ; sh:closed false ; sh:description "abstract parent class for different kinds of gene-gene or gene product to gene product relationships. Includes homology and interaction." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; @@ -11702,179 +11683,138 @@ biolink:GeneToGeneAssociation a sh:NodeShape ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ] ; - sh:targetClass biolink:GeneToGeneAssociation . - -biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Indicates that two genes are co-expressed, generally under the same conditions." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Optional quantitative value indicating degree of expression." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:quantifier_qualifier ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; - sh:order 6 ; - sh:path rdf:object ], - [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:stage_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 32 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; - sh:maxCount 1 ; + sh:path rdf:object ] ; + sh:targetClass biolink:GeneToGeneAssociation . + +biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Indicates that two genes are co-expressed, generally under the same conditions." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:phenotypic_state ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], + sh:order 36 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:subject_namespace ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 30 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:iri ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_object ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 6 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 24 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:expression_site ], + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 33 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:timepoint ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:qualifier ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; @@ -11882,147 +11822,129 @@ biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 4 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 23 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 33 ; - sh:path rdf:type ] ; - sh:targetClass biolink:GeneToGeneCoexpressionAssociation . - -biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:minCount 1 ; + sh:order 30 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 1 ; + sh:path biolink:expression_site ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 3 ; + sh:path biolink:phenotypic_state ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Optional quantitative value indicating degree of expression." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:quantifier_qualifier ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; + sh:order 10 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 14 ; - sh:path biolink:original_object ], + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:stage_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; + sh:order 26 ; sh:path biolink:object_namespace ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 9 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 13 ; + sh:path biolink:primary_knowledge_source ] ; + sh:targetClass biolink:GeneToGeneCoexpressionAssociation . + +biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:GeneFamily ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a point in time" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -12030,125 +11952,229 @@ biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; sh:order 16 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "membership of the gene in the given gene family." ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], + [ sh:class biolink:GeneFamily ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "membership of the gene in the given gene family." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ] ; + sh:order 5 ; + sh:path biolink:qualifiers ] ; sh:targetClass biolink:GeneToGeneFamilyAssociation . biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; sh:closed true ; sh:description "A homology association between two genes. May be orthology (in which case the species of subject and object should differ) or paralogy (in which case the species may be the same)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; @@ -12157,105 +12183,113 @@ biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "homology relationship type" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ] ; + sh:order 14 ; + sh:path biolink:original_object ] ; sh:targetClass biolink:GeneToGeneHomologyAssociation . biolink:GeneToGeneProductRelationship a sh:NodeShape ; sh:closed true ; sh:description "A gene is transcribed and potentially translated to a gene product" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:GeneProductMixin ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; @@ -12266,12 +12300,45 @@ biolink:GeneToGeneProductRelationship a sh:NodeShape ; sh:order 22 ; sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:Gene ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -12279,166 +12346,160 @@ biolink:GeneToGeneProductRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ] ; + sh:targetClass biolink:GeneToGeneProductRelationship . + +biolink:GeneToGoTermAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "a point in time" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:GeneProductMixin ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:class biolink:Gene ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ] ; - sh:targetClass biolink:GeneToGeneProductRelationship . - -biolink:GeneToGoTermAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; @@ -12448,34 +12509,13 @@ biolink:GeneToGoTermAssociation a sh:NodeShape ; sh:order 17 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; @@ -12483,237 +12523,169 @@ biolink:GeneToGoTermAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Gene ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ] ; + sh:order 3 ; + sh:path biolink:negated ] ; sh:targetClass biolink:GeneToGoTermAssociation . biolink:GeneToPathwayAssociation a sh:NodeShape ; sh:closed true ; sh:description "An interaction between a gene or gene product and a biological process or pathway." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:class biolink:Pathway ; - sh:description "the pathway that includes or is affected by the gene or gene product" ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the gene or gene product entity that participates or influences the pathway" ; sh:maxCount 1 ; @@ -12721,275 +12693,296 @@ biolink:GeneToPathwayAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ] ; - sh:targetClass biolink:GeneToPathwayAssociation . - -biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 32 ; - sh:path rdf:type ], + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; + sh:order 18 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:Pathway ; + sh:description "the pathway that includes or is affected by the gene or gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ] ; + sh:targetClass biolink:GeneToPathwayAssociation . + +biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the phenotypic feature" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 29 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 36 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 28 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:description "a human-readable description of an entity" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:order 39 ; + sh:path biolink:has_quotient ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:subject_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 23 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "a point in time" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 38 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], + sh:order 17 ; + sh:path biolink:original_object ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the phenotypic feature" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:double ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 40 ; sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ] ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ] ; sh:targetClass biolink:GeneToPhenotypicFeatureAssociation . biolink:Genome a sh:NodeShape ; sh:closed true ; sh:description "A genome is the sum of genetic material within a cell or virion." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 11 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 9 ; @@ -12997,30 +12990,22 @@ biolink:Genome a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 10 ; sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 0 ; @@ -13033,21 +13018,41 @@ biolink:Genome a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ] ; + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:Genome . biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:closed true ; sh:description "A genomic background exposure is where an individual's specific genomic background of genes, sequence variants or other pre-existing genomic conditions constitute a kind of 'exposure' to the organism, leading to or influencing an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_gene_or_gene_product ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 14 ; sh:path biolink:synonym ], [ sh:class biolink:NamedThing ; @@ -13056,20 +13061,19 @@ biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:has_qualitative_value ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 8 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:has_attribute ], + sh:order 3 ; + sh:path biolink:in_taxon ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -13077,65 +13081,61 @@ biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_attribute_type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path dct:description ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 8 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:in_taxon_label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 12 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:has_attribute ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path rdfs:label ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_gene_or_gene_product ], + sh:order 13 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 19 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ] ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:GenomicBackgroundExposure . biolink:GenomicEntity a sh:NodeShape ; @@ -13152,89 +13152,46 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:description "A relationship between a sequence feature and a nucleic acid entity it is localized to. The reference entity may be a chromosome, chromosome region or information entity such as a contig." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:description "The phase for a coding sequence entity. For example, phase of a CDS as represented in a GFF3 with a value of 0, 1 or 2." ; - sh:in ( "0" "1" "2" ) ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:phase ], + sh:order 24 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], - [ sh:description "The version of the genome on which a feature is located. For example, GRCh38 for Homo sapiens." ; - sh:in ( "+" "-" "." "?" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:genome_build ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path rdf:object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:subject_namespace ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], [ sh:description "The strand on which a feature is located. Has a value of '+' (sense strand or forward strand) or '-' (anti-sense strand or reverse strand)." ; sh:in ( "+" "-" "." "?" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:strand ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], + sh:minCount 1 ; + sh:order 6 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 34 ; @@ -13244,43 +13201,29 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], + sh:order 12 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 31 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:negated ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:timepoint ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 29 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path dct:description ], + sh:order 13 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -13291,30 +13234,76 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:start_interbase_coordinate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:original_object ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path rdf:subject ], [ sh:datatype xsd:integer ; sh:description "The position at which the subject nucleic acid entity ends on the chromosome or other entity to which it is located on." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:end_interbase_coordinate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:subject_namespace ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:publications ], + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path rdf:object ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 19 ; + sh:path biolink:original_object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path rdfs:label ], + sh:order 32 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -13322,141 +13311,146 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:order 21 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:description "The phase for a coding sequence entity. For example, phase of a CDS as represented in a GFF3 with a value of 0, 1 or 2." ; + sh:in ( "0" "1" "2" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:phase ], + [ sh:description "The version of the genome on which a feature is located. For example, GRCh38 for Homo sapiens." ; + sh:in ( "+" "-" "." "?" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:genome_build ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:subject_closure ] ; + sh:path biolink:subject_category ] ; sh:targetClass biolink:GenomicSequenceLocalization . biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:frequency_qualifier ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:qualified_predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ], + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:description "The relationship to the disease" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -13464,284 +13458,297 @@ biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:order 15 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:Genotype ; - sh:description "A genotype that has a role in modeling the disease." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 34 ; - sh:path biolink:subject_aspect_qualifier ] ; - sh:targetClass biolink:GenotypeAsAModelOfDiseaseAssociation . - -biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Disease ; - sh:description "a disease that is associated with that genotype" ; + [ sh:class biolink:Genotype ; + sh:description "A genotype that has a role in modeling the disease." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 0 ; + sh:path rdf:subject ] ; + sh:targetClass biolink:GenotypeAsAModelOfDiseaseAssociation . + +biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Genotype ; - sh:description "a genotype that is associated in some way with a disease state" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 38 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:description "E.g. is pathogenic for" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 36 ; sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], + [ sh:class biolink:Genotype ; + sh:description "a genotype that is associated in some way with a disease state" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:order 39 ; sh:path biolink:frequency_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Disease ; + sh:description "a disease that is associated with that genotype" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:qualified_predicate ] ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ] ; sh:targetClass biolink:GenotypeToDiseaseAssociation . biolink:GenotypeToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Genotype ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Genotype ; sh:description "genotype that is the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -13752,14 +13759,7 @@ biolink:GenotypeToEntityAssociationMixin a sh:NodeShape ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:path rdf:predicate ] ; sh:targetClass biolink:GenotypeToEntityAssociationMixin . biolink:GenotypeToGeneAssociation a sh:NodeShape ; @@ -13767,73 +13767,109 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:description "Any association between a genotype and a gene. The genotype have have multiple variants in that gene or a single one. There is no assumption of cardinality" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a point in time" ; sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "the relationship type used to connect genotype to gene" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:Gene ; sh:description "gene implicated in genotype" ; sh:maxCount 1 ; @@ -13841,34 +13877,36 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "the relationship type used to connect genotype to gene" ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:Genotype ; sh:description "parent genotype" ; sh:maxCount 1 ; @@ -13876,20 +13914,12 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -13897,561 +13927,534 @@ biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:order 16 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ] ; + sh:targetClass biolink:GenotypeToGeneAssociation . + +biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Any association between one genotype and a genotypic entity that is a sub-component of it" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ] ; - sh:targetClass biolink:GenotypeToGeneAssociation . - -biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Any association between one genotype and a genotypic entity that is a sub-component of it" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; + sh:description "child genotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Genotype ; - sh:description "child genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; - sh:path biolink:subject_closure ] ; - sh:targetClass biolink:GenotypeToGenotypePartAssociation . - -biolink:GenotypeToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 9 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; + sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Genotype ; + sh:description "parent genotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; + sh:order 26 ; sh:path biolink:id ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ] ; + sh:targetClass biolink:GenotypeToGenotypePartAssociation . + +biolink:GenotypeToPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:order 44 ; sh:path biolink:frequency_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:class biolink:Genotype ; - sh:description "genotype that is associated with the phenotypic feature" ; + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 36 ; sh:path biolink:has_total ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 35 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 31 ; sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "a point in time" ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:Genotype ; + sh:description "genotype that is associated with the phenotypic feature" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ] ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ] ; sh:targetClass biolink:GenotypeToPhenotypicFeatureAssociation . biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between a genotype and a sequence variant." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; + sh:property [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "the relationship type used to connect genotype to gene" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:SequenceVariant ; sh:description "gene implicated in genotype" ; sh:maxCount 1 ; @@ -14459,63 +14462,52 @@ biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:Genotype ; sh:description "parent genotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "the relationship type used to connect genotype to gene" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:path rdf:subject ] ; sh:targetClass biolink:GenotypeToVariantAssociation . biolink:GenotypicSex a sh:NodeShape ; sh:closed true ; sh:description "An attribute corresponding to the genotypic sex of the individual, based upon genotypic composition of sex chromosomes." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -14523,84 +14515,98 @@ biolink:GenotypicSex a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ] ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:GenotypicSex . biolink:GeographicExposure a sh:NodeShape ; sh:closed true ; sh:description "A geographic exposure is a factor relating to geographic proximity to some impactful entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:property [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -14608,36 +14614,30 @@ biolink:GeographicExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; @@ -14650,41 +14650,48 @@ biolink:GeographicLocation a sh:NodeShape ; sh:closed true ; sh:description "a location that can be described in lat/long coordinates" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:datatype xsd:float ; sh:description "longitude" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:longitude ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -14693,13 +14700,6 @@ biolink:GeographicLocation a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; @@ -14715,64 +14715,64 @@ biolink:GeographicLocationAtTime a sh:NodeShape ; sh:closed true ; sh:description "a location that can be described in lat/long coordinates, for a particular time" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:float ; - sh:description "latitude" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:latitude ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:order 10 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 3 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "a point in time" ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], + sh:order 11 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 9 ; sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:float ; + sh:description "latitude" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:latitude ], [ sh:datatype xsd:float ; sh:description "longitude" ; sh:maxCount 1 ; @@ -14783,167 +14783,162 @@ biolink:GeographicLocationAtTime a sh:NodeShape ; biolink:GrossAnatomicalStructure a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:in_taxon_label ] ; - sh:targetClass biolink:GrossAnatomicalStructure . - -biolink:Haplotype a sh:NodeShape ; - sh:closed true ; - sh:description "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; + sh:order 3 ; sh:path biolink:xref ], [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 13 ; + sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 8 ; + sh:order 7 ; sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; + sh:targetClass biolink:GrossAnatomicalStructure . + +biolink:Haplotype a sh:NodeShape ; + sh:closed true ; + sh:description "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ] ; + sh:path biolink:has_biological_sequence ] ; sh:targetClass biolink:Haplotype . biolink:Hospitalization a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; @@ -14952,17 +14947,22 @@ biolink:Hospitalization a sh:NodeShape ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ] ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:Hospitalization . biolink:HospitalizationOutcome a sh:NodeShape ; @@ -14975,25 +14975,22 @@ biolink:Human a sh:NodeShape ; sh:closed true ; sh:description "A member of the the species Homo sapiens." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -15003,240 +15000,218 @@ biolink:Human a sh:NodeShape ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:Human . biolink:InformationContentEntityToNamedThingAssociation a sh:NodeShape ; sh:closed true ; sh:description "association between a named thing and a information content entity where the specific context of the relationship between that named thing and the publication is unknown. For example, model organisms databases often capture the knowledge that a gene is found in a journal article, but not specifically the context in which that gene was documented in the article. In these cases, this association with the accompanying predicate 'mentions' could be used. Conversely, for more specific associations (like 'gene to disease association', the publication should be captured as an edge property)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:path rdf:object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ] ; + sh:path biolink:iri ] ; sh:targetClass biolink:InformationContentEntityToNamedThingAssociation . biolink:Invertebrate a sh:NodeShape ; sh:closed true ; sh:description "An animal lacking a vertebral column. This group consists of 98% of all animal species." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; @@ -15245,76 +15220,100 @@ biolink:Invertebrate a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:full_name ] ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:Invertebrate . biolink:JournalArticle a sh:NodeShape ; sh:closed true ; sh:description "an article, typically presenting results of research, that is published in an issue of a scientific journal." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 17 ; - sh:path biolink:synonym ], + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:license ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 20 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:summary ], + sh:order 2 ; + sh:path biolink:volume ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; sh:order 10 ; sh:path dct:type ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 8 ; - sh:path biolink:mesh_terms ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:full_name ], + sh:order 3 ; + sh:path biolink:issue ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:iso_abbreviation ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 5 ; - sh:path biolink:pages ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 23 ; @@ -15324,107 +15323,75 @@ biolink:JournalArticle a sh:NodeShape ; sh:order 15 ; sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:order 21 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 9 ; - sh:path biolink:xref ], - [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:published_in ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:has_attribute ], + sh:order 12 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:volume ], - [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; + sh:minCount 1 ; + sh:order 18 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:issue ], + sh:order 16 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 17 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 7 ; - sh:path biolink:keywords ], + sh:order 21 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:rights ], + sh:order 6 ; + sh:path biolink:summary ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:format ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 20 ; + sh:path biolink:category ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:authors ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 18 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:order 0 ; + sh:path biolink:published_in ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 7 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 5 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:creation_date ] ; + sh:order 1 ; + sh:path biolink:iso_abbreviation ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path rdfs:label ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 8 ; + sh:path biolink:mesh_terms ] ; sh:targetClass biolink:JournalArticle . biolink:LogOddsAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a log odds ratio analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], [ sh:class biolink:Attribute ; @@ -15432,95 +15399,128 @@ biolink:LogOddsAnalysisResult a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ] ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ] ; sh:targetClass biolink:LogOddsAnalysisResult . biolink:MacromolecularComplex a sh:NodeShape ; sh:closed true ; sh:description "A stable assembly of two or more macromolecules, i.e. proteins, nucleic acids, carbohydrates or lipids, in which at least one component is a protein and the constituent parts function together." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 6 ; sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], + sh:order 8 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 2 ; - sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ] ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:MacromolecularComplex . biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; @@ -15528,351 +15528,346 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a biological process or pathway (as represented in the GO biological process branch), where the entity carries out some part of the process, regulates it, or acts upstream of it." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:BiologicalProcess ; + sh:description "class describing the activity, process or localization of the gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:BiologicalProcess ; - sh:description "class describing the activity, process or localization of the gene product" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ] ; sh:targetClass biolink:MacromolecularMachineToBiologicalProcessAssociation . biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; sh:closed true ; sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:CellularComponent ; - sh:description "class describing the activity, process or localization of the gene product" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:CellularComponent ; + sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ] ; + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ] ; sh:targetClass biolink:MacromolecularMachineToCellularComponentAssociation . biolink:MacromolecularMachineToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "an association which has a macromolecular machine mixin as a subject" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -15885,62 +15880,102 @@ biolink:MacromolecularMachineToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ] ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:MacromolecularMachineToEntityAssociationMixin . biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:closed true ; sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a molecular activity (as represented in the GO molecular function branch), where the entity carries out the activity, or contributes to its execution." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:property [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:MolecularActivity ; + sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:MacromolecularMachineMixin ; sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; @@ -15948,33 +15983,51 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; @@ -15986,140 +16039,87 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:MolecularActivity ; - sh:description "class describing the activity, process or localization of the gene product" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ] ; + sh:order 32 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:MacromolecularMachineToMolecularActivityAssociation . biolink:Mammal a sh:NodeShape ; sh:closed true ; sh:description "A member of the class Mammalia, a clade of endothermic amniotes distinguished from reptiles and birds by the possession of hair, three middle ear bones, mammary glands, and a neocortex" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + sh:order 11 ; + sh:path dct:description ] ; sh:targetClass biolink:Mammal . biolink:MappingCollection a sh:NodeShape ; @@ -16137,106 +16137,102 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a material sample and the material entity from which it is derived." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "a point in time" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "derivation relationship" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "derivation relationship" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:MaterialSample ; + sh:description "the material sample being described" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:NamedThing ; sh:description "the material entity the sample was derived from. This may be another material sample, or any other material entity, including for example an organism, a geographic feature, or some environmental material." ; sh:maxCount 1 ; @@ -16244,42 +16240,83 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ] ; + sh:targetClass biolink:MaterialSampleDerivationAssociation . + +biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a material sample and a disease or phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:MaterialSample ; sh:description "the material sample being described" ; sh:maxCount 1 ; @@ -16288,61 +16325,63 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ] ; - sh:targetClass biolink:MaterialSampleDerivationAssociation . - -biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a material sample and a disease or phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; @@ -16351,133 +16390,101 @@ biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:MaterialSample ; - sh:description "the material sample being described" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ] ; + sh:order 11 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . biolink:MaterialSampleToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An association between a material sample and something." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; @@ -16488,33 +16495,22 @@ biolink:MaterialSampleToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:path rdf:subject ] ; sh:targetClass biolink:MaterialSampleToEntityAssociationMixin . biolink:MicroRNA a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -16523,49 +16519,58 @@ biolink:MicroRNA a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ] ; + sh:path rdf:type ] ; sh:targetClass biolink:MicroRNA . biolink:ModelToDiseaseAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "This mixin is used for any association class for which the subject (source node) plays the role of a 'model', in that it recapitulates some features of the disease in a way that is useful for studying the disease outside a patient carrying the disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; + sh:property [ sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; sh:description "The entity that serves as the model of the disease. This may be an organism, a strain of organism, a genotype or variant that exhibits similar features, or a gene that when mutated exhibits features of the disease" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -16578,60 +16583,34 @@ biolink:ModelToDiseaseAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ], - [ sh:description "The relationship to the disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:path rdf:object ] ; sh:targetClass biolink:ModelToDiseaseAssociationMixin . biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; sh:closed true ; sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "a point in time" ; + sh:property [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:MolecularActivity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -16639,66 +16618,98 @@ biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -16709,51 +16720,40 @@ biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ] ; + sh:order 12 ; + sh:path biolink:original_subject ] ; sh:targetClass biolink:MolecularActivityToChemicalEntityAssociation . biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; @@ -16761,14 +16761,10 @@ biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -16776,199 +16772,224 @@ biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ] ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ] ; sh:targetClass biolink:MolecularActivityToMolecularActivityAssociation . biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:closed true ; sh:description "Association that holds the relationship between a reaction and the pathway it participates in." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:Pathway ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -16976,222 +16997,201 @@ biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:MolecularActivityToPathwayAssociation . biolink:MolecularMixture a sh:NodeShape ; sh:closed true ; sh:description "A molecular mixture is a chemical mixture composed of two or more molecular entities with known concentration and stoichiometry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:is_toxic ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:is_supplement ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 20 ; sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; sh:order 3 ; sh:path biolink:routes_of_delivery ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 18 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], + sh:order 17 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ] ; + sh:order 14 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ] ; sh:targetClass biolink:MolecularMixture . biolink:MortalityOutcome a sh:NodeShape ; @@ -17204,205 +17204,212 @@ biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a sh:NodeShape sh:closed true ; sh:description "" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:property [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 11 ; + sh:path biolink:publications ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 6 ; + sh:path biolink:object_context_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 33 ; - sh:path biolink:category ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:object ], + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 34 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:qualifiers ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:population_context_qualifier ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:subject_namespace ], + sh:order 1 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:object_context_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 20 ; + sh:path biolink:subject_category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 36 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 31 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 22 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], + sh:order 8 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:primary_knowledge_source ], + sh:order 19 ; + sh:path biolink:original_object ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:subject_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 29 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:object_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:negated ], + sh:order 38 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 24 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_source ] ; + sh:order 7 ; + sh:path biolink:population_context_qualifier ] ; sh:targetClass biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . biolink:NoncodingRNAProduct a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; @@ -17413,22 +17420,14 @@ biolink:NoncodingRNAProduct a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -17438,53 +17437,56 @@ biolink:NoncodingRNAProduct a sh:NodeShape ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ] ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ] ; sh:targetClass biolink:NoncodingRNAProduct . biolink:NucleicAcidSequenceMotif a sh:NodeShape ; sh:closed true ; sh:description "A linear nucleotide sequence pattern that is widespread and has, or is conjectured to have, a biological significance. e.g. the TATA box promoter motif, transcription factor binding consensus sequences." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; @@ -17495,64 +17497,59 @@ biolink:NucleicAcidSequenceMotif a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; - sh:path biolink:iri ] ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:NucleicAcidSequenceMotif . biolink:NucleosomeModification a sh:NodeShape ; sh:closed true ; sh:description "A chemical modification of a histone protein within a nucleosome octomer or a substitution of a histone with a variant histone isoform. e.g. Histone 4 Lysine 20 methylation (H4K20me), histone variant H2AZ substituting H2A." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 3 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; @@ -17562,47 +17559,60 @@ biolink:NucleosomeModification a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], + sh:order 2 ; + sh:path biolink:in_taxon_label ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 11 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 6 ; sh:path biolink:synonym ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ] ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ] ; sh:targetClass biolink:NucleosomeModification . biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a observed expected frequency analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; @@ -17612,55 +17622,45 @@ biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ] ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ] ; sh:targetClass biolink:ObservedExpectedFrequencyAnalysisResult . biolink:Occurrent a sh:NodeShape ; @@ -17673,29 +17673,19 @@ biolink:Onset a sh:NodeShape ; sh:closed true ; sh:description "The age group in which (disease) symptom manifestations appear" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; @@ -17703,15 +17693,28 @@ biolink:Onset a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -17721,79 +17724,33 @@ biolink:Onset a sh:NodeShape ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ] ; - sh:targetClass biolink:Onset . - -biolink:OrganismAttribute a sh:NodeShape ; - sh:closed true ; - sh:description "describes a characteristic of an organismal entity." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; + [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:QuantityValue ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:Onset . + +biolink:OrganismAttribute a sh:NodeShape ; + sh:closed true ; + sh:description "describes a characteristic of an organismal entity." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], @@ -17808,22 +17765,67 @@ biolink:OrganismAttribute a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:deprecated ] ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:OrganismAttribute . biolink:OrganismTaxonToEntityAssociation a sh:NodeShape ; sh:closed false ; sh:description "An association between an organism taxon and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "organism taxon that is the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -17831,300 +17833,310 @@ biolink:OrganismTaxonToEntityAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OrganismTaxon ; - sh:description "organism taxon that is the subject of the association" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:OrganismTaxonToEntityAssociation . biolink:OrganismTaxonToEnvironmentAssociation a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the taxon that is the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the taxon that is the subject of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:NamedThing ; - sh:description "the environment in which the organism occurs" ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "predicate describing the relationship between the taxon and the environment" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:NamedThing ; + sh:description "the environment in which the organism occurs" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ] ; + sh:path biolink:publications ] ; sh:targetClass biolink:OrganismTaxonToEnvironmentAssociation . biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; sh:closed false ; sh:description "A relationship between two organism taxon nodes" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "a human-readable description of an entity" ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -18132,84 +18144,106 @@ biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OrganismTaxon ; - sh:description "organism taxon that is the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "organism taxon that is the subject of the association" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ] ; + sh:order 13 ; + sh:path biolink:original_predicate ] ; sh:targetClass biolink:OrganismTaxonToOrganismTaxonAssociation . biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; sh:closed true ; sh:description "An interaction relationship between two taxa. This may be a symbiotic relationship (encompassing mutualism and parasitism), or it may be non-symbiotic. Example: plague transmitted_by flea; cattle domesticated_by Homo sapiens; plague infects Homo sapiens" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the taxon that is the subject of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "the environment in which the two taxa interact" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:associated_environmental_context ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OrganismTaxon ; sh:description "the taxon that is the subject of the association" ; sh:maxCount 1 ; @@ -18218,236 +18252,208 @@ biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; sh:order 1 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:subject_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 29 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "the environment in which the two taxa interact" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:associated_environmental_context ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the taxon that is the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 30 ; sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ] ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ] ; sh:targetClass biolink:OrganismTaxonToOrganismTaxonInteraction . biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; sh:closed true ; sh:description "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 31 ; + sh:path dct:description ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the more general taxon" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -18455,30 +18461,51 @@ biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the more general taxon" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OrganismTaxon ; sh:description "the more specific taxon" ; sh:maxCount 1 ; @@ -18487,145 +18514,172 @@ biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ] ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:OrganismTaxonToOrganismTaxonSpecialization . biolink:OrganismToOrganismAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:property [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], + [ sh:class biolink:IndividualOrganism ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:IndividualOrganism ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:IndividualOrganism ; sh:description "An association between two individual organisms." ; sh:maxCount 1 ; @@ -18633,192 +18687,106 @@ biolink:OrganismToOrganismAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ] ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:OrganismToOrganismAssociation . biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:property [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OrganismalEntity ; sh:description "A organismal entity (strain, breed) with a predisposition to a disease, or bred/created specifically to model a disease." ; sh:maxCount 1 ; @@ -18826,239 +18794,271 @@ biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 2 ; + sh:path rdf:object ], [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:frequency_qualifier ] ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ] ; sh:targetClass biolink:OrganismalEntityAsAModelOfDiseaseAssociation . biolink:PairwiseGeneToGeneInteraction a sh:NodeShape ; sh:closed true ; sh:description "An interaction between two genes or two gene products. May be physical (e.g. protein binding) or genetic (between genes). May be symmetric (e.g. protein interaction) or directed (e.g. phosphorylation)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:description "interaction relationship type" ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "interaction relationship type" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ] ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ] ; sh:targetClass biolink:PairwiseGeneToGeneInteraction . biolink:PairwiseMolecularInteraction a sh:NodeShape ; @@ -19066,272 +19066,272 @@ biolink:PairwiseMolecularInteraction a sh:NodeShape ; sh:description "An interaction at the molecular level between two physical entities" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:interacting_molecules_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:MolecularEntity ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 17 ; + sh:path biolink:object_category ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:description "interaction relationship type" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 31 ; + sh:path rdfs:label ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:class biolink:MolecularEntity ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "identifier for the interaction. This may come from an interaction database such as IMEX." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "identifier for the interaction. This may come from an interaction database such as IMEX." ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:class biolink:MolecularEntity ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:order 3 ; + sh:path rdf:object ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], - [ sh:description "interaction relationship type" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + sh:order 0 ; + sh:path biolink:interacting_molecules_category ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ] ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:PairwiseMolecularInteraction . biolink:Patent a sh:NodeShape ; sh:closed true ; sh:description "a legal document granted by a patent issuing authority which confers upon the patenter the sole right to make, use and sell an invention for a set period of time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Agent ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:license ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path dct:description ], + [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:order 17 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:id ], + sh:order 21 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:creation_date ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:license ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 16 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:order 17 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 6 ; - sh:path dct:type ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:deprecated ], + sh:order 8 ; + sh:path biolink:rights ], [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:order 18 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:format ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 11 ; sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:rights ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ] ; + sh:order 9 ; + sh:path biolink:format ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:Patent . biolink:PathognomonicityQuantifier a sh:NodeShape ; @@ -19344,77 +19344,77 @@ biolink:PathologicalAnatomicalExposure a sh:NodeShape ; sh:closed true ; sh:description "An abnormal anatomical structure, when viewed as an exposure, representing an precondition, leading to or influencing an outcome, e.g. thrombosis leading to an ischemic disease outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:class biolink:QuantityValue ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:class biolink:NamedThing ; + [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ] ; + sh:order 1 ; + sh:path rdfs:label ] ; sh:targetClass biolink:PathologicalAnatomicalExposure . biolink:PathologicalAnatomicalOutcome a sh:NodeShape ; @@ -19427,35 +19427,43 @@ biolink:PathologicalAnatomicalStructure a sh:NodeShape ; sh:closed true ; sh:description "An anatomical structure with the potential of have an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], @@ -19468,23 +19476,15 @@ biolink:PathologicalAnatomicalStructure a sh:NodeShape ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ] ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:PathologicalAnatomicalStructure . biolink:PathologicalEntityMixin a sh:NodeShape ; @@ -19497,127 +19497,121 @@ biolink:PathologicalProcess a sh:NodeShape ; sh:closed true ; sh:description "A biologic function or a process having an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], + sh:order 10 ; + sh:path biolink:iri ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_output ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:class biolink:PhysicalEntity ; sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:enabled_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:in_taxon_label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 13 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ] ; + sh:path rdfs:label ] ; sh:targetClass biolink:PathologicalProcess . biolink:PathologicalProcessExposure a sh:NodeShape ; sh:closed true ; sh:description "A pathological process, when viewed as an exposure, representing a precondition, leading to or influencing an outcome, e.g. autoimmunity leading to disease." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 9 ; + sh:path biolink:full_name ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -19625,28 +19619,34 @@ biolink:PathologicalProcessExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ] ; sh:targetClass biolink:PathologicalProcessExposure . biolink:PathologicalProcessOutcome a sh:NodeShape ; @@ -19659,218 +19659,214 @@ biolink:Phenomenon a sh:NodeShape ; sh:closed true ; sh:description "a fact or situation that is observed to exist or happen, especially one whose cause or explanation is in question" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:deprecated ] ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ] ; sh:targetClass biolink:Phenomenon . biolink:PhenotypicFeatureToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 0 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 42 ; sh:path biolink:object_direction_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], + sh:order 38 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path rdf:predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 32 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 13 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 36 ; + sh:path biolink:has_total ], + [ sh:description "a point in time" ; sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:order 35 ; + sh:path biolink:has_count ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -19879,124 +19875,107 @@ biolink:PhenotypicFeatureToDiseaseAssociation a sh:NodeShape ; sh:order 3 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], - [ sh:description "a human-readable description of an entity" ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ] ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ] ; sh:targetClass biolink:PhenotypicFeatureToDiseaseAssociation . biolink:PhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path rdf:object ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:double ; + sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:has_quotient ], + sh:order 6 ; + sh:path biolink:subject_direction_qualifier ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:sex_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path rdf:predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_direction_qualifier ], + sh:order 5 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:qualified_predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 8 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:has_total ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -20004,51 +19983,73 @@ biolink:PhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_aspect_qualifier ] ; + sh:order 4 ; + sh:path biolink:has_percentage ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path rdf:object ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:has_count ] ; sh:targetClass biolink:PhenotypicFeatureToEntityAssociationMixin . biolink:PhenotypicQuality a sh:NodeShape ; sh:closed true ; sh:description "A property of a phenotype" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; @@ -20058,103 +20059,102 @@ biolink:PhenotypicQuality a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ] ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:PhenotypicQuality . biolink:PhenotypicSex a sh:NodeShape ; sh:closed true ; sh:description "An attribute corresponding to the phenotypic sex of the individual, based upon the reproductive organs present." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:order 5 ; + sh:path biolink:id ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ] ; + sh:path biolink:category ] ; sh:targetClass biolink:PhenotypicSex . biolink:PhysicalEssence a sh:NodeShape ; @@ -20172,179 +20172,186 @@ biolink:PhysicalEssenceOrOccurrent a sh:NodeShape ; biolink:PhysiologicalProcess a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], + sh:order 1 ; + sh:path biolink:has_input ], [ sh:class biolink:PhysicalEntity ; sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:enabled_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], + sh:order 2 ; + sh:path biolink:has_output ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; - sh:path biolink:id ] ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ] ; sh:targetClass biolink:PhysiologicalProcess . biolink:PlanetaryEntity a sh:NodeShape ; sh:closed true ; sh:description "Any entity or process that exists at the level of the whole planet" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; - sh:path biolink:id ] ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:PlanetaryEntity . biolink:Plant a sh:NodeShape ; sh:closed true ; sh:description "" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:property [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 11 ; + sh:path dct:description ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], @@ -20352,82 +20359,75 @@ biolink:Plant a sh:NodeShape ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ] ; + sh:order 13 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:Plant . biolink:Polypeptide a sh:NodeShape ; sh:closed true ; sh:description "A polypeptide is a molecular entity characterized by availability in protein databases of amino-acid-based sequence representations of its precise primary structure; for convenience of representation, partial sequences of various kinds are included, even if they do not represent a physical molecule." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Polypeptide . biolink:PopulationToPopulationAssociation a sh:NodeShape ; @@ -20437,11 +20437,48 @@ biolink:PopulationToPopulationAssociation a sh:NodeShape ; sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:PopulationOfIndividualOrganisms ; sh:description "the population that form the subject of the association" ; sh:maxCount 1 ; @@ -20449,194 +20486,135 @@ biolink:PopulationToPopulationAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that form the object of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that form the object of the association" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:description "A relationship type that holds between the subject and object populations. Standard mereological relations can be used. E.g. subject part-of object, subject overlaps object. Derivation relationships can also be used" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "A relationship type that holds between the subject and object populations. Standard mereological relations can be used. E.g. subject part-of object, subject overlaps object. Derivation relationships can also be used" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ] ; sh:targetClass biolink:PopulationToPopulationAssociation . biolink:PosttranslationalModification a sh:NodeShape ; sh:closed true ; sh:description "A chemical modification of a polypeptide or protein that occurs after translation. e.g. polypeptide cleavage to form separate proteins, methylation or acetylation of histone tail amino acids, protein ubiquitination." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], @@ -20646,11 +20624,24 @@ biolink:PosttranslationalModification a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; @@ -20659,9 +20650,18 @@ biolink:PosttranslationalModification a sh:NodeShape ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ] ; sh:targetClass biolink:PosttranslationalModification . biolink:PreprintPublication a sh:NodeShape ; @@ -20669,38 +20669,77 @@ biolink:PreprintPublication a sh:NodeShape ; sh:description "a document reresenting an early version of an author's original scholarly work, such as a research paper or a review, prior to formal peer review and publication in a peer-reviewed scholarly or scientific journal." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:deprecated ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; sh:description "executive summary of a publication" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 19 ; sh:path dct:description ], - [ sh:datatype xsd:string ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:format ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 10 ; + sh:path biolink:creation_date ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:order 17 ; - sh:path rdf:type ], + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:license ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:category ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:license ], + sh:order 17 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; @@ -20710,53 +20749,14 @@ biolink:PreprintPublication a sh:NodeShape ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:rights ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 16 ; - sh:path biolink:category ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:id ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:order 3 ; sh:path biolink:keywords ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:iri ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ] ; @@ -20766,169 +20766,244 @@ biolink:ProcessedMaterial a sh:NodeShape ; sh:closed true ; sh:description "A chemical entity (often a mixture) processed for consumption for nutritional, medical or technical use. Is a material entity that is created or changed during material processing." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:property [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; sh:order 3 ; sh:path biolink:routes_of_delivery ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], + sh:order 14 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:is_toxic ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 20 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 5 ; sh:path biolink:available_from ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:description "" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], + sh:order 18 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:description "a human-readable description of an entity" ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ] ; + sh:order 11 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:ProcessedMaterial . biolink:Protein a sh:NodeShape ; sh:closed true ; sh:description "A gene product that is composed of a chain of amino acid sequences and is produced by ribosome-mediated translation of mRNA" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; - sh:path biolink:provided_by ], + sh:path biolink:provided_by ] ; + sh:targetClass biolink:Protein . + +biolink:ProteinDomain a sh:NodeShape ; + sh:closed true ; + sh:description "A conserved part of protein sequence and (tertiary) structure that can evolve, function, and exist independently of the rest of the protein chain. Protein domains maintain their structure and function independently of the proteins in which they are found. e.g. an SH3 domain." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; + sh:order 9 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:order 9 ; + sh:order 10 ; sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; + sh:order 6 ; sh:path biolink:synonym ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 2 ; + sh:path biolink:in_taxon_label ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; sh:order 13 ; - sh:path biolink:deprecated ] ; - sh:targetClass biolink:Protein . + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ] ; + sh:targetClass biolink:ProteinDomain . -biolink:ProteinDomain a sh:NodeShape ; +biolink:ProteinFamily a sh:NodeShape ; sh:closed true ; - sh:description "A conserved part of protein sequence and (tertiary) structure that can evolve, function, and exist independently of the rest of the protein chain. Protein domains maintain their structure and function independently of the proteins in which they are found. e.g. an SH3 domain." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 6 ; sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; @@ -20939,143 +21014,137 @@ biolink:ProteinDomain a sh:NodeShape ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:full_name ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 9 ; sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:ProteinDomain . + sh:path dct:description ] ; + sh:targetClass biolink:ProteinFamily . -biolink:ProteinFamily a sh:NodeShape ; +biolink:ProteinIsoform a sh:NodeShape ; sh:closed true ; + sh:description "Represents a protein that is a specific isoform of the canonical or reference protein. See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114032/" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; + sh:order 11 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:order 6 ; - sh:path biolink:synonym ], + sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 1 ; + sh:order 2 ; sh:path biolink:in_taxon ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 9 ; + sh:order 8 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 13 ; + sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 2 ; + sh:order 3 ; sh:path biolink:in_taxon_label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; + sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; sh:order 10 ; - sh:path rdf:type ] ; - sh:targetClass biolink:ProteinFamily . + sh:path rdfs:label ] ; + sh:targetClass biolink:ProteinIsoform . -biolink:ProteinIsoform a sh:NodeShape ; +biolink:RNAProduct a sh:NodeShape ; sh:closed true ; - sh:description "Represents a protein that is a specific isoform of the canonical or reference protein. See https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4114032/" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; @@ -21083,35 +21152,10 @@ biolink:ProteinIsoform a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -21122,382 +21166,319 @@ biolink:ProteinIsoform a sh:NodeShape ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; - sh:path biolink:id ] ; - sh:targetClass biolink:ProteinIsoform . - -biolink:RNAProduct a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:path biolink:id ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ] ; + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:RNAProduct . biolink:RNAProductIsoform a sh:NodeShape ; sh:closed true ; sh:description "Represents a protein that is a specific isoform of the canonical or reference RNA" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ] ; + sh:path biolink:full_name ] ; sh:targetClass biolink:RNAProductIsoform . biolink:ReactionToCatalystAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:MolecularEntity ; + sh:property [ sh:class biolink:MolecularEntity ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path rdf:subject ], - [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; - sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:reaction_direction ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 28 ; sh:path biolink:retrieval_source_ids ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 32 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; + sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the chemical element that is the target of the statement" ; + sh:order 1 ; + sh:path biolink:reaction_direction ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 5 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 35 ; sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], [ sh:datatype xsd:integer ; sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:stoichiometry ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], [ sh:description "the side of a reaction being modeled (ie: left or right)" ; sh:in ( "left" "right" ) ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:reaction_side ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 29 ; sh:path biolink:id ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the chemical element that is the target of the statement" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 5 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ] ; + sh:order 10 ; + sh:path biolink:has_evidence ] ; sh:targetClass biolink:ReactionToCatalystAssociation . biolink:ReactionToParticipantAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "the side of a reaction being modeled (ie: left or right)" ; - sh:in ( "left" "right" ) ; + sh:property [ sh:datatype xsd:integer ; + sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:reaction_side ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 0 ; + sh:path biolink:stoichiometry ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 29 ; sh:path biolink:id ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:integer ; - sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:stoichiometry ], + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:description "the side of a reaction being modeled (ie: left or right)" ; + sh:in ( "left" "right" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:reaction_side ], [ sh:class biolink:ChemicalEntity ; sh:description "the chemical element that is the target of the statement" ; sh:maxCount 1 ; @@ -21505,69 +21486,92 @@ biolink:ReactionToParticipantAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; + sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:reaction_direction ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], - [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; - sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:reaction_direction ], + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 34 ; sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 20 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -21575,28 +21579,28 @@ biolink:ReactionToParticipantAssociation a sh:NodeShape ; sh:order 18 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], [ sh:class biolink:MolecularEntity ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; @@ -21604,27 +21608,39 @@ biolink:ReactionToParticipantAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path rdf:subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ] ; + sh:order 6 ; + sh:path biolink:negated ] ; sh:targetClass biolink:ReactionToParticipantAssociation . biolink:ReagentTargetedGene a sh:NodeShape ; sh:closed true ; sh:description "A gene altered in its expression level in the context of some experiment as a result of being targeted by gene-knockdown reagent(s) such as a morpholino or RNAi." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -21633,59 +21649,43 @@ biolink:ReagentTargetedGene a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:has_biological_sequence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 8 ; + sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:in_taxon ] ; + sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ] ; sh:targetClass biolink:ReagentTargetedGene . biolink:RegulatoryRegion a sh:NodeShape ; @@ -21693,67 +21693,67 @@ biolink:RegulatoryRegion a sh:NodeShape ; sh:description "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:iri ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 11 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ] ; + sh:order 3 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:RegulatoryRegion . biolink:RelationshipQuantifier a sh:NodeShape ; @@ -21777,7 +21777,23 @@ biolink:RelativeFrequencyAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a relative frequency analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; @@ -21786,63 +21802,47 @@ biolink:RelativeFrequencyAnalysisResult a sh:NodeShape ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ] ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ] ; sh:targetClass biolink:RelativeFrequencyAnalysisResult . biolink:SensitivityQuantifier a sh:NodeShape ; @@ -21854,37 +21854,66 @@ biolink:SequenceAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a sequence feature and a nucleic acid entity it is localized to." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "a human-readable description of an entity" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; @@ -21895,106 +21924,90 @@ biolink:SequenceAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -22002,177 +22015,144 @@ biolink:SequenceAssociation a sh:NodeShape ; sh:order 16 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ] ; sh:targetClass biolink:SequenceAssociation . biolink:SequenceFeatureRelationship a sh:NodeShape ; sh:closed true ; sh:description "For example, a particular exon is part of a particular transcript or gene" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:class biolink:NucleicAcidEntity ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -22180,208 +22160,229 @@ biolink:SequenceFeatureRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:SequenceFeatureRelationship . biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:closed false ; sh:description "An association between a sequence variant and a treatment or health intervention. The treatment object itself encompasses both the disease and the drug used." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:SequenceVariant ; - sh:description "variant that modulates the treatment of some disease" ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Treatment ; - sh:description "treatment whose efficacy is modulated by the subject variant" ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:Treatment ; + sh:description "treatment whose efficacy is modulated by the subject variant" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:SequenceVariant ; + sh:description "variant that modulates the treatment of some disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "a point in time" ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ] ; + sh:order 30 ; + sh:path rdfs:label ] ; sh:targetClass biolink:SequenceVariantModulatesTreatmentAssociation . biolink:Serial a sh:NodeShape ; sh:closed true ; sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:license ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:deprecated ], + sh:order 21 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:description "keywords tagging a publication" ; + sh:order 6 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; + sh:description "Serials (journals) should have industry-standard identifier such as from ISSN." ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 9 ; - sh:path dct:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 17 ; + sh:path biolink:id ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:full_name ], + sh:order 13 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:description "executive summary of a publication" ; sh:maxCount 1 ; @@ -22391,96 +22392,96 @@ biolink:Serial a sh:NodeShape ; sh:minCount 1 ; sh:order 19 ; sh:path biolink:category ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 7 ; - sh:path biolink:mesh_terms ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 16 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "Standard abbreviation for periodicals in the International Organization for Standardization (ISO) 4 system See https://www.issn.org/services/online-services/access-to-the-ltwa/. If the 'published in' property is set, then the iso abbreviation pertains to the broader publication context (the journal) within which the given publication node is embedded, not the publication itself." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:creation_date ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 0 ; + sh:path biolink:iso_abbreviation ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + sh:order 24 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:volume ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 14 ; - sh:path biolink:provided_by ], + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 9 ; + sh:path dct:type ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:authors ], [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:rights ], + sh:order 2 ; + sh:path biolink:issue ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:iri ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 7 ; + sh:path biolink:mesh_terms ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "Should generally be set to an ontology class defined term for 'serial' or 'journal'." ; + sh:order 20 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:order 4 ; sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 6 ; - sh:path biolink:keywords ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 22 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Should generally be set to an ontology class defined term for 'serial' or 'journal'." ; - sh:order 20 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 14 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:issue ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:has_attribute ], + sh:order 10 ; + sh:path biolink:license ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "Standard abbreviation for periodicals in the International Organization for Standardization (ISO) 4 system See https://www.issn.org/services/online-services/access-to-the-ltwa/. If the 'published in' property is set, then the iso abbreviation pertains to the broader publication context (the journal) within which the given publication node is embedded, not the publication itself." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:iso_abbreviation ], + sh:order 11 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 12 ; - sh:path biolink:format ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 16 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "Serials (journals) should have industry-standard identifier such as from ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 17 ; - sh:path biolink:id ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:authors ] ; + sh:path biolink:format ] ; sh:targetClass biolink:Serial . biolink:SeverityValue a sh:NodeShape ; sh:closed true ; sh:description "describes the severity of a phenotypic feature or disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; @@ -22490,303 +22491,328 @@ biolink:SeverityValue a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], + sh:order 4 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ] ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:SeverityValue . biolink:SiRNA a sh:NodeShape ; sh:closed true ; sh:description "A small RNA molecule that is the product of a longer exogenous or endogenous dsRNA, which is either a bimolecular duplex or very long hairpin, processed (via the Dicer pathway) such that numerous siRNAs accumulate from both strands of the dsRNA. SRNAs trigger the cleavage of their target molecules." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:full_name ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ] ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:SiRNA . biolink:SmallMolecule a sh:NodeShape ; sh:closed true ; sh:description "A small molecule entity is a molecular entity characterized by availability in small-molecule databases of SMILES, InChI, IUPAC, or other unambiguous representation of its precise chemical structure; for convenience of representation, any valid chemical representation is included, even if it is not strictly molecular (e.g., sodium ion)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:is_toxic ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + sh:order 3 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 13 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_metabolite ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:trade_name ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:max_tolerated_dose ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 14 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + sh:description "" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path dct:description ], + sh:order 1 ; + sh:path biolink:trade_name ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 2 ; sh:path biolink:available_from ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ], + sh:order 10 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "indicates whether a molecular entity is a metabolite" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:deprecated ] ; + sh:order 0 ; + sh:path biolink:is_metabolite ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:is_toxic ] ; sh:targetClass biolink:SmallMolecule . biolink:Snv a sh:NodeShape ; sh:closed true ; sh:description "SNVs are single nucleotide positions in genomic DNA at which different sequence alternatives exist" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:class biolink:Gene ; + sh:description "Each allele can be associated with any number of genes" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], + sh:minCount 1 ; + sh:order 2 ; + sh:path biolink:id ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:in_taxon_label ], - [ sh:description "The state of the sequence w.r.t a reference sequence" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_biological_sequence ], + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:class biolink:Gene ; - sh:description "Each allele can be associated with any number of genes" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:description "The state of the sequence w.r.t a reference sequence" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path biolink:id ] ; + sh:order 1 ; + sh:path biolink:has_biological_sequence ] ; sh:targetClass biolink:Snv . biolink:SocioeconomicExposure a sh:NodeShape ; sh:closed true ; sh:description "A socioeconomic exposure is a factor relating to social and financial status of an affected individual (e.g. poverty)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:class biolink:SocioeconomicAttribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -22794,56 +22820,30 @@ biolink:SocioeconomicExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], + [ sh:class biolink:SocioeconomicAttribute ; + sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "a point in time" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ] ; + sh:order 5 ; + sh:path biolink:iri ] ; sh:targetClass biolink:SocioeconomicExposure . biolink:SocioeconomicOutcome a sh:NodeShape ; @@ -22862,18 +22862,35 @@ biolink:Study a sh:NodeShape ; sh:description "a detailed investigation and/or analysis" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], @@ -22881,42 +22898,37 @@ biolink:Study a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Study . biolink:StudyPopulation a sh:NodeShape ; sh:closed true ; sh:description "A group of people banded together or treated as a group as participants in a research study." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; @@ -22926,54 +22938,42 @@ biolink:StudyPopulation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:StudyPopulation . biolink:StudyResult a sh:NodeShape ; @@ -22981,71 +22981,71 @@ biolink:StudyResult a sh:NodeShape ; sh:description "A collection of data items from a study that are about a particular study subject or experimental unit (the 'focus' of the Result) - optionally with context/provenance metadata that may be relevant to the interpretation of this data as evidence." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 11 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ] ; + sh:path biolink:synonym ] ; sh:targetClass biolink:StudyResult . biolink:StudyVariable a sh:NodeShape ; @@ -23053,71 +23053,71 @@ biolink:StudyVariable a sh:NodeShape ; sh:description "a variable that is used as a measure in the investigation of a study" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; - sh:path biolink:synonym ] ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ] ; sh:targetClass biolink:StudyVariable . biolink:SubjectOfInvestigation a sh:NodeShape ; @@ -23128,96 +23128,23 @@ biolink:SubjectOfInvestigation a sh:NodeShape ; biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OrganismTaxon ; sh:description "An association between individuals of different taxa." ; sh:maxCount 1 ; @@ -23225,16 +23152,6 @@ biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -23245,54 +23162,137 @@ biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:TaxonToTaxonAssociation . biolink:TextMiningResult a sh:NodeShape ; @@ -23305,43 +23305,23 @@ biolink:TextMiningResult a sh:NodeShape ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; @@ -23350,17 +23330,37 @@ biolink:TextMiningResult a sh:NodeShape ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 0 ; + sh:path biolink:license ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; @@ -23386,380 +23386,405 @@ biolink:TranscriptToGeneRelationship a sh:NodeShape ; sh:closed true ; sh:description "A gene is a collection of transcripts" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:class biolink:Transcript ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Transcript ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Gene ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ] ; + sh:path rdf:object ] ; sh:targetClass biolink:TranscriptToGeneRelationship . biolink:TranscriptionFactorBindingSite a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) of the genome that contains a region of DNA known or predicted to bind a protein that modulates gene transcription" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 10 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ] ; - sh:targetClass biolink:TranscriptionFactorBindingSite . - -biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 33 ; + sh:order 14 ; sh:path biolink:deprecated ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 30 ; + sh:order 11 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ] ; + sh:targetClass biolink:TranscriptionFactorBindingSite . + +biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:qualified_predicate ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:SequenceVariant ; - sh:description "A variant that has a role in modeling the disease." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "The relationship to the disease" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:SequenceVariant ; + sh:description "A variant that has a role in modeling the disease." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -23767,196 +23792,107 @@ biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ] ; + sh:order 38 ; + sh:path biolink:qualified_predicate ], + [ sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:VariantAsAModelOfDiseaseAssociation . biolink:VariantToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated in some way with the disease state" ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "E.g. is pathogenic for" ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 38 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:Disease ; sh:description "a disease that is associated with that variant" ; sh:maxCount 1 ; @@ -23968,65 +23904,122 @@ biolink:VariantToDiseaseAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 39 ; sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "E.g. is pathogenic for" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated in some way with the disease state" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 36 ; sh:path biolink:object_aspect_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ] ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ] ; sh:targetClass biolink:VariantToDiseaseAssociation . biolink:VariantToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; @@ -24037,133 +24030,117 @@ biolink:VariantToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ] ; + sh:path rdf:subject ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:VariantToEntityAssociationMixin . biolink:VariantToGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:property [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -24171,126 +24148,137 @@ biolink:VariantToGeneAssociation a sh:NodeShape ; sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated with some other entity" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ] ; - sh:targetClass biolink:VariantToGeneAssociation . - -biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a variant and expression of a gene (i.e. e-QTL)" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 11 ; + sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated with some other entity" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:phenotypic_state ], - [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ] ; + sh:targetClass biolink:VariantToGeneAssociation . + +biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a variant and expression of a gene (i.e. e-QTL)" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], + sh:order 1 ; + sh:path biolink:expression_site ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 36 ; sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path dct:description ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 7 ; + sh:path biolink:negated ], + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualifier ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:stage_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_object ], + sh:order 25 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:qualifiers ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -24298,23 +24286,40 @@ biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; sh:order 20 ; sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Optional quantitative value indicating degree of expression." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], + sh:order 0 ; + sh:path biolink:quantifier_qualifier ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:minCount 1 ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated with some other entity" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_predicate ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 32 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 33 ; + sh:path rdf:type ], [ sh:class biolink:Gene ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -24322,276 +24327,285 @@ biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path rdf:object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated with some other entity" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:subject ], + sh:order 23 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Optional quantitative value indicating degree of expression." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:quantifier_qualifier ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 29 ; sh:path biolink:retrieval_source_ids ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:expression_site ], + sh:order 3 ; + sh:path biolink:phenotypic_state ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], + sh:order 8 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 33 ; - sh:path rdf:type ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path dct:description ] ; - sh:targetClass biolink:VariantToGeneExpressionAssociation . - -biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; + sh:order 10 ; sh:path biolink:publications ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 12 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 26 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 16 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 37 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:VariantToGeneExpressionAssociation . + +biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 26 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated in some way with the phenotype state" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 43 ; sh:path biolink:qualified_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated in some way with the phenotype state" ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:subject_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; @@ -24602,333 +24616,314 @@ biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ] ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:VariantToPhenotypicFeatureAssociation . biolink:VariantToPopulationAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a variant and a population, where the variant has particular frequency in the population" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:double ; + sh:description "frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency" ; sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:datatype xsd:integer ; - sh:description "number all populations that carry a particular allele, aka allele number" ; + sh:order 5 ; + sh:path biolink:has_quotient ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:has_total ], + sh:order 35 ; + sh:path rdfs:label ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 31 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], + sh:order 6 ; + sh:path biolink:has_percentage ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 24 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:integer ; - sh:description "number in object population that carry a particular allele, aka allele count" ; + [ sh:class biolink:SequenceVariant ; + sh:description "an allele that has a certain frequency in a given population" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:has_count ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:publications ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:frequency_qualifier ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:qualifiers ], + sh:order 20 ; + sh:path biolink:subject_category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 34 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:original_object ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 29 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], + sh:order 7 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:negated ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:double ; - sh:description "frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency" ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path biolink:iri ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that is observed to have the frequency" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path rdfs:label ], + sh:order 27 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_subject ], + sh:order 26 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:integer ; + sh:description "number all populations that carry a particular allele, aka allele number" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:integer ; + sh:description "number in object population that carry a particular allele, aka allele count" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:has_count ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 37 ; + sh:path biolink:has_attribute ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_evidence ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path dct:description ], - [ sh:class biolink:SequenceVariant ; - sh:description "an allele that has a certain frequency in a given population" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that is observed to have the frequency" ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:order 25 ; + sh:path biolink:object_category_closure ] ; sh:targetClass biolink:VariantToPopulationAssociation . biolink:Vertebrate a sh:NodeShape ; sh:closed true ; sh:description "A sub-phylum of animals consisting of those having a bony or cartilaginous vertebral column." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ] ; + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Vertebrate . biolink:Virus a sh:NodeShape ; sh:closed true ; sh:description "A virus is a microorganism that replicates itself as a microRNA and infects the host cell." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; @@ -24940,289 +24935,268 @@ biolink:Virus a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ] ; + sh:order 1 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:Virus . biolink:WebPage a sh:NodeShape ; sh:closed true ; sh:description "a document that is published according to World Wide Web standards, which may incorporate text, graphics, sound, and/or other features." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:creation_date ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 17 ; + sh:path rdf:type ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], + sh:order 18 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:license ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 16 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:rights ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:deprecated ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path rdfs:label ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:rights ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 19 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 14 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; sh:order 6 ; sh:path dct:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:datatype xsd:string ; - sh:order 17 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:iri ] ; + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ] ; sh:targetClass biolink:WebPage . biolink:Behavior a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], + sh:order 14 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], + sh:order 13 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_input ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_output ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ] ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ] ; sh:targetClass biolink:Behavior . biolink:BehavioralFeature a sh:NodeShape ; sh:closed true ; sh:description "A phenotypic feature which is behavioral in nature." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ] ; - sh:targetClass biolink:BehavioralFeature . - -biolink:BiologicalProcess a sh:NodeShape ; - sh:closed true ; - sh:description "One or more causally connected executions of molecular functions" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 15 ; + sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 16 ; + sh:order 13 ; sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:BehavioralFeature . + +biolink:BiologicalProcess a sh:NodeShape ; + sh:closed true ; + sh:description "One or more causally connected executions of molecular functions" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], [ sh:class biolink:PhysicalEntity ; sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; sh:nodeKind sh:IRI ; @@ -25232,89 +25206,81 @@ biolink:BiologicalProcess a sh:NodeShape ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:in_taxon_label ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ] ; + sh:order 10 ; + sh:path biolink:iri ] ; sh:targetClass biolink:BiologicalProcess . biolink:CellularComponent a sh:NodeShape ; sh:closed true ; sh:description "A location in or around a cell" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], @@ -25322,21 +25288,59 @@ biolink:CellularComponent a sh:NodeShape ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:CellularComponent . biolink:ClinicalAttribute a sh:NodeShape ; sh:closed true ; sh:description "Attributes relating to a clinical manifestation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], @@ -25358,188 +25362,144 @@ biolink:ClinicalAttribute a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ] ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:ClinicalAttribute . biolink:Dataset a sh:NodeShape ; sh:closed true ; sh:description "an item that refers to a collection of data from a data source." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:Dataset . - -biolink:DatasetDistribution a sh:NodeShape ; - sh:closed true ; - sh:description "an item that holds distribution level information about a dataset." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:rights ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 1 ; + sh:order 0 ; sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 9 ; + sh:order 8 ; sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; + sh:order 6 ; sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 15 ; + sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:format ], + sh:order 13 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:Dataset . + +biolink:DatasetDistribution a sh:NodeShape ; + sh:closed true ; + sh:description "an item that holds distribution level information about a dataset." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:distribution_download_url ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 6 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:format ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; @@ -25547,82 +25507,132 @@ biolink:DatasetDistribution a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 8 ; sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; - sh:path biolink:category ] ; + sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:creation_date ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:DatasetDistribution . biolink:Device a sh:NodeShape ; sh:closed true ; sh:description "A thing made or adapted for a particular purpose, especially a piece of mechanical or electronic equipment" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ] ; + sh:order 8 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Device . biolink:Exon a sh:NodeShape ; sh:closed true ; sh:description "A region of the transcript sequence within a gene which is not removed from the primary RNA transcript by RNA splicing." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -25637,281 +25647,257 @@ biolink:Exon a sh:NodeShape ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ] ; + sh:path biolink:xref ] ; sh:targetClass biolink:Exon . biolink:GeneFamily a sh:NodeShape ; sh:closed true ; sh:description "any grouping of multiple genes or gene products related by common descent" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:in_taxon_label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:order 10 ; sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], [ sh:class biolink:Gene ; sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_gene_or_gene_product ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ] ; sh:targetClass biolink:GeneFamily . biolink:GeneProductMixin a sh:NodeShape ; sh:closed false ; sh:description "The functional molecular product of a single gene locus. Gene products are either proteins or functional RNA molecules." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], + sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ] ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:GeneProductMixin . biolink:GeneticInheritance a sh:NodeShape ; sh:closed true ; sh:description "The pattern or 'mode' in which a particular genetic trait or disorder is passed from one generation to the next, e.g. autosomal dominant, autosomal recessive, etc." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 9 ; + sh:path rdf:type ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 11 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ] ; + sh:path rdfs:label ] ; sh:targetClass biolink:GeneticInheritance . biolink:InformationContentEntity a sh:NodeShape ; sh:closed false ; sh:description "a piece of information that typically describes some topic of discourse or is used as support." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ] ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:InformationContentEntity . biolink:OrganismalEntity a sh:NodeShape ; sh:closed false ; sh:description "A named entity that is either a part of an organism, a whole organism, population or clade of organisms, excluding chemical entities" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], @@ -25919,42 +25905,56 @@ biolink:OrganismalEntity a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:OrganismalEntity . biolink:PredicateMapping a sh:NodeShape ; @@ -25962,130 +25962,130 @@ biolink:PredicateMapping a sh:NodeShape ; sh:description "A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:object_part_qualifier ], + sh:order 1 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:subject_derivative_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "a list of terms from different schemas or terminology systems that have a broader, more general meaning. Broader terms are typically shown as parents in a hierarchy or tree." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:broad_match ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:subject_context_qualifier ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:object_context_qualifier ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:causal_mechanism_qualifier ], + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:species_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:object_form_or_variant_qualifier ], + sh:order 12 ; + sh:path biolink:object_part_qualifier ], + [ sh:datatype xsd:string ; + sh:description "The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:mapped_predicate ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:subject_form_or_variant_qualifier ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:object_derivative_qualifier ], [ sh:datatype xsd:string ; sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:subject_part_qualifier ], [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:subject_context_qualifier ], + sh:order 11 ; + sh:path biolink:object_form_or_variant_qualifier ], [ sh:class biolink:NamedThing ; sh:description "a list of terms from different schemas or terminology systems that have a narrower, more specific meaning. Narrower terms are typically shown as children in a hierarchy or tree." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:narrow_match ], - [ sh:class biolink:NamedThing ; - sh:description "a list of terms from different schemas or terminology systems that have a broader, more general meaning. Broader terms are typically shown as parents in a hierarchy or tree." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:broad_match ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "holds between two entities that have strictly equivalent meanings, with a high degree of confidence" ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:exact_match ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_derivative_qualifier ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:object_derivative_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:mapped_predicate ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path rdf:predicate ], - [ sh:class biolink:OrganismTaxon ; - sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:species_context_qualifier ], [ sh:datatype xsd:string ; sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:anatomical_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_form_or_variant_qualifier ] ; + sh:order 8 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:NamedThing ; + sh:description "holds between two entities that have strictly equivalent meanings, with a high degree of confidence" ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:exact_match ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:causal_mechanism_qualifier ] ; sh:targetClass biolink:PredicateMapping . biolink:Procedure a sh:NodeShape ; sh:closed true ; sh:description "A series of actions conducted in a certain order or manner" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], + sh:order 9 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; @@ -26094,105 +26094,105 @@ biolink:Procedure a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ] ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:Procedure . biolink:SocioeconomicAttribute a sh:NodeShape ; sh:closed true ; sh:description "Attributes relating to a socioeconomic manifestation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ] ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:SocioeconomicAttribute . biolink:TaxonomicRank a sh:NodeShape ; @@ -26211,7 +26211,16 @@ biolink:Treatment a sh:NodeShape ; sh:closed true ; sh:description "A treatment is targeted at a disease or phenotype and may involve multiple drug 'exposures', medical devices and/or procedures" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:class biolink:Device ; + sh:description "connects an entity to one or more (medical) devices" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_device ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], @@ -26219,157 +26228,178 @@ biolink:Treatment a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:class biolink:Drug ; + sh:description "connects an entity to one or more drugs" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_drug ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:class biolink:Drug ; - sh:description "connects an entity to one or more drugs" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_drug ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:class biolink:Device ; - sh:description "connects an entity to one or more (medical) devices" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_device ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:class biolink:Procedure ; sh:description "connects an entity to one or more (medical) procedures" ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path biolink:has_procedure ] ; + sh:path biolink:has_procedure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ] ; sh:targetClass biolink:Treatment . biolink:Zygosity a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; + [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ] ; + sh:order 4 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Zygosity . biolink:Case a sh:NodeShape ; sh:closed true ; sh:description "An individual (human) organism that has a patient role in some clinical context." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], @@ -26380,70 +26410,43 @@ biolink:Case a sh:NodeShape ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 13 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:Case . + +biolink:CellLine a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ] ; - sh:targetClass biolink:Case . - -biolink:CellLine a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; @@ -26452,32 +26455,29 @@ biolink:CellLine a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ] ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:CellLine . biolink:IndividualOrganism a sh:NodeShape ; @@ -26487,61 +26487,61 @@ biolink:IndividualOrganism a sh:NodeShape ; sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ] ; + sh:order 11 ; + sh:path dct:description ] ; sh:targetClass biolink:IndividualOrganism . biolink:Outcome a sh:NodeShape ; @@ -26555,341 +26555,335 @@ biolink:Transcript a sh:NodeShape ; sh:description "An RNA synthesized on a DNA or RNA template by an RNA polymerase." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:full_name ] ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:Transcript . biolink:Drug a sh:NodeShape ; sh:closed true ; sh:description "A substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 4 ; - sh:path biolink:routes_of_delivery ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_chemical_role ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], + sh:order 12 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:max_tolerated_dose ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:is_toxic ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 18 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], + sh:order 17 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 4 ; + sh:path biolink:routes_of_delivery ], [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:description "" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:drug_regulatory_status_world_wide ], + sh:order 5 ; + sh:path biolink:trade_name ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:is_supplement ], - [ sh:datatype xsd:boolean ; - sh:description "" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:is_toxic ], + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 6 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 20 ; sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:iri ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 11 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 6 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:trade_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_chemical_role ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ] ; + sh:order 16 ; + sh:path rdf:type ] ; sh:targetClass biolink:Drug . biolink:ExposureEvent a sh:NodeShape ; sh:closed false ; sh:description "A (possibly time bounded) incidence of a feature of the environment of an organism that influences one or more phenotypic features of that organism, potentially mediated by genes" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ] ; + sh:path biolink:id ] ; sh:targetClass biolink:ExposureEvent . biolink:MaterialSample a sh:NodeShape ; sh:closed true ; sh:description "A sample is a limited quantity of something (e.g. an individual or set of individuals from a population, or a portion of a substance) to be used for testing, analysis, inspection, investigation, demonstration, or trial use. [SIO]" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ] ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ] ; sh:targetClass biolink:MaterialSample . biolink:Pathway a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], + sh:property [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:PhysicalEntity ; sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:enabled_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ] ; + sh:order 14 ; + sh:path dct:description ] ; sh:targetClass biolink:Pathway . biolink:LifeStage a sh:NodeShape ; sh:closed true ; sh:description "A stage of development or growth of an organism, including post-natal adult stages" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; @@ -26899,145 +26893,159 @@ biolink:LifeStage a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; + sh:path biolink:iri ] ; sh:targetClass biolink:LifeStage . biolink:NucleicAcidEntity a sh:NodeShape ; sh:closed true ; sh:description "A nucleic acid entity is a molecular entity characterized by availability in gene databases of nucleotide-based sequence representations of its precise sequence; for convenience of representation, partial sequences of various kinds are included." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 6 ; + sh:path biolink:available_from ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 11 ; - sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "indicates whether a molecular entity is a metabolite" ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], + sh:order 4 ; + sh:path biolink:is_metabolite ], [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:has_biological_sequence ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:trade_name ], [ sh:datatype xsd:string ; sh:order 16 ; sh:path rdf:type ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_chemical_role ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 6 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], + sh:order 14 ; + sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:in_taxon ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:is_toxic ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 3 ; + sh:path biolink:id ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:string ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:trade_name ], [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:is_metabolite ], + sh:order 20 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; sh:order 7 ; - sh:path biolink:max_tolerated_dose ] ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 11 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:NucleicAcidEntity . biolink:MolecularActivity a sh:NodeShape ; sh:closed true ; sh:description "An execution of a molecular function carried out by a gene product or macromolecular complex." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 14 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:class biolink:MolecularEntity ; + sh:description "A chemical entity that is the input for the reaction" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + sh:order 1 ; + sh:path biolink:has_input ], [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 13 ; @@ -27046,123 +27054,115 @@ biolink:MolecularActivity a sh:NodeShape ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:class biolink:MolecularEntity ; - sh:description "A chemical entity that is the output for the reaction" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:MolecularEntity ; - sh:description "A chemical entity that is the input for the reaction" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], [ sh:class biolink:MacromolecularMachineMixin ; sh:description "The gene product, gene, or complex that catalyzes the reaction" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:enabled_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ] ; - sh:targetClass biolink:MolecularActivity . - -biolink:PopulationOfIndividualOrganisms a sh:NodeShape ; - sh:closed true ; - sh:description "A collection of individuals from the same taxonomic class distinguished by one or more characteristics. Characteristics can include, but are not limited to, shared geographic location, genetics, phenotypes." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 15 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:MolecularEntity ; + sh:description "A chemical entity that is the output for the reaction" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 8 ; + sh:order 11 ; sh:path biolink:category ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; + sh:order 7 ; sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ] ; + sh:targetClass biolink:MolecularActivity . + +biolink:PopulationOfIndividualOrganisms a sh:NodeShape ; + sh:closed true ; + sh:description "A collection of individuals from the same taxonomic class distinguished by one or more characteristics. Characteristics can include, but are not limited to, shared geographic location, genetics, phenotypes." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; - sh:path biolink:provided_by ] ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:PopulationOfIndividualOrganisms . biolink:MacromolecularMachineMixin a sh:NodeShape ; @@ -27183,61 +27183,47 @@ biolink:MolecularEntity a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 14 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:has_chemical_role ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 17 ; sh:path biolink:deprecated ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 2 ; - sh:path biolink:available_from ], [ sh:datatype xsd:string ; sh:order 13 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:id ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:trade_name ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:is_toxic ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:trade_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -27248,70 +27234,84 @@ biolink:MolecularEntity a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:max_tolerated_dose ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path dct:description ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 2 ; + sh:path biolink:available_from ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:boolean ; sh:description "indicates whether a molecular entity is a metabolite" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:is_metabolite ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path dct:description ] ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:category ] ; sh:targetClass biolink:MolecularEntity . biolink:PhysicalEntity a sh:NodeShape ; sh:closed true ; sh:description "An entity that has material reality (a.k.a. physical essence)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:PhysicalEntity . biolink:ChemicalEntityOrGeneOrGeneProduct a sh:NodeShape ; @@ -27324,80 +27324,85 @@ biolink:Genotype a sh:NodeShape ; sh:closed true ; sh:description "An information content entity that describes a genome by specifying the total variation in genomic sequence and/or gene expression, relative to some established background" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path biolink:id ], - [ sh:class biolink:Zygosity ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_zygosity ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:has_biological_sequence ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Zygosity ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:in_taxon_label ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_zygosity ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:iri ] ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path biolink:id ] ; sh:targetClass biolink:Genotype . biolink:PhenotypicFeature a sh:NodeShape ; sh:closed true ; sh:description "A combination of entity and quality that makes up a phenotyping statement. An observable characteristic of an individual resulting from the interaction of its genotype with its molecular and physical environment." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; @@ -27405,174 +27410,176 @@ biolink:PhenotypicFeature a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 11 ; + sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:PhenotypicFeature . biolink:SequenceVariant a sh:NodeShape ; sh:closed true ; sh:description "A sequence_variant is a non exact copy of a sequence_feature or genome exhibiting one or more sequence_alteration." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Gene ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:class biolink:Gene ; sh:description "Each allele can be associated with any number of genes" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_gene ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], + [ sh:description "The state of the sequence w.r.t a reference sequence" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], - [ sh:description "The state of the sequence w.r.t a reference sequence" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 3 ; - sh:path biolink:in_taxon ] ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:SequenceVariant . biolink:ChemicalEntity a sh:NodeShape ; sh:closed true ; sh:description "A chemical entity is a physical entity that pertains to chemistry or biochemistry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:max_tolerated_dose ], + sh:order 7 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:trade_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; - sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:is_toxic ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:max_tolerated_dose ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; @@ -27581,52 +27588,32 @@ biolink:ChemicalEntity a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:is_toxic ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ] ; + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 1 ; + sh:path biolink:available_from ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ] ; sh:targetClass biolink:ChemicalEntity . biolink:Agent a sh:NodeShape ; sh:closed true ; sh:description "person, group, organization or project that provides a piece of information (i.e. a knowledge association)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "Different classes of agents have distinct preferred identifiers. For publishers, use the ISBN publisher code. See https://grp.isbn-international.org/ for publisher code lookups. For editors, authors and individual providers, use the individual's ORCID if available; Otherwise, a ScopusID, ResearchID or Google Scholar ID ('GSID') may be used if the author ORCID is unknown. Institutional agents could be identified by an International Standard Name Identifier ('ISNI') code." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a professional relationship between one provider (often a person) within another provider (often an organization). Target provider identity should be specified by a CURIE. Providers may have multiple affiliations." ; + sh:property [ sh:description "a professional relationship between one provider (often a person) within another provider (often an organization). Target provider identity should be specified by a CURIE. Providers may have multiple affiliations." ; sh:order 0 ; sh:path biolink:affiliation ], [ sh:class biolink:Attribute ; @@ -27635,30 +27622,29 @@ biolink:Agent a sh:NodeShape ; sh:order 12 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "the particulars of the place where someone or an organization is situated. For now, this slot is a simple text \"blob\" containing all relevant details of the given location for fitness of purpose. For the moment, this \"address\" can include other contact details such as email and phone number(?)." ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "Different classes of agents have distinct preferred identifiers. For publishers, use the ISBN publisher code. See https://grp.isbn-international.org/ for publisher code lookups. For editors, authors and individual providers, use the individual's ORCID if available; Otherwise, a ScopusID, ResearchID or Google Scholar ID ('GSID') may be used if the author ORCID is unknown. Institutional agents could be identified by an International Standard Name Identifier ('ISNI') code." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:address ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; @@ -27667,6 +27653,20 @@ biolink:Agent a sh:NodeShape ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "the particulars of the place where someone or an organization is situated. For now, this slot is a simple text \"blob\" containing all relevant details of the given location for fitness of purpose. For the moment, this \"address\" can include other contact details such as email and phone number(?)." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:address ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ] ; @@ -27676,20 +27676,23 @@ biolink:ChemicalRole a sh:NodeShape ; sh:closed true ; sh:description "A role played by the molecular entity or part thereof within a chemical context." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; @@ -27698,107 +27701,100 @@ biolink:ChemicalRole a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ] ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ] ; sh:targetClass biolink:ChemicalRole . biolink:DiseaseOrPhenotypicFeature a sh:NodeShape ; sh:closed true ; sh:description "Either one of a disease or an individual phenotypic feature. Some knowledge resources such as Monarch treat these as distinct, others such as MESH conflate. Please see definitions of phenotypic feature and disease in this model for their independent descriptions. This class is helpful to enforce domains and ranges that may involve either a disease or a phenotypic feature." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; @@ -27806,76 +27802,80 @@ biolink:DiseaseOrPhenotypicFeature a sh:NodeShape ; [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:in_taxon_label ] ; - sh:targetClass biolink:DiseaseOrPhenotypicFeature . - -biolink:Gene a sh:NodeShape ; - sh:closed true ; - sh:description "A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; sh:path biolink:in_taxon_label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_biological_sequence ], + sh:order 11 ; + sh:path dct:description ] ; + sh:targetClass biolink:DiseaseOrPhenotypicFeature . + +biolink:Gene a sh:NodeShape ; + sh:closed true ; + sh:description "A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 3 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Symbol for a particular thing" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:symbol ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:order 2 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; @@ -27885,10 +27885,19 @@ biolink:Gene a sh:NodeShape ; biolink:BiologicalSex a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], @@ -27896,30 +27905,29 @@ biolink:BiologicalSex a sh:NodeShape ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:order 5 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; @@ -27929,157 +27937,149 @@ biolink:BiologicalSex a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ] ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ] ; sh:targetClass biolink:BiologicalSex . biolink:Disease a sh:NodeShape ; sh:closed true ; sh:description "A disorder of structure or function, especially one that produces specific signs, phenotypes or symptoms or that affects a specific location and is not simply a direct result of physical injury. A disposition to undergo pathological processes that exists in an organism because of one or more disorders in that organism." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:Disease . biolink:AnatomicalEntity a sh:NodeShape ; sh:closed true ; sh:description "A subcellular location, cell type or gross anatomical part" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:AnatomicalEntity . biolink:GeneOrGeneProduct a sh:NodeShape ; @@ -28115,158 +28115,154 @@ biolink:OrganismTaxon a sh:NodeShape ; sh:maxCount 1 ; sh:order 9 ; sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:category ], [ sh:class biolink:TaxonomicRank ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_taxonomic_rank ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 1 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 4 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 2 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 8 ; + sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 1 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 2 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 8 ; - sh:path rdf:type ] ; + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 4 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:OrganismTaxon . biolink:EvidenceType a sh:NodeShape ; sh:closed true ; sh:description "Class of evidence that supports an association" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 0 ; + sh:path biolink:license ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 13 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ] ; + sh:order 2 ; + sh:path biolink:format ] ; sh:targetClass biolink:EvidenceType . biolink:NamedThing a sh:NodeShape ; sh:closed true ; sh:description "a databased entity or concept/class" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; @@ -28274,105 +28270,86 @@ biolink:NamedThing a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ] ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:NamedThing . biolink:Publication a sh:NodeShape ; sh:closed true ; sh:description "Any ‘published’ piece of information. Publications are considered broadly to include any document or document part made available in print or on the web - which may include scientific journal issues, individual articles, and books - as well as things like pre-prints, white papers, patents, drug labels, web pages, protocol documents, and even a part of a publication if of significant knowledge scope (e.g. a figure, figure legend, or section highlighted by NLP)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 16 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 6 ; - sh:path dct:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:rights ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:iri ], + sh:order 7 ; + sh:path biolink:license ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 19 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:order 3 ; sh:path biolink:keywords ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:order 17 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:order 17 ; - sh:path rdf:type ], + sh:order 15 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 9 ; @@ -28382,23 +28359,56 @@ biolink:Publication a sh:NodeShape ; sh:order 11 ; sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], + sh:order 8 ; + sh:path biolink:rights ], [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:order 18 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:creation_date ] ; sh:targetClass biolink:Publication . biolink:RetrievalSource a sh:NodeShape ; sh:closed true ; sh:description "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 14 ; - sh:path rdf:type ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:format ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 15 ; @@ -28407,36 +28417,57 @@ biolink:RetrievalSource a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 8 ; sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:iri ], + [ sh:description "The InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:resource_id ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:creation_date ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 13 ; sh:path biolink:category ], + [ sh:description "The InformationResources that served as a source for the InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:upstream_resource_ids ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 16 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:license ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 14 ; + sh:path rdf:type ], + [ sh:description "The role of the InformationResource in the retrieval of the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:in ( "primary_knowledge_source" "aggregator_knowledge_source" "supporting_data_source" ) ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:resource_role ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:format ], + sh:order 4 ; + sh:path biolink:license ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -28445,111 +28476,80 @@ biolink:RetrievalSource a sh:NodeShape ; [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:rights ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:creation_date ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "The InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:resource_id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "The InformationResources that served as a source for the InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:upstream_resource_ids ], - [ sh:description "The role of the InformationResource in the retrieval of the knowledge expressed in an Edge, or data used to generate this knowledge." ; - sh:in ( "primary_knowledge_source" "aggregator_knowledge_source" "supporting_data_source" ) ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:resource_role ] ; + sh:path biolink:rights ] ; sh:targetClass biolink:RetrievalSource . biolink:Attribute a sh:NodeShape ; sh:closed true ; sh:description "A property or characteristic of an entity. For example, an apple may have properties such as color, shape, age, crispiness. An environmental sample may have attributes such as depth, lat, long, material." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:order 4 ; + sh:path biolink:iri ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ] ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ] ; sh:targetClass biolink:Attribute . biolink:OntologyClass a sh:NodeShape ; diff --git a/src/biolink_model/datamodel/model.py b/src/biolink_model/datamodel/model.py index bed363529..a8031f335 100644 --- a/src/biolink_model/datamodel/model.py +++ b/src/biolink_model/datamodel/model.py @@ -1,5 +1,5 @@ # Auto generated from biolink_model.yaml by pythongen.py version: 0.0.1 -# Generation date: 2024-03-12T16:41:34 +# Generation date: 2024-03-12T16:45:26 # Schema: Biolink-Model # # id: https://w3id.org/biolink/biolink-model diff --git a/src/biolink_model/scripts/classprefixes.py b/src/biolink_model/scripts/classprefixes.py index 70273ef2a..21d08b169 100644 --- a/src/biolink_model/scripts/classprefixes.py +++ b/src/biolink_model/scripts/classprefixes.py @@ -1,5 +1,5 @@ # Auto generated from class_prefixes.yaml by pythongen.py version: 0.0.1 -# Generation date: 2024-03-12T16:42:58 +# Generation date: 2024-03-12T16:46:51 # Schema: BiolinkClassPrefixes # # id: biolink-model-class-prefixes From 574a281aa4ffda15da2c7956d0676bf411077095 Mon Sep 17 00:00:00 2001 From: Sierra Taylor Moxon Date: Tue, 12 Mar 2024 16:58:46 -0700 Subject: [PATCH 3/3] fix tests --- information_resource.py | 2 +- project/jsonld/biolink_model.context.jsonld | 2 +- project/jsonld/biolink_model.jsonld | 4 +- project/owl/biolink_model.owl.ttl | 5480 +-- project/shacl/biolink_model.shacl.ttl | 33650 +++++++++--------- src/biolink_model/datamodel/model.py | 2 +- src/biolink_model/scripts/classprefixes.py | 2 +- 7 files changed, 19571 insertions(+), 19571 deletions(-) diff --git a/information_resource.py b/information_resource.py index 2524ad853..8b7830683 100644 --- a/information_resource.py +++ b/information_resource.py @@ -1,5 +1,5 @@ # Auto generated from information-resource.yaml by pythongen.py version: 0.0.1 -# Generation date: 2024-03-12T16:46:59 +# Generation date: 2024-03-12T16:56:36 # Schema: Biolink-Model-Information-Resource # # id: https://w3id.org/biolink/information-resource.yaml diff --git a/project/jsonld/biolink_model.context.jsonld b/project/jsonld/biolink_model.context.jsonld index afe37adf9..9e30553e8 100644 --- a/project/jsonld/biolink_model.context.jsonld +++ b/project/jsonld/biolink_model.context.jsonld @@ -1,7 +1,7 @@ { "comments": { "description": "Auto generated by LinkML jsonld context generator", - "generation_date": "2024-03-12T16:45:01", + "generation_date": "2024-03-12T16:54:38", "source": "biolink_model.yaml" }, "@context": { diff --git a/project/jsonld/biolink_model.jsonld b/project/jsonld/biolink_model.jsonld index 126233d7b..d3fe1e092 100644 --- a/project/jsonld/biolink_model.jsonld +++ b/project/jsonld/biolink_model.jsonld @@ -34636,9 +34636,9 @@ ], "metamodel_version": "1.7.0", "source_file": "biolink_model.yaml", - "source_file_date": "2024-03-12T16:44:55", + "source_file_date": "2024-03-12T16:54:32", "source_file_size": 391247, - "generation_date": "2024-03-12T16:45:04", + "generation_date": "2024-03-12T16:54:40", "@type": "SchemaDefinition", "@context": [ "project/jsonld/biolink_model.context.jsonld", diff --git a/project/owl/biolink_model.owl.ttl b/project/owl/biolink_model.owl.ttl index 0b16c4b01..c29b68575 100644 --- a/project/owl/biolink_model.owl.ttl +++ b/project/owl/biolink_model.owl.ttl @@ -2635,13 +2635,13 @@ biolink:AccessibleDnaRegion a owl:Class ; rdfs:label "accessible dna region" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], @@ -2690,32 +2690,32 @@ biolink:AccessibleDnaRegion a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity ontogenic association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:AnatomicalEntityToAnatomicalEntityAssociation ; skos:definition "A relationship between two anatomical entities where the relationship is ontogenic, i.e. the two entities are related by development. A number of different relationship types can be used to specify the precise nature of the relationship." ; skos:inScheme . @@ -2723,32 +2723,32 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity part of association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], biolink:AnatomicalEntityToAnatomicalEntityAssociation ; skos:definition "A relationship between two anatomical entities where the relationship is mereological, i.e the two entities are related by parthood. This includes relationships between cellular components and cells, between cells and tissues, tissues and whole organisms" ; skos:inScheme . @@ -2765,24 +2765,24 @@ biolink:BehaviorToBehavioralFeatureAssociation a owl:Class ; rdfs:label "behavior to behavioral feature association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:BehavioralFeature ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:BehavioralFeature ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Behavior ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Behavior ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An association between an mixture behavior and a behavioral feature manifested by the individual exhibited or has exhibited the behavior." ; @@ -2811,11 +2811,11 @@ biolink:BioticExposure a owl:Class ; biolink:Book a owl:Class ; rdfs:label "book" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:type ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:id ], @@ -2823,8 +2823,8 @@ biolink:Book a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:type ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:type ], biolink:Publication ; skos:definition "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; skos:inScheme . @@ -2850,29 +2850,29 @@ biolink:CaseToPhenotypicFeatureAssociation a owl:Class ; biolink:CausalGeneToDiseaseAssociation a owl:Class ; rdfs:label "causal gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:Disease ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -2965,20 +2965,20 @@ biolink:Cell a owl:Class ; biolink:CellLineAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "cell line as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CellLine ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CellLine ; + owl:onProperty biolink:subject ], biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; skos:inScheme . @@ -2991,241 +2991,241 @@ biolink:CellLineToEntityAssociationMixin a owl:Class ; biolink:ChemicalAffectsGeneAssociation a owl:Class ; rdfs:label "chemical affects gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:object_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; - owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; + owl:maxCardinality 1 ; + owl:onProperty biolink:causal_mechanism_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:species_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_derivative_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:subject_part_qualifier ], + biolink:Association ; + skos:definition "Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.)" ; + skos:inScheme . + +biolink:ChemicalEntityAssessesNamedThingAssociation a owl:Class ; + rdfs:label "chemical entity assesses named thing association" ; + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; - owl:onProperty biolink:causal_mechanism_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], - biolink:Association ; - skos:definition "Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.)" ; - skos:inScheme . - -biolink:ChemicalEntityAssessesNamedThingAssociation a owl:Class ; - rdfs:label "chemical entity assesses named thing association" ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a owl:Class ; rdfs:label "chemical entity or gene or gene product regulates gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "A regulatory relationship between two genes" ; skos:inScheme . @@ -3233,23 +3233,23 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a owl:Class ; biolink:ChemicalGeneInteractionAssociation a owl:Class ; rdfs:label "chemical gene interaction association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_context_qualifier ], @@ -3257,83 +3257,83 @@ biolink:ChemicalGeneInteractionAssociation a owl:Class ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:object_part_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object_context_qualifier ], + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction)" ; skos:exactMatch SIO:001257 ; @@ -3342,19 +3342,19 @@ biolink:ChemicalGeneInteractionAssociation a owl:Class ; biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "chemical or drug or treatment side effect disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; skos:definition "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect." ; @@ -3383,38 +3383,38 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation biolink:ChemicalToChemicalDerivationAssociation a owl:Class ; rdfs:label "chemical to chemical derivation association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:catalyst_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:catalyst_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:catalyst_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:catalyst_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:ChemicalToChemicalAssociation ; skos:definition "A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 catalyst qualifier P" ; skos:inScheme . @@ -3422,20 +3422,20 @@ biolink:ChemicalToChemicalDerivationAssociation a owl:Class ; biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "chemical to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; skos:inScheme ; @@ -3445,6 +3445,12 @@ biolink:ChemicalToPathwayAssociation a owl:Class ; rdfs:label "chemical to pathway association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Pathway ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; @@ -3452,18 +3458,12 @@ biolink:ChemicalToPathwayAssociation a owl:Class ; [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Pathway ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An interaction between a chemical entity and a biological process or pathway." ; skos:exactMatch SIO:001250 ; @@ -3570,38 +3570,38 @@ biolink:ConceptCountAnalysisResult a owl:Class ; biolink:ContributorAssociation a owl:Class ; rdfs:label "contributor association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:Agent ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:qualifiers ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:InformationContentEntity ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:qualifiers ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:InformationContentEntity ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "Any association between an entity (such as a publication) and various agents that contribute to its realisation" ; skos:inScheme . @@ -3612,26 +3612,26 @@ biolink:CorrelatedGeneToDiseaseAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -3660,26 +3660,26 @@ biolink:DiseaseOrPhenotypicFeatureExposure a owl:Class ; biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a owl:Class ; rdfs:label "disease or phenotypic feature to genetic inheritance association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneticInheritance ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneticInheritance ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], biolink:Association ; skos:definition "An association between either a disease or a phenotypic feature and its mode of (genetic) inheritance." ; skos:inScheme . @@ -3687,17 +3687,17 @@ biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a owl:Class ; biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a owl:Class ; rdfs:label "disease or phenotypic feature to location association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin ], biolink:Association ; skos:definition "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; skos:inScheme . @@ -3706,10 +3706,10 @@ biolink:DiseaseToExposureEventAssociation a owl:Class ; rdfs:label "disease to exposure event association" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin ], + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin ], biolink:Association ; skos:definition "An association between an exposure event and a disease." ; skos:inScheme . @@ -3717,29 +3717,29 @@ biolink:DiseaseToExposureEventAssociation a owl:Class ; biolink:DiseaseToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "disease to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:PhenotypicFeature ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQuantifier ], + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin ], + owl:someValuesFrom biolink:FrequencyQuantifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:Disease ; owl:onProperty biolink:subject ], @@ -3794,14 +3794,14 @@ biolink:DrugToEntityAssociationMixin a owl:Class ; biolink:DrugToGeneAssociation a owl:Class ; rdfs:label "drug to gene association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:DrugToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], @@ -3842,34 +3842,34 @@ biolink:DrugToGeneInteractionExposure a owl:Class ; biolink:DruggableGeneToDiseaseAssociation a owl:Class ; rdfs:label "druggable gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_evidence ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:DruggableGeneCategoryEnum ; owl:onProperty biolink:has_evidence ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -3878,13 +3878,13 @@ biolink:EntityToDiseaseAssociation a owl:Class ; rdfs:label "entity to disease association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:max_research_phase ], + owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:max_research_phase ], + owl:allValuesFrom biolink:ClinicalApprovalStatusEnum ; + owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:clinical_approval_status ], + owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:clinical_approval_status ], @@ -3892,8 +3892,8 @@ biolink:EntityToDiseaseAssociation a owl:Class ; owl:allValuesFrom biolink:MaxResearchPhaseEnum ; owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ClinicalApprovalStatusEnum ; - owl:onProperty biolink:clinical_approval_status ], + owl:maxCardinality 1 ; + owl:onProperty biolink:max_research_phase ], biolink:Association ; skos:inScheme . @@ -3912,23 +3912,23 @@ biolink:EntityToOutcomeAssociationMixin a owl:Class ; biolink:EntityToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "entity to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:clinical_approval_status ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MaxResearchPhaseEnum ; + owl:minCardinality 0 ; owl:onProperty biolink:max_research_phase ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:ClinicalApprovalStatusEnum ; owl:onProperty biolink:clinical_approval_status ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ClinicalApprovalStatusEnum ; + owl:minCardinality 0 ; owl:onProperty biolink:clinical_approval_status ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MaxResearchPhaseEnum ; + owl:onProperty biolink:max_research_phase ], biolink:Association ; skos:inScheme . @@ -3969,22 +3969,22 @@ biolink:Event a owl:Class ; biolink:ExonToTranscriptRelationship a owl:Class ; rdfs:label "exon to transcript relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Exon ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Transcript ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Exon ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Transcript ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], biolink:SequenceFeatureRelationship ; skos:definition "A transcript is formed from multiple exons" ; @@ -3993,26 +3993,26 @@ biolink:ExonToTranscriptRelationship a owl:Class ; biolink:ExposureEventToOutcomeAssociation a owl:Class ; rdfs:label "exposure event to outcome association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; owl:onProperty biolink:population_context_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:temporal_context_qualifier ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:temporal_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:time_type ; owl:onProperty biolink:temporal_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:maxCardinality 1 ; owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:temporal_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:population_context_qualifier ], biolink:Association ; skos:definition "An association between an exposure event and an outcome." ; skos:inScheme . @@ -4020,16 +4020,16 @@ biolink:ExposureEventToOutcomeAssociation a owl:Class ; biolink:ExposureEventToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "exposure event to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; owl:allValuesFrom biolink:ExposureEvent ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Any association between an environment and a phenotypic feature, where being in the environment influences the phenotype." ; @@ -4088,176 +4088,176 @@ biolink:Fungus a owl:Class ; biolink:GeneAffectsChemicalAssociation a owl:Class ; rdfs:label "gene affects chemical association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_derivative_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:species_context_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_derivative_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_part_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:subject_part_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_derivative_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:causal_mechanism_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; - owl:onProperty biolink:object_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:allValuesFrom biolink:ChemicalEntityDerivativeEnum ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_derivative_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalPartQualifierEnum ; + owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalOrGeneOrGeneProductFormOrVariantEnum ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], biolink:Association ; skos:definition "Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.)" ; skos:inScheme . @@ -4265,19 +4265,19 @@ biolink:GeneAffectsChemicalAssociation a owl:Class ; biolink:GeneAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "gene as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], biolink:GeneToDiseaseAssociation ; skos:inScheme . @@ -4285,31 +4285,31 @@ biolink:GeneAsAModelOfDiseaseAssociation a owl:Class ; biolink:GeneHasVariantThatContributesToDiseaseAssociation a owl:Class ; rdfs:label "gene has variant that contributes to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; @@ -4587,32 +4587,41 @@ biolink:GeneToExpressionSiteAssociation a owl:Class ; rdfs:label "gene to expression site association" ; rdfs:seeAlso ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:stage_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:quantifier_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], @@ -4622,15 +4631,6 @@ biolink:GeneToExpressionSiteAssociation a owl:Class ; [ a owl:Restriction ; owl:allValuesFrom biolink:LifeStage ; owl:onProperty biolink:stage_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:stage_qualifier ], biolink:Association ; skos:definition "An association between a gene and a gene expression site, possibly qualified by stage/timing info." ; skos:editorialNote "TBD: introduce subclasses for distinction between wild-type and experimental conditions?" ; @@ -4641,15 +4641,15 @@ biolink:GeneToGeneCoexpressionAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneExpressionMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneExpressionMixin ], biolink:GeneToGeneAssociation ; skos:definition "Indicates that two genes are co-expressed, generally under the same conditions." ; skos:inScheme . @@ -4657,31 +4657,31 @@ biolink:GeneToGeneCoexpressionAssociation a owl:Class ; biolink:GeneToGeneFamilyAssociation a owl:Class ; rdfs:label "gene to gene family association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:GeneFamily ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneFamily ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; @@ -4691,30 +4691,30 @@ biolink:GeneToGeneHomologyAssociation a owl:Class ; rdfs:label "gene to gene homology association" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], biolink:GeneToGeneAssociation ; skos:definition "A homology association between two genes. May be orthology (in which case the species of subject and object should differ) or paralogy (in which case the species may be the same)" ; @@ -4723,31 +4723,31 @@ biolink:GeneToGeneHomologyAssociation a owl:Class ; biolink:GeneToGeneProductRelationship a owl:Class ; rdfs:label "gene to gene product relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:GeneProductMixin ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneProductMixin ; + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], biolink:SequenceFeatureRelationship ; skos:definition "A gene is transcribed and potentially translated to a gene product" ; @@ -4758,20 +4758,20 @@ biolink:GeneToGoTermAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:altLabel "functional association" ; @@ -4784,23 +4784,23 @@ biolink:GeneToPathwayAssociation a owl:Class ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:Pathway ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An interaction between a gene or gene product and a biological process or pathway." ; skos:inScheme . @@ -4808,20 +4808,17 @@ biolink:GeneToPathwayAssociation a owl:Class ; biolink:GeneToPhenotypicFeatureAssociation a owl:Class ; rdfs:label "gene to phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:PhenotypicFeature ; owl:onProperty biolink:object ], @@ -4829,8 +4826,11 @@ biolink:GeneToPhenotypicFeatureAssociation a owl:Class ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; skos:exactMatch WBVocab:Gene-Phenotype-Association ; skos:inScheme . @@ -4839,13 +4839,13 @@ biolink:Genome a owl:Class ; rdfs:label "genome" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:PhysicalEssence ], biolink:BiologicalEntity ; skos:closeMatch dcid:GenomeAssemblyUnit ; skos:definition "A genome is the sum of genetic material within a cell or virion." ; @@ -4858,22 +4858,22 @@ biolink:GenomicBackgroundExposure a owl:Class ; rdfs:label "genomic background exposure" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:GeneGroupingMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ExposureEvent ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ThingWithTaxon ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:ExposureEvent ], biolink:Attribute ; skos:definition "A genomic background exposure is where an individual's specific genomic background of genes, sequence variants or other pre-existing genomic conditions constitute a kind of 'exposure' to the organism, leading to or influencing an outcome." ; skos:inScheme . @@ -4883,9 +4883,6 @@ biolink:GenotypeAsAModelOfDiseaseAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], @@ -4895,37 +4892,40 @@ biolink:GenotypeAsAModelOfDiseaseAssociation a owl:Class ; [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:GenotypeToDiseaseAssociation ; skos:inScheme . biolink:GenotypeToGeneAssociation a owl:Class ; rdfs:label "genotype to gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Any association between a genotype and a gene. The genotype have have multiple variants in that gene or a single one. There is no assumption of cardinality" ; @@ -4934,31 +4934,31 @@ biolink:GenotypeToGeneAssociation a owl:Class ; biolink:GenotypeToGenotypePartAssociation a owl:Class ; rdfs:label "genotype to genotype part association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "Any association between one genotype and a genotypic entity that is a sub-component of it" ; @@ -4976,20 +4976,20 @@ biolink:GenotypeToPhenotypicFeatureAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; skos:inScheme . @@ -4997,23 +4997,20 @@ biolink:GenotypeToPhenotypicFeatureAssociation a owl:Class ; biolink:GenotypeToVariantAssociation a owl:Class ; rdfs:label "genotype to variant association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:Genotype ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:SequenceVariant ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], @@ -5022,7 +5019,10 @@ biolink:GenotypeToVariantAssociation a owl:Class ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Any association between a genotype and a sequence variant." ; skos:inScheme . @@ -5089,13 +5089,13 @@ biolink:Haplotype a owl:Class ; rdfs:label "haplotype" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:GenomicEntity ], biolink:BiologicalEntity ; skos:definition "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; skos:exactMatch , @@ -5126,32 +5126,32 @@ biolink:Human a owl:Class ; biolink:InformationContentEntityToNamedThingAssociation a owl:Class ; rdfs:label "information content entity to named thing association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "association between a named thing and a information content entity where the specific context of the relationship between that named thing and the publication is unknown. For example, model organisms databases often capture the knowledge that a gene is found in a journal article, but not specifically the context in which that gene was documented in the article. In these cases, this association with the accompanying predicate 'mentions' could be used. Conversely, for more specific associations (like 'gene to disease association', the publication should be captured as an edge property)." ; skos:inScheme . @@ -5230,16 +5230,16 @@ biolink:MacromolecularComplex a owl:Class ; biolink:MacromolecularMachineToBiologicalProcessAssociation a owl:Class ; rdfs:label "macromolecular machine to biological process association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:BiologicalProcess ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalProcess ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a biological process or pathway (as represented in the GO biological process branch), where the entity carries out some part of the process, regulates it, or acts upstream of it." ; @@ -5248,7 +5248,7 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a owl:Class ; biolink:MacromolecularMachineToCellularComponentAssociation a owl:Class ; rdfs:label "macromolecular machine to cellular component association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; @@ -5257,7 +5257,7 @@ biolink:MacromolecularMachineToCellularComponentAssociation a owl:Class ; owl:allValuesFrom biolink:CellularComponent ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; @@ -5266,17 +5266,17 @@ biolink:MacromolecularMachineToCellularComponentAssociation a owl:Class ; biolink:MacromolecularMachineToMolecularActivityAssociation a owl:Class ; rdfs:label "macromolecular machine to molecular activity association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularActivity ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:MolecularActivity ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:FunctionalAssociation ; skos:definition "A functional association between a macromolecular machine (gene, gene product or complex) and a molecular activity (as represented in the GO molecular function branch), where the entity carries out the activity, or contributes to its execution." ; skos:inScheme . @@ -5292,24 +5292,24 @@ biolink:MaterialSampleDerivationAssociation a owl:Class ; [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:MaterialSample ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An association between a material sample and the material entity from which it is derived." ; skos:inScheme . @@ -5381,15 +5381,15 @@ biolink:MolecularActivityToChemicalEntityAssociation a owl:Class ; [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntity ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; skos:inScheme . @@ -5398,22 +5398,22 @@ biolink:MolecularActivityToMolecularActivityAssociation a owl:Class ; rdfs:label "molecular activity to molecular activity association" ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularActivity ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularActivity ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; skos:inScheme . @@ -5421,31 +5421,31 @@ biolink:MolecularActivityToMolecularActivityAssociation a owl:Class ; biolink:MolecularActivityToPathwayAssociation a owl:Class ; rdfs:label "molecular activity to pathway association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:MolecularActivity ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:Pathway ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularActivity ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "Association that holds the relationship between a reaction and the pathway it participates in." ; @@ -5454,77 +5454,77 @@ biolink:MolecularActivityToPathwayAssociation a owl:Class ; biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a owl:Class ; rdfs:label "named thing associated with likelihood of named thing association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_context_qualifier ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:population_context_qualifier ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:population_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:population_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_context_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:population_context_qualifier ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:population_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], biolink:Association ; skos:inScheme . @@ -5539,10 +5539,10 @@ biolink:NucleosomeModification a owl:Class ; rdfs:label "nucleosome modification" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:EpigenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EpigenomicEntity ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneProductIsoformMixin ], @@ -5559,17 +5559,26 @@ biolink:ObservedExpectedFrequencyAnalysisResult a owl:Class ; biolink:OrganismTaxonToEnvironmentAssociation a owl:Class ; rdfs:label "organism taxon to environment association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -5579,15 +5588,6 @@ biolink:OrganismTaxonToEnvironmentAssociation a owl:Class ; [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], biolink:Association ; skos:inScheme . @@ -5598,37 +5598,37 @@ biolink:OrganismTaxonToOrganismTaxonInteraction a owl:Class ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:associated_environmental_context ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:associated_environmental_context ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:associated_environmental_context ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:associated_environmental_context ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:OrganismTaxonToOrganismTaxonAssociation ; skos:definition "An interaction relationship between two taxa. This may be a symbiotic relationship (encompassing mutualism and parasitism), or it may be non-symbiotic. Example: plague transmitted_by flea; cattle domesticated_by Homo sapiens; plague infects Homo sapiens" ; skos:inScheme . @@ -5639,29 +5639,29 @@ biolink:OrganismTaxonToOrganismTaxonSpecialization a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:OrganismTaxonToOrganismTaxonAssociation ; skos:definition "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; skos:inScheme . @@ -5669,12 +5669,6 @@ biolink:OrganismTaxonToOrganismTaxonSpecialization a owl:Class ; biolink:OrganismToOrganismAssociation a owl:Class ; rdfs:label "organism to organism association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:IndividualOrganism ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:IndividualOrganism ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; @@ -5683,6 +5677,12 @@ biolink:OrganismToOrganismAssociation a owl:Class ; [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:IndividualOrganism ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:IndividualOrganism ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], @@ -5692,17 +5692,17 @@ biolink:OrganismToOrganismAssociation a owl:Class ; biolink:OrganismalEntityAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "organismal entity as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismalEntity ; owl:onProperty biolink:subject ], @@ -5712,50 +5712,50 @@ biolink:OrganismalEntityAsAModelOfDiseaseAssociation a owl:Class ; biolink:PairwiseMolecularInteraction a owl:Class ; rdfs:label "pairwise molecular interaction" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:allValuesFrom biolink:MolecularEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:id ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:interacting_molecules_category ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:id ], biolink:PairwiseGeneToGeneInteraction ; skos:definition "An interaction at the molecular level between two physical entities" ; skos:inScheme . @@ -5847,17 +5847,17 @@ biolink:Phenomenon a owl:Class ; biolink:PhenotypicFeatureToDiseaseAssociation a owl:Class ; rdfs:label "phenotypic feature to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], @@ -5914,32 +5914,32 @@ biolink:Plant a owl:Class ; biolink:PopulationToPopulationAssociation a owl:Class ; rdfs:label "population to population association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between a two populations" ; skos:inScheme . @@ -5956,194 +5956,194 @@ biolink:PosttranslationalModification a owl:Class ; biolink:PredicateMapping a owl:Class ; rdfs:label "predicate mapping" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_context_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:mapped_predicate ], + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:exact_match ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:exact_match ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:narrow_match ], + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_derivative_qualifier ], + owl:onProperty biolink:mapped_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:narrow_match ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:species_context_qualifier ], + owl:onProperty biolink:exact_match ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_context_qualifier ], + owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:broad_match ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:broad_match ], + owl:onProperty biolink:subject_part_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; - owl:onProperty biolink:causal_mechanism_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:onProperty biolink:broad_match ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:mapped_predicate ], + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:exact_match ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_part_qualifier ], + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:species_context_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject_derivative_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:subject_part_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:species_context_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject_context_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:narrow_match ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:anatomical_context_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:mapped_predicate ], + owl:onProperty biolink:object_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:anatomical_context_qualifier ], + owl:onProperty biolink:species_context_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:broad_match ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_part_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:species_context_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:object_derivative_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_form_or_variant_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_part_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_derivative_qualifier ], + owl:onProperty biolink:mapped_predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:species_context_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_part_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CausalMechanismQualifierEnum ; + owl:onProperty biolink:causal_mechanism_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:broad_match ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:anatomical_context_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_part_qualifier ], + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:narrow_match ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:exact_match ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_form_or_variant_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:causal_mechanism_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_form_or_variant_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:exact_match ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_context_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], linkml:ClassDefinition ; skos:definition "A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place." ; skos:inScheme . @@ -6182,10 +6182,10 @@ biolink:ProteinFamily a owl:Class ; rdfs:label "protein family" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GeneGroupingMixin ], biolink:BiologicalEntity ; skos:exactMatch , WIKIDATA:Q2278983 ; @@ -6246,28 +6246,28 @@ biolink:RNAProductIsoform a owl:Class ; biolink:ReactionToCatalystAssociation a owl:Class ; rdfs:label "reaction to catalyst association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:ReactionToParticipantAssociation ; skos:inScheme . biolink:ReagentTargetedGene a owl:Class ; rdfs:label "reagent targeted gene" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GenomicEntity ], biolink:BiologicalEntity ; skos:altLabel "sequence targeting reagent" ; skos:definition "A gene altered in its expression level in the context of some experiment as a result of being targeted by gene-knockdown reagent(s) such as a morpholino or RNAi." ; @@ -6314,23 +6314,23 @@ biolink:SequenceEnum a owl:Class ; biolink:SequenceVariantModulatesTreatmentAssociation a owl:Class ; rdfs:label "sequence variant modulates treatment association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Treatment ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Treatment ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], biolink:Association ; skos:definition "An association between a sequence variant and a treatment or health intervention. The treatment object itself encompasses both the disease and the drug used." ; skos:inScheme ; @@ -6340,45 +6340,45 @@ biolink:Serial a owl:Class ; rdfs:label "serial" ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:volume ], + owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:volume ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:type ], + owl:onProperty biolink:issue ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:volume ], + owl:minCardinality 0 ; + owl:onProperty biolink:type ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:issue ], + owl:onProperty biolink:volume ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:iso_abbreviation ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:type ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:issue ], + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:type ], + owl:onProperty biolink:issue ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:iso_abbreviation ], + owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:issue ], biolink:Publication ; skos:altLabel "journal" ; @@ -6401,10 +6401,10 @@ biolink:SmallMolecule a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:id ], biolink:MolecularEntity ; skos:altLabel "chemical substance" ; @@ -6437,14 +6437,14 @@ biolink:Snv a owl:Class ; biolink:SocioeconomicExposure a owl:Class ; rdfs:label "socioeconomic exposure" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:SocioeconomicAttribute ; + owl:onProperty biolink:has_attribute ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ExposureEvent ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:SocioeconomicAttribute ; - owl:onProperty biolink:has_attribute ], biolink:Attribute ; skos:definition "A socioeconomic exposure is a factor relating to social and financial status of an affected individual (e.g. poverty)." ; skos:inScheme . @@ -6496,7 +6496,10 @@ biolink:StudyVariable a owl:Class ; biolink:TaxonToTaxonAssociation a owl:Class ; rdfs:label "taxon to taxon association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; @@ -6505,11 +6508,8 @@ biolink:TaxonToTaxonAssociation a owl:Class ; owl:allValuesFrom biolink:OrganismTaxon ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], @@ -6535,20 +6535,20 @@ biolink:TranscriptToGeneRelationship a owl:Class ; owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:Transcript ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], biolink:SequenceFeatureRelationship ; skos:definition "A gene is a collection of transcripts" ; skos:inScheme . @@ -6556,6 +6556,9 @@ biolink:TranscriptToGeneRelationship a owl:Class ; biolink:TranscriptionFactorBindingSite a owl:Class ; rdfs:label "transcription factor binding site" ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], + [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; @@ -6564,9 +6567,6 @@ biolink:TranscriptionFactorBindingSite a owl:Class ; [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], biolink:RegulatoryRegion ; skos:altLabel "binding site", "tf binding site" ; @@ -6577,17 +6577,17 @@ biolink:TranscriptionFactorBindingSite a owl:Class ; biolink:VariantAsAModelOfDiseaseAssociation a owl:Class ; rdfs:label "variant as a model of disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], @@ -6599,15 +6599,15 @@ biolink:VariantToGeneExpressionAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneExpressionMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneExpressionMixin ], biolink:VariantToGeneAssociation ; skos:definition "An association between a variant and expression of a gene (i.e. e-QTL)" ; skos:inScheme . @@ -6617,34 +6617,52 @@ biolink:VariantToPhenotypicFeatureAssociation a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], biolink:Association ; skos:inScheme . biolink:VariantToPopulationAssociation a owl:Class ; rdfs:label "variant to population association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_quotient ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_quotient ], + owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:FrequencyQuantifier ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_count ], [ a owl:Restriction ; owl:minCardinality 1 ; @@ -6653,10 +6671,10 @@ biolink:VariantToPopulationAssociation a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:has_quotient ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:FrequencyQualifierMixin ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:has_total ], [ a owl:Restriction ; owl:minCardinality 0 ; @@ -6665,29 +6683,11 @@ biolink:VariantToPopulationAssociation a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:has_count ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:has_count ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_total ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PopulationOfIndividualOrganisms ; - owl:onProperty biolink:object ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_quotient ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQuantifier ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQualifierMixin ], + owl:onProperty biolink:has_count ], biolink:Association ; skos:definition "An association between a variant and a population, where the variant has particular frequency in the population" ; skos:inScheme . @@ -7264,23 +7264,20 @@ biolink:Article a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:issue ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:issue ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:volume ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:published_in ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:issue ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:published_in ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:published_in ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:iso_abbreviation ], @@ -7288,14 +7285,17 @@ biolink:Article a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:volume ], + owl:maxCardinality 1 ; + owl:onProperty biolink:issue ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:iso_abbreviation ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:published_in ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:volume ], biolink:Publication ; skos:definition "a piece of writing on a particular topic presented as a stand-alone section of a larger publication" ; skos:exactMatch fabio:article, @@ -7328,23 +7328,17 @@ biolink:BehavioralFeature a owl:Class ; biolink:BookChapter a owl:Class ; rdfs:label "book chapter" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:published_in ], + [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:published_in ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:volume ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:chapter ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:chapter ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:published_in ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:published_in ], + owl:onProperty biolink:chapter ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:volume ], @@ -7353,7 +7347,13 @@ biolink:BookChapter a owl:Class ; owl:onProperty biolink:volume ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; + owl:onProperty biolink:published_in ], + [ a owl:Restriction ; + owl:minCardinality 0 ; owl:onProperty biolink:chapter ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:volume ], biolink:Publication ; skos:inScheme . @@ -7371,8 +7371,8 @@ biolink:Case a owl:Class ; biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "cell line to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:subject ], @@ -7381,10 +7381,10 @@ biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:CellLineToEntityAssociationMixin ], + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:CellLineToEntityAssociationMixin ], biolink:Association ; skos:definition "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; skos:inScheme . @@ -7404,11 +7404,11 @@ biolink:ChemicalEntityToEntityAssociationMixin a owl:Class ; biolink:ChemicalExposure a owl:Class ; rdfs:label "chemical exposure" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:QuantityValue ; - owl:onProperty biolink:has_quantitative_value ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ExposureEvent ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:QuantityValue ; + owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_quantitative_value ], @@ -7424,23 +7424,23 @@ biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a owl:C owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:FDAIDAAdverseEventEnum ; - owl:onProperty biolink:FDA_adverse_event_level ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:FDA_adverse_event_level ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:FDA_adverse_event_level ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:FDA_adverse_event_level ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:FDA_adverse_event_level ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:FDAIDAAdverseEventEnum ; + owl:onProperty biolink:FDA_adverse_event_level ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], @@ -7569,10 +7569,10 @@ biolink:GeneFamily a owl:Class ; rdfs:label "gene family" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GeneGroupingMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], biolink:BiologicalEntity ; skos:altLabel "orthogroup", "protein family" ; @@ -7587,71 +7587,71 @@ biolink:GeneFamily a owl:Class ; biolink:GenomicSequenceLocalization a owl:Class ; rdfs:label "genomic sequence localization" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:phase ], - [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:genome_build ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:end_interbase_coordinate ], + owl:allValuesFrom biolink:StrandEnum ; + owl:onProperty biolink:genome_build ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:start_interbase_coordinate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:StrandEnum ; - owl:onProperty biolink:strand ], + owl:onProperty biolink:phase ], [ a owl:Restriction ; - owl:allValuesFrom biolink:StrandEnum ; - owl:onProperty biolink:genome_build ], + owl:minCardinality 0 ; + owl:onProperty biolink:start_interbase_coordinate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NucleicAcidEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:strand ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:start_interbase_coordinate ], + owl:onProperty biolink:strand ], [ a owl:Restriction ; owl:allValuesFrom biolink:PhaseEnum ; owl:onProperty biolink:phase ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:strand ], + owl:onProperty biolink:end_interbase_coordinate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:phase ], + owl:onProperty biolink:start_interbase_coordinate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:StrandEnum ; + owl:onProperty biolink:strand ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:end_interbase_coordinate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:strand ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NucleicAcidEntity ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:minCardinality 0 ; + owl:onProperty biolink:phase ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:NucleicAcidEntity ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:start_interbase_coordinate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:genome_build ], @@ -7667,38 +7667,38 @@ biolink:GenomicSequenceLocalization a owl:Class ; biolink:GenotypeToDiseaseAssociation a owl:Class ; rdfs:label "genotype to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:inScheme ; skos:note "TODO decide no how to model pathogenicity" . @@ -7711,14 +7711,8 @@ biolink:GenotypeToEntityAssociationMixin a owl:Class ; biolink:GeographicLocation a owl:Class ; rdfs:label "geographic location" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:float ; + owl:minCardinality 0 ; owl:onProperty biolink:longitude ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:float ; - owl:onProperty biolink:latitude ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:latitude ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:latitude ], @@ -7726,8 +7720,14 @@ biolink:GeographicLocation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:longitude ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:float ; owl:onProperty biolink:longitude ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:float ; + owl:onProperty biolink:latitude ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:latitude ], biolink:PlanetaryEntity ; skos:definition "a location that can be described in lat/long coordinates" ; skos:exactMatch STY:T083, @@ -7776,10 +7776,10 @@ biolink:OrganismTaxonToEntityAssociation a owl:Class ; biolink:PairwiseGeneToGeneInteraction a owl:Class ; rdfs:label "pairwise gene to gene interaction" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; @@ -7793,10 +7793,10 @@ biolink:Polypeptide a owl:Class ; rdfs:label "polypeptide" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], biolink:BiologicalEntity ; skos:altLabel "amino acid entity" ; skos:definition "A polypeptide is a molecular entity characterized by availability in protein databases of amino-acid-based sequence representations of its precise primary structure; for convenience of representation, partial sequences of various kinds are included, even if they do not represent a physical molecule." ; @@ -7808,37 +7808,37 @@ biolink:Polypeptide a owl:Class ; biolink:ReactionToParticipantAssociation a owl:Class ; rdfs:label "reaction to participant association" ; rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:stoichiometry ], + [ a owl:Restriction ; owl:allValuesFrom xsd:integer ; owl:onProperty biolink:stoichiometry ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ReactionDirectionEnum ; + owl:onProperty biolink:reaction_direction ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:reaction_side ], + owl:onProperty biolink:stoichiometry ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:reaction_direction ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:reaction_side ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:stoichiometry ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:reaction_direction ], + owl:onProperty biolink:reaction_side ], [ a owl:Restriction ; owl:allValuesFrom biolink:ReactionSideEnum ; owl:onProperty biolink:reaction_side ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:stoichiometry ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ReactionDirectionEnum ; - owl:onProperty biolink:reaction_direction ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:reaction_direction ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularEntity ; @@ -7874,29 +7874,29 @@ biolink:StudyPopulation a owl:Class ; biolink:Treatment a owl:Class ; rdfs:label "treatment" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:Drug ; owl:onProperty biolink:has_drug ], [ a owl:Restriction ; owl:allValuesFrom biolink:Procedure ; owl:onProperty biolink:has_procedure ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Device ; - owl:onProperty biolink:has_device ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_device ], + owl:onProperty biolink:has_drug ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_procedure ], + owl:onProperty biolink:has_device ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ExposureEvent ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_procedure ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Drug ; - owl:onProperty biolink:has_drug ], + owl:allValuesFrom biolink:Device ; + owl:onProperty biolink:has_device ], biolink:NamedThing ; skos:altLabel "medical action", "medical intervention" ; @@ -7909,38 +7909,38 @@ biolink:Treatment a owl:Class ; biolink:VariantToDiseaseAssociation a owl:Class ; rdfs:label "variant to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:VariantToEntityAssociationMixin ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme ; skos:note "TODO decide no how to model pathogenicity" . @@ -7957,17 +7957,17 @@ biolink:VariantToGeneAssociation a owl:Class ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:Gene ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium)" ; skos:inScheme . @@ -8610,23 +8610,23 @@ biolink:ActivityAndBehavior a owl:Class ; biolink:AnatomicalEntityToAnatomicalEntityAssociation a owl:Class ; rdfs:label "anatomical entity to anatomical entity association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:AnatomicalEntity ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], biolink:Association ; skos:inScheme . @@ -8658,35 +8658,35 @@ biolink:ChemicalRole a owl:Class ; biolink:ChemicalToChemicalAssociation a owl:Class ; rdfs:label "chemical to chemical association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntity ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:ChemicalEntity ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], biolink:Association ; skos:definition "A relationship between two chemical entities. This can encompass actual interactions as well as temporal causal edges, e.g. one chemical converted to another." ; skos:inScheme . @@ -8765,52 +8765,52 @@ biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a owl:Class ; rdfs:label "gene to disease or phenotypic feature association" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:GeneOrGeneProductOrChemicalEntityAspectEnum ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_aspect_qualifier ], @@ -8861,26 +8861,26 @@ biolink:NoncodingRNAProduct a owl:Class ; biolink:OrganismTaxonToOrganismTaxonAssociation a owl:Class ; rdfs:label "organism taxon to organism taxon association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation ], [ a owl:Restriction ; owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "A relationship between two organism taxon nodes" ; skos:inScheme . @@ -8928,16 +8928,16 @@ biolink:RegulatoryRegion a owl:Class ; rdfs:label "regulatory region" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], biolink:BiologicalEntity ; skos:altLabel "regulatory element" ; skos:definition "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; @@ -9259,14 +9259,14 @@ biolink:CellularComponent a owl:Class ; biolink:DatasetDistribution a owl:Class ; rdfs:label "dataset distribution" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:distribution_download_url ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:distribution_download_url ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:distribution_download_url ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:distribution_download_url ], biolink:InformationContentEntity ; skos:definition "an item that holds distribution level information about a dataset." ; skos:exactMatch dcat:Distribution ; @@ -9278,20 +9278,20 @@ biolink:DatasetSummary a owl:Class ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:source_web_page ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:source_logo ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:source_web_page ], + owl:onProperty biolink:source_logo ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:source_web_page ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:source_logo ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:source_logo ], + owl:onProperty biolink:source_web_page ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:source_logo ], biolink:InformationContentEntity ; skos:definition "an item that holds summary level information about a dataset." ; skos:inScheme . @@ -9318,16 +9318,16 @@ biolink:GeneProductIsoformMixin a owl:Class ; biolink:GeneToGeneAssociation a owl:Class ; rdfs:label "gene to gene association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; @@ -9416,23 +9416,23 @@ biolink:Protein a owl:Class ; biolink:QuantityValue a owl:Class ; rdfs:label "quantity value" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom ; + owl:minCardinality 0 ; owl:onProperty biolink:has_unit ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom ; owl:onProperty biolink:has_unit ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_numeric_value ], [ a owl:Restriction ; owl:allValuesFrom xsd:double ; owl:onProperty biolink:has_numeric_value ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_unit ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_numeric_value ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_unit ], + owl:onProperty biolink:has_numeric_value ], biolink:Annotation ; skos:definition "A value of an attribute that is quantitative and measurable, expressed as a combination of a unit and a numeric value" ; skos:inScheme . @@ -9440,23 +9440,23 @@ biolink:QuantityValue a owl:Class ; biolink:SequenceFeatureRelationship a owl:Class ; rdfs:label "sequence feature relationship" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:allValuesFrom biolink:NucleicAcidEntity ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NucleicAcidEntity ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:NucleicAcidEntity ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:Association ; skos:definition "For example, a particular exon is part of a particular transcript or gene" ; skos:exactMatch CHADO:feature_relationship ; @@ -9575,29 +9575,29 @@ biolink:ClinicalAttribute a owl:Class ; biolink:DatasetVersion a owl:Class ; rdfs:label "dataset version" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:ingest_date ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DatasetDistribution ; - owl:onProperty biolink:has_distribution ], - [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:Dataset ; owl:onProperty biolink:has_dataset ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Dataset ; + owl:minCardinality 0 ; owl:onProperty biolink:has_dataset ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:ingest_date ], + owl:onProperty biolink:has_distribution ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_distribution ], + owl:onProperty biolink:ingest_date ], [ a owl:Restriction ; owl:minCardinality 0 ; + owl:onProperty biolink:ingest_date ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DatasetDistribution ; owl:onProperty biolink:has_distribution ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_dataset ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_distribution ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:ingest_date ], @@ -9629,22 +9629,22 @@ biolink:FDAIDAAdverseEventEnum a owl:Class ; biolink:FunctionalAssociation a owl:Class ; rdfs:label "functional association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:MacromolecularMachineMixin ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:OntologyClass ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:MacromolecularMachineMixin ; owl:onProperty biolink:subject ], biolink:Association ; skos:definition "An association between a macromolecular machine mixin (gene, gene product or complex of gene products) and either a molecular activity, a biological process or a cellular location in which a function is executed." ; @@ -10030,38 +10030,38 @@ biolink:CellularOrganism a owl:Class ; biolink:ChemicalMixture a owl:Class ; rdfs:label "chemical mixture" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:highest_FDA_approval_status ], - [ a owl:Restriction ; owl:allValuesFrom biolink:DrugDeliveryEnum ; owl:onProperty biolink:routes_of_delivery ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:is_supplement ], + owl:onProperty biolink:routes_of_delivery ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:drug_regulatory_status_world_wide ], + owl:maxCardinality 1 ; + owl:onProperty biolink:highest_FDA_approval_status ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:is_supplement ], + owl:maxCardinality 1 ; + owl:onProperty biolink:drug_regulatory_status_world_wide ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:highest_FDA_approval_status ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:highest_FDA_approval_status ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:routes_of_delivery ], + owl:onProperty biolink:drug_regulatory_status_world_wide ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:is_supplement ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:drug_regulatory_status_world_wide ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:drug_regulatory_status_world_wide ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:is_supplement ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:is_supplement ], biolink:ChemicalEntity ; skos:closeMatch dcid:ChemicalCompound ; skos:definition "A chemical mixture is a chemical entity composed of two or more molecular entities." ; @@ -10087,29 +10087,29 @@ biolink:GeneProductMixin a owl:Class ; biolink:GeneToDiseaseAssociation a owl:Class ; rdfs:label "gene to disease association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:Disease ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneToEntityAssociationMixin ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; skos:closeMatch dcid:DiseaseGeneAssociation ; skos:exactMatch SIO:000983 ; @@ -10129,29 +10129,26 @@ biolink:KnowledgeLevelEnum a owl:Class ; biolink:MolecularActivity a owl:Class ; rdfs:label "molecular activity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:enabled_by ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_output ], + owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MolecularEntity ; - owl:onProperty biolink:has_output ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Occurrent ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:MolecularEntity ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent ], + owl:maxCardinality 1 ; + owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_output ], @@ -10160,7 +10157,10 @@ biolink:MolecularActivity a owl:Class ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:allValuesFrom biolink:MolecularEntity ; - owl:onProperty biolink:has_input ], + owl:onProperty biolink:has_output ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_output ], biolink:BiologicalProcessOrActivity ; skos:altLabel "molecular event", "molecular function", @@ -10180,38 +10180,38 @@ biolink:PhysicalEssenceOrOccurrent a owl:Class ; biolink:RetrievalSource a owl:Class ; rdfs:label "retrieval source" ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:resource_role ], - [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:upstream_resource_ids ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:upstream_resource_ids ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:resource_id ], + owl:onProperty biolink:resource_role ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:resource_id ], + owl:onProperty biolink:resource_role ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:resource_role ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:xref ], + owl:maxCardinality 1 ; + owl:onProperty biolink:resource_id ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:resource_role ], + owl:maxCardinality 1 ; + owl:onProperty biolink:upstream_resource_ids ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:resource_id ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:upstream_resource_ids ], + owl:onProperty biolink:resource_id ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:xref ], biolink:InformationContentEntity ; skos:definition "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved." ; skos:inScheme . @@ -10572,68 +10572,68 @@ biolink:Drug a owl:Class ; biolink:Entity a owl:Class ; rdfs:label "entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_attribute ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:deprecated ], - [ a owl:Restriction ; owl:allValuesFrom xsd:boolean ; owl:onProperty biolink:deprecated ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:description ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:iri ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:name ], + owl:minCardinality 0 ; + owl:onProperty biolink:category ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:deprecated ], + owl:allValuesFrom biolink:Attribute ; + owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:type ], [ a owl:Restriction ; - owl:allValuesFrom biolink:narrative_text ; - owl:onProperty biolink:description ], + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:category ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:iri ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_attribute ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:iri ], + owl:onProperty biolink:description ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:category ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:name ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Attribute ; - owl:onProperty biolink:has_attribute ], + owl:onProperty biolink:deprecated ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:type ], + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:allValuesFrom biolink:iri_type ; owl:onProperty biolink:iri ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], + owl:allValuesFrom biolink:narrative_text ; + owl:onProperty biolink:description ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:description ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:type ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:category ], + owl:onProperty biolink:deprecated ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:iri ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:name ], linkml:ClassDefinition ; skos:definition "Root Biolink Model class for all things and informational relationships, real or imagined." ; skos:inScheme . @@ -10651,12 +10651,12 @@ biolink:Genotype a owl:Class ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_zygosity ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Zygosity ; - owl:onProperty biolink:has_zygosity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_zygosity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GenomicEntity ], @@ -10664,7 +10664,7 @@ biolink:Genotype a owl:Class ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:Zygosity ; owl:onProperty biolink:has_zygosity ], biolink:BiologicalEntity ; skos:definition "An information content entity that describes a genome by specifying the total variation in genomic sequence and/or gene expression, relative to some established background" ; @@ -10824,16 +10824,16 @@ biolink:NucleicAcidEntity a owl:Class ; rdfs:label "nucleic acid entity" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:someValuesFrom biolink:ThingWithTaxon ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ThingWithTaxon ], + owl:someValuesFrom biolink:GenomicEntity ], biolink:MolecularEntity ; skos:altLabel "genomic entity", "sequence feature" ; @@ -10954,37 +10954,37 @@ biolink:BiologicalProcessOrActivity a owl:Class ; rdfs:label "biological process or activity" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_output ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:Occurrent ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:has_input ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_output ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:has_output ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_input ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; owl:allValuesFrom biolink:PhysicalEntity ; owl:onProperty biolink:enabled_by ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:minCardinality 0 ; owl:onProperty biolink:has_output ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:has_input ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:has_output ], + owl:onProperty biolink:has_input ], biolink:BiologicalEntity ; skos:definition "Either an individual molecular activity, or a collection of causally connected molecular activities in a biological system." ; skos:inScheme . @@ -10992,38 +10992,38 @@ biolink:BiologicalProcessOrActivity a owl:Class ; biolink:Agent a owl:Class ; rdfs:label "agent" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:name ], + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:affiliation ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:address ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:address ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:address ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:affiliation ], + owl:maxCardinality 1 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:address ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; + owl:minCardinality 0 ; owl:onProperty biolink:affiliation ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:address ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:address ], biolink:AdministrativeEntity ; skos:altLabel "group" ; skos:definition "person, group, organization or project that provides a piece of information (i.e. a knowledge association)" ; @@ -11127,10 +11127,10 @@ biolink:BiologicalProcess a owl:Class ; rdfs:label "biological process" ; rdfs:subClassOf [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:Occurrent ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent ], + owl:someValuesFrom biolink:OntologyClass ], biolink:BiologicalProcessOrActivity ; skos:broadMatch WIKIDATA:P682 ; skos:definition "One or more causally connected executions of molecular functions" ; @@ -11161,13 +11161,13 @@ biolink:MolecularEntity a owl:Class ; biolink:OrganismTaxon a owl:Class ; rdfs:label "organism taxon" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:TaxonomicRank ; + owl:minCardinality 0 ; owl:onProperty biolink:has_taxonomic_rank ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_taxonomic_rank ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:TaxonomicRank ; owl:onProperty biolink:has_taxonomic_rank ], biolink:NamedThing ; skos:altLabel "taxon", @@ -11182,41 +11182,41 @@ biolink:OrganismTaxon a owl:Class ; biolink:InformationContentEntity a owl:Class ; rdfs:label "information content entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:license ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:date ; + owl:minCardinality 0 ; owl:onProperty biolink:creation_date ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:rights ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:license ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:creation_date ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:creation_date ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:rights ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:license ], + owl:onProperty biolink:format ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:maxCardinality 1 ; owl:onProperty biolink:format ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:rights ], + owl:allValuesFrom xsd:date ; + owl:onProperty biolink:creation_date ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:license ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:maxCardinality 1 ; owl:onProperty biolink:rights ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:format ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:format ], + owl:minCardinality 0 ; + owl:onProperty biolink:license ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:rights ], biolink:NamedThing ; skos:altLabel "information", "information artefact", @@ -11278,47 +11278,47 @@ biolink:predicate_type a rdfs:Datatype ; biolink:Attribute a owl:Class ; rdfs:label "attribute" ; rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:name ], + [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_qualitative_value ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:iri_type ; + owl:onProperty biolink:iri ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:has_qualitative_value ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:minCardinality 0 ; owl:onProperty biolink:has_qualitative_value ], [ a owl:Restriction ; - owl:allValuesFrom biolink:iri_type ; - owl:onProperty biolink:iri ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:minCardinality 1 ; + owl:onProperty biolink:has_attribute_type ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:iri ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_qualitative_value ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:name ], [ a owl:Restriction ; owl:allValuesFrom biolink:QuantityValue ; owl:onProperty biolink:has_quantitative_value ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:has_attribute_type ], + owl:maxCardinality 1 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:has_attribute_type ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:iri ], @@ -11330,35 +11330,35 @@ biolink:Attribute a owl:Class ; biolink:Gene a owl:Class ; rdfs:label "gene" ; rdfs:subClassOf [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:symbol ], + [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:symbol ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GenomicEntity ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:symbol ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:minCardinality 0 ; + owl:onProperty biolink:symbol ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:GeneOrGeneProduct ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:symbol ], biolink:BiologicalEntity ; skos:broadMatch ; skos:definition "A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions." ; @@ -11373,37 +11373,37 @@ biolink:SequenceVariant a owl:Class ; rdfs:label "sequence variant" ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass ], + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_gene ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_gene ], + owl:minCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:has_gene ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:GenomicEntity ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:id ], biolink:BiologicalEntity ; skos:altLabel "allele" ; skos:closeMatch , @@ -11447,68 +11447,68 @@ biolink:AnatomicalEntity a owl:Class ; biolink:Publication a owl:Class ; rdfs:label "publication" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:pages ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:publication_type ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:summary ], + owl:maxCardinality 1 ; + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:summary ], + owl:onProperty biolink:pages ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Agent ; - owl:onProperty biolink:authors ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; + owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:minCardinality 1 ; owl:onProperty biolink:publication_type ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom biolink:Agent ; owl:onProperty biolink:authors ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:pages ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:keywords ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 1 ; owl:onProperty biolink:id ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:publication_type ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:summary ], [ a owl:Restriction ; owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:xref ], + owl:onProperty biolink:mesh_terms ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], + owl:minCardinality 0 ; + owl:onProperty biolink:authors ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; + owl:minCardinality 0 ; owl:onProperty biolink:mesh_terms ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:name ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:summary ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:keywords ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:name ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:mesh_terms ], + owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:summary ], biolink:InformationContentEntity ; skos:definition "Any ‘published’ piece of information. Publications are considered broadly to include any document or document part made available in print or on the web - which may include scientific journal issues, individual articles, and books - as well as things like pre-prints, white papers, patents, drug labels, web pages, protocol documents, and even a part of a publication if of significant knowledge scope (e.g. a figure, figure legend, or section highlighted by NLP)." ; skos:exactMatch IAO:0000311 ; @@ -11541,56 +11541,56 @@ biolink:BiologicalEntity a owl:Class ; biolink:ChemicalEntity a owl:Class ; rdfs:label "chemical entity" ; rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:is_toxic ], - [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:is_toxic ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:is_toxic ], - [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:trade_name ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DrugAvailabilityEnum ; - owl:onProperty biolink:available_from ], + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssence ], [ a owl:Restriction ; - owl:minCardinality 0 ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalRole ; owl:onProperty biolink:has_chemical_role ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:available_from ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:max_tolerated_dose ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:max_tolerated_dose ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:max_tolerated_dose ], + owl:allValuesFrom xsd:boolean ; + owl:onProperty biolink:is_toxic ], [ a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence ], + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; + owl:minCardinality 0 ; owl:onProperty biolink:max_tolerated_dose ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ], + owl:minCardinality 0 ; + owl:onProperty biolink:trade_name ], [ a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment ], + owl:allValuesFrom biolink:DrugAvailabilityEnum ; + owl:onProperty biolink:available_from ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:trade_name ], + owl:onProperty biolink:is_toxic ], + [ a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:trade_name ], + owl:onProperty biolink:is_toxic ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalRole ; + owl:minCardinality 0 ; owl:onProperty biolink:has_chemical_role ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:trade_name ], biolink:NamedThing ; skos:broadMatch STY:T167 ; skos:definition "A chemical entity is a physical entity that pertains to chemistry or biochemistry." ; @@ -11725,176 +11725,182 @@ biolink:association_slot a owl:DatatypeProperty ; biolink:Association a owl:Class ; rdfs:label "association" ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_category_closure ], + owl:onProperty biolink:knowledge_source ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom xsd:string ; owl:onProperty biolink:qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:aggregator_knowledge_source ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:knowledge_source ], [ a owl:Restriction ; - owl:allValuesFrom xsd:boolean ; - owl:onProperty biolink:negated ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:publications ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:retrieval_source_ids ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:primary_knowledge_source ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_category ], + owl:onProperty biolink:knowledge_source ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:aggregator_knowledge_source ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:timepoint ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:timepoint ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_category ], + owl:maxCardinality 1 ; + owl:onProperty biolink:negated ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:original_predicate ], + owl:minCardinality 0 ; + owl:onProperty biolink:qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:qualifiers ], + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_category ], + owl:onProperty biolink:object_category_closure ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_namespace ], + owl:minCardinality 0 ; + owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:original_subject ], + owl:onProperty biolink:category ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_closure ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:negated ], + owl:onProperty biolink:subject_closure ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualifiers ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:type ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:object_label_closure ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_closure ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:subject_category_closure ], + owl:onProperty biolink:object_category ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualifier ], + owl:onProperty biolink:subject_closure ], [ a owl:Restriction ; owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:subject_category ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:original_subject ], + owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:OntologyClass ; - owl:onProperty biolink:object_category_closure ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_label_closure ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_category ], + owl:maxCardinality 1 ; + owl:onProperty biolink:original_subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_namespace ], + owl:onProperty biolink:negated ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:original_object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_namespace ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:has_evidence ], + owl:onProperty biolink:subject_category_closure ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_closure ], + owl:maxCardinality 1 ; + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_namespace ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_label_closure ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_namespace ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:primary_knowledge_source ], + owl:onProperty biolink:object_category ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_namespace ], + owl:allValuesFrom biolink:EvidenceType ; + owl:onProperty biolink:has_evidence ], [ a owl:Restriction ; owl:allValuesFrom biolink:time_type ; owl:onProperty biolink:timepoint ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:negated ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:type ], + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:original_predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:EvidenceType ; - owl:onProperty biolink:has_evidence ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:subject_category_closure ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:original_object ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_closure ], + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:aggregator_knowledge_source ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:type ], + owl:allValuesFrom biolink:Publication ; + owl:onProperty biolink:publications ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_category ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_namespace ], + owl:onProperty biolink:subject_label_closure ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:original_object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:primary_knowledge_source ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:knowledge_source ], + owl:onProperty biolink:original_subject ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_label_closure ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:type ], [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:category ], + owl:minCardinality 0 ; + owl:onProperty biolink:timepoint ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:knowledge_source ], + owl:minCardinality 0 ; + owl:onProperty biolink:object_category_closure ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:original_object ], @@ -11902,41 +11908,35 @@ biolink:Association a owl:Class ; owl:minCardinality 0 ; owl:onProperty biolink:object_label_closure ], [ a owl:Restriction ; - owl:allValuesFrom biolink:RetrievalSource ; - owl:onProperty biolink:retrieval_source_ids ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:primary_knowledge_source ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:knowledge_source ], + owl:allValuesFrom biolink:OntologyClass ; + owl:onProperty biolink:subject_category ], [ a owl:Restriction ; owl:minCardinality 0 ; + owl:onProperty biolink:object_closure ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:category ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_category ], + owl:onProperty biolink:qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:original_subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:original_predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_namespace ], + owl:allValuesFrom biolink:RetrievalSource ; + owl:onProperty biolink:retrieval_source_ids ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:subject_category_closure ], + owl:onProperty biolink:qualifiers ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:retrieval_source_ids ], + owl:allValuesFrom xsd:boolean ; + owl:onProperty biolink:negated ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Publication ; - owl:onProperty biolink:publications ], + owl:maxCardinality 1 ; + owl:onProperty biolink:original_predicate ], biolink:Entity ; skos:definition "A typed association between two entities, supported by evidence" ; skos:exactMatch OBAN:association, @@ -11957,34 +11957,34 @@ biolink:NamedThing a owl:Class ; rdfs:label "named thing" ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:full_name ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:full_name ], + owl:onProperty biolink:provided_by ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:provided_by ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:xref ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:synonym ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:provided_by ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; owl:onProperty biolink:xref ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:synonym ], + owl:maxCardinality 1 ; + owl:onProperty biolink:full_name ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:category ], + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:full_name ], [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:full_name ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:category ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:synonym ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:category ], @@ -12039,895 +12039,913 @@ biolink:subject a owl:ObjectProperty ; skos:inScheme . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellLineAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:GeneToGeneCoexpressionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLineAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:GeneToGeneCoexpressionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToPathwayAssociation ; + rdfs:subClassOf biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToPathwayAssociation . + owl:someValuesFrom biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetDistribution ; + rdfs:subClassOf biolink:Plant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetDistribution . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin . + owl:someValuesFrom biolink:Plant . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalModifier ; + rdfs:subClassOf biolink:PathologicalAnatomicalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalModifier . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:SequenceVariant ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:VariantToEntityAssociationMixin . + owl:someValuesFrom biolink:PathologicalAnatomicalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugToGeneAssociation ; + rdfs:subClassOf biolink:PairwiseMolecularInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugToGeneAssociation . + owl:someValuesFrom biolink:PairwiseMolecularInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicQuality ; + rdfs:subClassOf biolink:VariantToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicQuality . + owl:someValuesFrom biolink:VariantToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:RegulatoryRegion ; + rdfs:subClassOf biolink:Invertebrate ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RegulatoryRegion . + owl:someValuesFrom biolink:Invertebrate . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation ; + rdfs:subClassOf biolink:VariantToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . + owl:someValuesFrom biolink:VariantToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalIntervention ; + rdfs:subClassOf biolink:ClinicalAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalIntervention . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Outcome ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin . + owl:someValuesFrom biolink:ClinicalAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:ObservedExpectedFrequencyAnalysisResult ; + rdfs:subClassOf biolink:Case ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ObservedExpectedFrequencyAnalysisResult . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Genotype ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide . + owl:someValuesFrom biolink:Case . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneHomologyAssociation ; + rdfs:subClassOf biolink:PhenotypicFeatureToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneHomologyAssociation . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ActivityAndBehavior . + owl:someValuesFrom biolink:PhenotypicFeatureToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:CommonDataElement ; + rdfs:subClassOf biolink:SequenceAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CommonDataElement . + owl:someValuesFrom biolink:SequenceAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneFamilyAssociation ; + rdfs:subClassOf biolink:MaterialSample ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneFamilyAssociation . + owl:someValuesFrom biolink:MaterialSample . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalTrial ; + rdfs:subClassOf biolink:GenotypeAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalTrial . + owl:someValuesFrom biolink:GenotypeAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ConfidenceLevel ; + rdfs:subClassOf biolink:StudyVariable ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ConfidenceLevel . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PathologicalEntityMixin . + owl:someValuesFrom biolink:StudyVariable . [] a owl:Restriction ; - rdfs:subClassOf biolink:Vertebrate ; + rdfs:subClassOf biolink:NamedThing ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Vertebrate . + owl:someValuesFrom biolink:NamedThing . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalProcess ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalProcess . + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonInteraction . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; owl:allValuesFrom xsd:string ; owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:qualified_predicate ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], + owl:minCardinality 0 ; + owl:onProperty biolink:subject_direction_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], + owl:onProperty biolink:object_aspect_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ] ; + owl:onProperty biolink:subject_direction_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToFeatureOrDiseaseQualifiersMixin . + owl:someValuesFrom biolink:FeatureOrDiseaseQualifiersToEntityMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToGeneAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToGeneAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:MaterialSample ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:MaterialSampleToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToGeneAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToGeneAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityOrProteinOrPolypeptide . [] a owl:Restriction ; - rdfs:subClassOf biolink:Procedure ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Procedure . + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:double ; + owl:onProperty biolink:has_percentage ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_percentage ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:integer ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_total ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:double ; + owl:onProperty biolink:has_quotient ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_count ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_percentage ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:FrequencyQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalEntity ; + rdfs:subClassOf biolink:GenotypeToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalEntity . + owl:someValuesFrom biolink:GenotypeToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalProcessExposure ; + rdfs:subClassOf biolink:CodingSequence ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalProcessExposure . + owl:someValuesFrom biolink:CodingSequence . [] a owl:Restriction ; - rdfs:subClassOf biolink:PlanetaryEntity ; + rdfs:subClassOf biolink:BiologicalProcessOrActivity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PlanetaryEntity . + owl:someValuesFrom biolink:BiologicalProcessOrActivity . [] a owl:Restriction ; - rdfs:subClassOf biolink:FunctionalAssociation ; + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Human ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:FunctionalAssociation . + owl:someValuesFrom biolink:Human . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneProductIsoformMixin . + rdfs:subClassOf biolink:DatasetVersion ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DatasetVersion . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToChemicalEntityAssociation ; + rdfs:subClassOf biolink:Genotype ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToChemicalEntityAssociation . + owl:someValuesFrom biolink:Genotype . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenomicSequenceLocalization ; + rdfs:subClassOf biolink:GeographicLocation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenomicSequenceLocalization . + owl:someValuesFrom biolink:GeographicLocation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Hospitalization ; + rdfs:subClassOf biolink:PlanetaryEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Hospitalization . + owl:someValuesFrom biolink:PlanetaryEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:SmallMolecule ; + rdfs:subClassOf biolink:ChemicalExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SmallMolecule . + owl:someValuesFrom biolink:ChemicalExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:NucleicAcidEntity ; + rdfs:subClassOf biolink:MolecularActivityToChemicalEntityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleicAcidEntity . + owl:someValuesFrom biolink:MolecularActivityToChemicalEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:NamedThing ; + rdfs:subClassOf biolink:Serial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NamedThing . + owl:someValuesFrom biolink:Serial . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReactionToParticipantAssociation ; + rdfs:subClassOf biolink:MicroRNA ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReactionToParticipantAssociation . + owl:someValuesFrom biolink:MicroRNA . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:GeneOrGeneProduct ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation . + owl:someValuesFrom biolink:GeneToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Gene ; + rdfs:subClassOf biolink:RetrievalSource ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Gene . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssence . + owl:someValuesFrom biolink:RetrievalSource . [] a owl:Restriction ; - rdfs:subClassOf biolink:Dataset ; + rdfs:subClassOf biolink:FunctionalAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Dataset . + owl:someValuesFrom biolink:FunctionalAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularEntity ; + rdfs:subClassOf biolink:DatasetDistribution ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularEntity . + owl:someValuesFrom biolink:DatasetDistribution . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeature ; + rdfs:subClassOf biolink:Study ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeature . + owl:someValuesFrom biolink:Study . [] a owl:Restriction ; - rdfs:subClassOf biolink:Food ; + rdfs:subClassOf biolink:TranscriptionFactorBindingSite ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Food . + owl:someValuesFrom biolink:TranscriptionFactorBindingSite . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; - owl:onProperty biolink:object ], + owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:sex_qualifier ], + owl:onProperty biolink:expression_site ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 0 ; + owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalSex ; - owl:onProperty biolink:sex_qualifier ], + owl:allValuesFrom biolink:AnatomicalEntity ; + owl:onProperty biolink:expression_site ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:LifeStage ; + owl:onProperty biolink:stage_qualifier ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:sex_qualifier ], + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:quantifier_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:phenotypic_state ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ] ; + owl:onProperty biolink:phenotypic_state ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:expression_site ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:phenotypic_state ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin . + owl:someValuesFrom biolink:GeneExpressionMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation ; + rdfs:subClassOf biolink:MolecularActivityToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . + owl:someValuesFrom biolink:MolecularActivityToPathwayAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:TranscriptionFactorBindingSite ; + rdfs:subClassOf biolink:ObservedExpectedFrequencyAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TranscriptionFactorBindingSite . + owl:someValuesFrom biolink:ObservedExpectedFrequencyAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalMixture ; + rdfs:subClassOf biolink:GeneToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalMixture . + owl:someValuesFrom biolink:GeneToPathwayAssociation . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:in_taxon ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:OrganismTaxon ; - owl:onProperty biolink:in_taxon ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:in_taxon_label ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:in_taxon_label ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:in_taxon_label ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:in_taxon ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ThingWithTaxon . + rdfs:subClassOf biolink:ClinicalMeasurement ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ClinicalMeasurement . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:PhysicalEntity ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:PhysicalEntity . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:DruggableGeneToDiseaseAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DruggableGeneToDiseaseAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Disease ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Disease . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Procedure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Procedure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:BiologicalProcess ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:BiologicalProcess . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Cohort ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Cohort . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom owl:Thing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:object ] ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin . + owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicLocation ; + rdfs:subClassOf biolink:FoodAdditive ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicLocation . + owl:someValuesFrom biolink:FoodAdditive . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalAffectsGeneAssociation ; + rdfs:subClassOf biolink:ReactionToParticipantAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalAffectsGeneAssociation . + owl:someValuesFrom biolink:ReactionToParticipantAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProcessedMaterial ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProcessedMaterial . + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AdministrativeEntity ; + rdfs:subClassOf biolink:PairwiseGeneToGeneInteraction ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AdministrativeEntity . + owl:someValuesFrom biolink:PairwiseGeneToGeneInteraction . [] a owl:Restriction ; - rdfs:subClassOf biolink:BehaviorToBehavioralFeatureAssociation ; + rdfs:subClassOf biolink:GeneticInheritance ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehaviorToBehavioralFeatureAssociation . + owl:someValuesFrom biolink:GeneticInheritance . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . + rdfs:subClassOf biolink:GenotypicSex ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GenotypicSex . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToVariantAssociation ; + rdfs:subClassOf biolink:GeneToGeneFamilyAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToVariantAssociation . + owl:someValuesFrom biolink:GeneToGeneFamilyAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:BehavioralExposure ; + rdfs:subClassOf biolink:BehaviorToBehavioralFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehavioralExposure . + owl:someValuesFrom biolink:BehaviorToBehavioralFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:id ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:id ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:OntologyClass . + rdfs:subClassOf biolink:PhenotypicQuality ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:PhenotypicQuality . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceVariantModulatesTreatmentAssociation ; + rdfs:subClassOf biolink:RegulatoryRegion ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceVariantModulatesTreatmentAssociation . + owl:someValuesFrom biolink:RegulatoryRegion . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReagentTargetedGene ; + rdfs:subClassOf biolink:GeneToExpressionSiteAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReagentTargetedGene . + owl:someValuesFrom biolink:GeneToExpressionSiteAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:Case ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:CaseToEntityAssociationMixin . + owl:someValuesFrom biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:allValuesFrom biolink:ExposureEvent ; owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . + owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_aspect_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:subject_aspect_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:object_direction_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:string ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DirectionQualifierEnum ; - owl:onProperty biolink:subject_direction_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:qualified_predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject_aspect_qualifier ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FeatureOrDiseaseQualifiersToEntityMixin . + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:NucleicAcidSequenceMotif ; + rdfs:subClassOf biolink:CellLine ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleicAcidSequenceMotif . + owl:someValuesFrom biolink:CellLine . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneAssociation ; + rdfs:subClassOf biolink:Attribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneAssociation . + owl:someValuesFrom biolink:Attribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:Protein ; + rdfs:subClassOf biolink:CorrelatedGeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Protein . + owl:someValuesFrom biolink:CorrelatedGeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ConceptCountAnalysisResult ; + rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonSpecialization ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ConceptCountAnalysisResult . + owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonSpecialization . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation ; + rdfs:subClassOf biolink:GeneAffectsChemicalAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . + owl:someValuesFrom biolink:GeneAffectsChemicalAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxon ; + rdfs:subClassOf biolink:SocioeconomicExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxon . + owl:someValuesFrom biolink:SocioeconomicExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Patent ; + rdfs:subClassOf biolink:EnvironmentalFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Patent . + owl:someValuesFrom biolink:EnvironmentalFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalEntity ; + rdfs:subClassOf biolink:GenotypeToVariantAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalEntity . + owl:someValuesFrom biolink:GenotypeToVariantAssociation . [] a owl:Restriction ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Occurrent . + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:PhenotypicFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:PhenotypicFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicExposure ; + rdfs:subClassOf biolink:SequenceFeatureRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicExposure . + owl:someValuesFrom biolink:SequenceFeatureRelationship . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Vertebrate ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Vertebrate . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:MacromolecularMachineToMolecularActivityAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:MacromolecularMachineToMolecularActivityAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:CommonDataElement ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:CommonDataElement . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:subject ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OrganismTaxonToEntityAssociation . + +[] a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneProductIsoformMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellLine ; + rdfs:subClassOf biolink:Polypeptide ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLine . + owl:someValuesFrom biolink:Polypeptide . [] a owl:Restriction ; - rdfs:subClassOf biolink:StudyResult ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyResult . + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:biological_sequence ; + owl:onProperty biolink:has_biological_sequence ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:has_biological_sequence ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_biological_sequence ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GenomicEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:RNAProduct ; + rdfs:subClassOf biolink:VariantToPopulationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RNAProduct . + owl:someValuesFrom biolink:VariantToPopulationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToGeneExpressionAssociation ; + rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToGeneExpressionAssociation . + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:PopulationOfIndividualOrganisms ; + rdfs:subClassOf biolink:DrugToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PopulationOfIndividualOrganisms . + owl:someValuesFrom biolink:DrugToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ComplexMolecularMixture ; + rdfs:subClassOf biolink:GenotypeToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ComplexMolecularMixture . + owl:someValuesFrom biolink:GenotypeToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:LogOddsAnalysisResult ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:LogOddsAnalysisResult . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:SequenceVariant ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:VariantToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalFoodContaminant ; + rdfs:subClassOf biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalFoodContaminant . + owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Book ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Book . + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom owl:Thing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:MacromolecularMachineToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntity ; + rdfs:subClassOf biolink:ComplexMolecularMixture ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntity . + owl:someValuesFrom biolink:ComplexMolecularMixture . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneFamily ; + rdfs:subClassOf biolink:StudyPopulation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneFamily . + owl:someValuesFrom biolink:StudyPopulation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularMixture ; + rdfs:subClassOf biolink:ReactionToCatalystAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularMixture . + owl:someValuesFrom biolink:ReactionToCatalystAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:StudyPopulation ; + rdfs:subClassOf biolink:PreprintPublication ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyPopulation . + owl:someValuesFrom biolink:PreprintPublication . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicSex ; + rdfs:subClassOf biolink:RelativeFrequencyAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicSex . + owl:someValuesFrom biolink:RelativeFrequencyAnalysisResult . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:MaterialSample ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:BiologicalSex ; + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:PhenotypicFeature ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:sex_qualifier ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ] ; + owl:minCardinality 0 ; + owl:onProperty biolink:sex_qualifier ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MaterialSampleToEntityAssociationMixin . + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociationMixin . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneOrGeneProduct . + rdfs:subClassOf biolink:DrugExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:DrugExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicFeatureToDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicFeatureToDiseaseAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:synonym ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:anyURI ; + owl:onProperty biolink:xref ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:synonym ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:xref ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneProductMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Agent ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Agent . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Plant ; + rdfs:subClassOf biolink:SequenceVariant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Plant . + owl:someValuesFrom biolink:SequenceVariant . [] a owl:Restriction ; - rdfs:subClassOf biolink:StudyVariable ; + rdfs:subClassOf biolink:Drug ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:StudyVariable . + owl:someValuesFrom biolink:Drug . [] a owl:Restriction ; rdfs:subClassOf biolink:Phenomenon ; @@ -12935,183 +12953,172 @@ biolink:subject a owl:ObjectProperty ; owl:someValuesFrom biolink:Phenomenon . [] a owl:Restriction ; - rdfs:subClassOf biolink:PairwiseGeneToGeneInteraction ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PairwiseGeneToGeneInteraction . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalFinding ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalFinding . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToLocationAssociation ; + rdfs:subClassOf biolink:LifeStage ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . + owl:someValuesFrom biolink:LifeStage . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalFeature ; + rdfs:subClassOf biolink:PhysiologicalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalFeature . + owl:someValuesFrom biolink:PhysiologicalProcess . [] a owl:Restriction ; - rdfs:subClassOf biolink:Invertebrate ; + rdfs:subClassOf biolink:ProteinDomain ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Invertebrate . + owl:someValuesFrom biolink:ProteinDomain . [] a owl:Restriction ; - rdfs:subClassOf biolink:ComplexChemicalExposure ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ComplexChemicalExposure . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:ContributorAssociation ; + rdfs:subClassOf biolink:Genome ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ContributorAssociation . + owl:someValuesFrom biolink:Genome . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; owl:allValuesFrom xsd:string ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:id ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:id ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:OntologyClass . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ModelToDiseaseAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:biological_sequence ; - owl:onProperty biolink:has_biological_sequence ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_biological_sequence ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Outcome ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_biological_sequence ] ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EpigenomicEntity . + owl:someValuesFrom biolink:EntityToOutcomeAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:Bacterium ; + rdfs:subClassOf biolink:ChemicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Bacterium . + owl:someValuesFrom biolink:ChemicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalAttribute ; + rdfs:subClassOf biolink:NucleicAcidEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalAttribute . + owl:someValuesFrom biolink:NucleicAcidEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Genotype ; + rdfs:subClassOf biolink:Bacterium ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Genotype . + owl:someValuesFrom biolink:Bacterium . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:GeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:GeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:BioticExposure ; + rdfs:subClassOf biolink:EntityToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BioticExposure . + owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:IndividualOrganism ; + rdfs:subClassOf biolink:DiseaseToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:IndividualOrganism . + owl:someValuesFrom biolink:DiseaseToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation ; + rdfs:subClassOf biolink:PathologicalAnatomicalStructure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . + owl:someValuesFrom biolink:PathologicalAnatomicalStructure . [] a owl:Restriction ; - rdfs:subClassOf biolink:Device ; + rdfs:subClassOf biolink:IndividualOrganism ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Device . + owl:someValuesFrom biolink:IndividualOrganism . [] a owl:Restriction ; - rdfs:subClassOf biolink:SocioeconomicAttribute ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SocioeconomicAttribute . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExposureEventToOutcomeAssociation ; + rdfs:subClassOf biolink:JournalArticle ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExposureEventToOutcomeAssociation . + owl:someValuesFrom biolink:JournalArticle . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToBiologicalProcessAssociation ; + rdfs:subClassOf biolink:CellLineAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToBiologicalProcessAssociation . + owl:someValuesFrom biolink:CellLineAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalCourse ; + rdfs:subClassOf biolink:ChiSquaredAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalCourse . + owl:someValuesFrom biolink:ChiSquaredAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinFamily ; + rdfs:subClassOf biolink:InformationContentEntityToNamedThingAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinFamily . + owl:someValuesFrom biolink:InformationContentEntityToNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:TranscriptToGeneRelationship ; + rdfs:subClassOf biolink:OrganismTaxonToEnvironmentAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TranscriptToGeneRelationship . + owl:someValuesFrom biolink:OrganismTaxonToEnvironmentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularComplex ; + rdfs:subClassOf biolink:CellularOrganism ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularComplex . + owl:someValuesFrom biolink:CellularOrganism . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalProcess ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalProcess . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneOrGeneProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneCoexpressionAssociation ; + rdfs:subClassOf biolink:CaseToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneCoexpressionAssociation . + owl:someValuesFrom biolink:CaseToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Haplotype ; + rdfs:subClassOf biolink:ProcessedMaterial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Haplotype . + owl:someValuesFrom biolink:ProcessedMaterial . [] a owl:Restriction ; - rdfs:subClassOf biolink:SocioeconomicExposure ; + rdfs:subClassOf biolink:Exon ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SocioeconomicExposure . + owl:someValuesFrom biolink:Exon . [] a owl:Restriction ; - rdfs:subClassOf biolink:MicroRNA ; + rdfs:subClassOf biolink:BioticExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MicroRNA . + owl:someValuesFrom biolink:BioticExposure . [] a owl:Restriction ; rdfs:subClassOf biolink:Mammal ; @@ -13119,1130 +13126,1123 @@ biolink:subject a owl:ObjectProperty ; owl:someValuesFrom biolink:Mammal . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SubjectOfInvestigation . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:GeneOrGeneProduct ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Publication ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Publication . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:BookChapter ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BookChapter . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinIsoform ; + rdfs:subClassOf biolink:ExonToTranscriptRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinIsoform . + owl:someValuesFrom biolink:ExonToTranscriptRelationship . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToGenotypePartAssociation ; + rdfs:subClassOf biolink:Hospitalization ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToGenotypePartAssociation . + owl:someValuesFrom biolink:Hospitalization . [] a owl:Restriction ; - rdfs:subClassOf biolink:SeverityValue ; + rdfs:subClassOf biolink:MolecularActivityToMolecularActivityAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SeverityValue . + owl:someValuesFrom biolink:MolecularActivityToMolecularActivityAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:LifeStage ; + rdfs:subClassOf biolink:GeographicLocationAtTime ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:LifeStage . + owl:someValuesFrom biolink:GeographicLocationAtTime . [] a owl:Restriction ; - rdfs:subClassOf biolink:Virus ; + rdfs:subClassOf biolink:ContributorAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Virus . + owl:someValuesFrom biolink:ContributorAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToDiseaseAssociation ; + rdfs:subClassOf biolink:Zygosity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToDiseaseAssociation . + owl:someValuesFrom biolink:Zygosity . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenomicBackgroundExposure ; + rdfs:subClassOf biolink:RNAProductIsoform ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenomicBackgroundExposure . + owl:someValuesFrom biolink:RNAProductIsoform . [] a owl:Restriction ; - rdfs:subClassOf biolink:ExonToTranscriptRelationship ; + rdfs:subClassOf biolink:GenotypeToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExonToTranscriptRelationship . + owl:someValuesFrom biolink:GenotypeToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Human ; + rdfs:subClassOf biolink:PhenotypicSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Human . + owl:someValuesFrom biolink:PhenotypicSex . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:NucleicAcidSequenceMotif ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:NucleicAcidSequenceMotif . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:RNAProduct ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:RNAProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToDiseaseAssociation ; + rdfs:subClassOf biolink:Snv ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToDiseaseAssociation . + owl:someValuesFrom biolink:Snv . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:ClinicalTrial ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:ClinicalTrial . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:CellLine ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:CellLine ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ] ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:CellLineToEntityAssociationMixin . [] a owl:Restriction ; + rdfs:subClassOf biolink:GenomicSequenceLocalization ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GenomicSequenceLocalization . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:in_taxon_label ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:in_taxon ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:in_taxon ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:OrganismTaxon ; + owl:onProperty biolink:in_taxon ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:label_type ; + owl:onProperty biolink:in_taxon_label ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:in_taxon_label ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PathognomonicityQuantifier . + owl:someValuesFrom biolink:ThingWithTaxon . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhysiologicalProcess ; + rdfs:subClassOf biolink:MolecularEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhysiologicalProcess . + owl:someValuesFrom biolink:MolecularEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetVersion ; + rdfs:subClassOf biolink:GenomicBackgroundExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetVersion . + owl:someValuesFrom biolink:GenomicBackgroundExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonSpecialization ; + rdfs:subClassOf biolink:GeneToPhenotypicFeatureAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeneToPhenotypicFeatureAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Cell ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Cell . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:Protein ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Protein . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:PathologicalProcessExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonSpecialization . + owl:someValuesFrom biolink:PathologicalProcessExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:FoodAdditive ; + rdfs:subClassOf biolink:Behavior ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:FoodAdditive . + owl:someValuesFrom biolink:Behavior . [] a owl:Restriction ; - rdfs:subClassOf biolink:RetrievalSource ; + rdfs:subClassOf biolink:GeneAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RetrievalSource . + owl:someValuesFrom biolink:GeneAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Snv ; + rdfs:subClassOf biolink:MaterialSampleDerivationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Snv . + owl:someValuesFrom biolink:MaterialSampleDerivationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:NoncodingRNAProduct ; + rdfs:subClassOf biolink:Device ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NoncodingRNAProduct . + owl:someValuesFrom biolink:Device . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSample ; + rdfs:subClassOf biolink:TranscriptToGeneRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSample . + owl:someValuesFrom biolink:TranscriptToGeneRelationship . [] a owl:Restriction ; - rdfs:subClassOf biolink:EvidenceType ; + rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EvidenceType . + owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:CaseToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:AnatomicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CaseToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:AnatomicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:GeneToGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:GeneToGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:MolecularMixture ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:MolecularMixture . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:Disease ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin . + owl:someValuesFrom biolink:PhysicalEssenceOrOccurrent . [] a owl:Restriction ; - rdfs:subClassOf biolink:MaterialSampleDerivationAssociation ; + rdfs:subClassOf biolink:Dataset ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MaterialSampleDerivationAssociation . + owl:someValuesFrom biolink:Dataset . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:ProteinIsoform ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:ProteinIsoform . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:RelationshipQuantifier . + rdfs:subClassOf biolink:ReagentTargetedGene ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ReagentTargetedGene . [] a owl:Restriction ; - rdfs:subClassOf biolink:SiRNA ; + rdfs:subClassOf biolink:BehavioralFeature ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SiRNA . + owl:someValuesFrom biolink:BehavioralFeature . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChiSquaredAnalysisResult ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChiSquaredAnalysisResult . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PathognomonicityQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntity ; + rdfs:subClassOf biolink:DatasetSummary ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntity . + owl:someValuesFrom biolink:DatasetSummary . [] a owl:Restriction ; - rdfs:subClassOf biolink:TextMiningResult ; + rdfs:subClassOf biolink:ChemicalToChemicalAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TextMiningResult . + owl:someValuesFrom biolink:ChemicalToChemicalAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGoTermAssociation ; + rdfs:subClassOf biolink:PosttranslationalModification ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGoTermAssociation . + owl:someValuesFrom biolink:PosttranslationalModification . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:time_type ; - owl:onProperty biolink:timepoint ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:timepoint ], + owl:allValuesFrom biolink:Drug ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:timepoint ] ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ExposureEvent . + owl:someValuesFrom biolink:DrugToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellularComponent ; + rdfs:subClassOf biolink:SocioeconomicAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellularComponent . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhysicalEssenceOrOccurrent . + owl:someValuesFrom biolink:SocioeconomicAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToExpressionSiteAssociation ; + rdfs:subClassOf biolink:ChemicalAffectsGeneAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToExpressionSiteAssociation . + owl:someValuesFrom biolink:ChemicalAffectsGeneAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:AccessibleDnaRegion ; + rdfs:subClassOf biolink:Transcript ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AccessibleDnaRegion . + owl:someValuesFrom biolink:Transcript . [] a owl:Restriction ; - rdfs:subClassOf biolink:Pathway ; + rdfs:subClassOf biolink:OrganismAttribute ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Pathway . + owl:someValuesFrom biolink:OrganismAttribute . [] a owl:Restriction ; - rdfs:subClassOf biolink:BehavioralFeature ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BehavioralFeature . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Occurrent . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureExposure ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureExposure . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment . [] a owl:Restriction ; - rdfs:subClassOf biolink:Zygosity ; + rdfs:subClassOf biolink:VariantToGeneExpressionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Zygosity . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:Outcome . + owl:someValuesFrom biolink:VariantToGeneExpressionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DatasetSummary ; + rdfs:subClassOf biolink:OrganismalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DatasetSummary . + owl:someValuesFrom biolink:OrganismalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:CorrelatedGeneToDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CorrelatedGeneToDiseaseAssociation . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Case ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:CaseToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhenotypicFeature ; + rdfs:subClassOf biolink:TaxonToTaxonAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhenotypicFeature . + owl:someValuesFrom biolink:TaxonToTaxonAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:CodingSequence ; + rdfs:subClassOf biolink:EnvironmentalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CodingSequence . + owl:someValuesFrom biolink:EnvironmentalProcess . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ] ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Polypeptide ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Polypeptide . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:JournalArticle ; + rdfs:subClassOf biolink:SeverityValue ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:JournalArticle . + owl:someValuesFrom biolink:SeverityValue . [] a owl:Restriction ; - rdfs:subClassOf biolink:PhysicalEntity ; + rdfs:subClassOf biolink:BiologicalSex ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PhysicalEntity . + owl:someValuesFrom biolink:BiologicalSex . [] a owl:Restriction ; - rdfs:subClassOf biolink:PreprintPublication ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PreprintPublication . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ActivityAndBehavior . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToPathwayAssociation ; + rdfs:subClassOf biolink:VariantAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToPathwayAssociation . + owl:someValuesFrom biolink:VariantAsAModelOfDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalProcessOrActivity ; + rdfs:subClassOf biolink:MacromolecularMachineToCellularComponentAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalProcessOrActivity . + owl:someValuesFrom biolink:MacromolecularMachineToCellularComponentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Article ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Article . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureExposure . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalExposure ; + rdfs:subClassOf biolink:DrugToGeneInteractionExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalExposure . + owl:someValuesFrom biolink:DrugToGeneInteractionExposure . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SpecificityQuantifier . + rdfs:subClassOf biolink:ComplexChemicalExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ComplexChemicalExposure . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:ExposureEvent ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:Genotype ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:object ], + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:EntityToExposureEventAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:ExposureEventToPhenotypicFeatureAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ExposureEventToPhenotypicFeatureAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToPhenotypicFeatureAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToPhenotypicFeatureAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:Study ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Study . + owl:someValuesFrom biolink:GenotypeToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:EntityToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:ChemicalToChemicalDerivationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EntityToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:ChemicalToChemicalDerivationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalGeneInteractionAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalGeneInteractionAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:RelationshipQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalRole ; + rdfs:subClassOf biolink:Entity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalRole . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct . + owl:someValuesFrom biolink:Entity . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:PhenotypicFeature ; - owl:onProperty biolink:subject ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:BiologicalSex ; - owl:onProperty biolink:sex_qualifier ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:sex_qualifier ], + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; + owl:onProperty biolink:object ], + [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ChemicalEntityToEntityAssociationMixin . + +[] a owl:Restriction ; + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:name ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:sex_qualifier ] ; + owl:onProperty biolink:name ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:symbol_type ; + owl:onProperty biolink:name ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin . + owl:someValuesFrom biolink:MacromolecularMachineMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:ProteinDomain ; + rdfs:subClassOf biolink:ExposureEventToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ProteinDomain . + owl:someValuesFrom biolink:ExposureEventToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:RelativeFrequencyAnalysisResult ; + rdfs:subClassOf biolink:Activity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RelativeFrequencyAnalysisResult . + owl:someValuesFrom biolink:Activity . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivityToMolecularActivityAssociation ; + rdfs:subClassOf biolink:BookChapter ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivityToMolecularActivityAssociation . + owl:someValuesFrom biolink:BookChapter . [] a owl:Restriction ; - rdfs:subClassOf biolink:Event ; + rdfs:subClassOf biolink:CellularComponent ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Event . + owl:someValuesFrom biolink:CellularComponent . [] a owl:Restriction ; - rdfs:subClassOf biolink:Disease ; + rdfs:subClassOf biolink:VariantToPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Disease . + owl:someValuesFrom biolink:VariantToPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ClinicalMeasurement ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SubjectOfInvestigation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:PopulationToPopulationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ClinicalMeasurement . + owl:someValuesFrom biolink:PopulationToPopulationAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom xsd:anyURI ; - owl:onProperty biolink:xref ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:xref ], + owl:maxCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:synonym ], + owl:minCardinality 1 ; + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:label_type ; - owl:onProperty biolink:synonym ] ; + owl:allValuesFrom biolink:Disease ; + owl:onProperty biolink:object ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneProductMixin . + owl:someValuesFrom biolink:EntityToDiseaseAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToPopulationAssociation ; + rdfs:subClassOf biolink:Pathway ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToPopulationAssociation . - -[] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:SensitivityQuantifier . + owl:someValuesFrom biolink:Pathway . [] a owl:Restriction ; - rdfs:subClassOf biolink:Onset ; + rdfs:subClassOf biolink:GeneToGeneHomologyAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Onset . + owl:someValuesFrom biolink:GeneToGeneHomologyAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Drug ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Drug . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:object_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:DirectionQualifierEnum ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:object_aspect_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject_direction_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:qualified_predicate ], + [ a owl:Restriction ; + owl:allValuesFrom xsd:string ; + owl:onProperty biolink:subject_aspect_qualifier ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:qualified_predicate ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:EntityToFeatureOrDiseaseQualifiersMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellularOrganism ; + rdfs:subClassOf biolink:InformationContentEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellularOrganism . + owl:someValuesFrom biolink:InformationContentEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonAssociation ; + rdfs:subClassOf biolink:SiRNA ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonAssociation . + owl:someValuesFrom biolink:SiRNA . [] a owl:Restriction ; - rdfs:subClassOf biolink:WebPage ; + rdfs:subClassOf biolink:ClinicalCourse ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:WebPage . + owl:someValuesFrom biolink:ClinicalCourse . [] a owl:Restriction ; - rdfs:subClassOf biolink:InformationContentEntity ; + rdfs:subClassOf biolink:BehavioralExposure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:InformationContentEntity . + owl:someValuesFrom biolink:BehavioralExposure . [] a owl:Restriction ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalOrDrugOrTreatment . + rdfs:subClassOf biolink:ChemicalEntityAssessesNamedThingAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:ChemicalEntityAssessesNamedThingAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceAssociation ; + rdfs:subClassOf biolink:WebPage ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceAssociation . + owl:someValuesFrom biolink:WebPage . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismAttribute ; + rdfs:subClassOf biolink:OrganismTaxon ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismAttribute . + owl:someValuesFrom biolink:OrganismTaxon . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:MolecularActivity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:MolecularActivity . [] a owl:Restriction ; - rdfs:subClassOf biolink:PosttranslationalModification ; + rdfs:subClassOf biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PosttranslationalModification . + owl:someValuesFrom biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:RNAProductIsoform ; + rdfs:subClassOf biolink:Fungus ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:RNAProductIsoform . + owl:someValuesFrom biolink:Fungus . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:biological_sequence ; - owl:onProperty biolink:has_biological_sequence ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_biological_sequence ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_biological_sequence ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GenomicEntity . + rdfs:subClassOf biolink:Article ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Article . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntityAssessesNamedThingAssociation ; + rdfs:subClassOf biolink:Event ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntityAssessesNamedThingAssociation . + owl:someValuesFrom biolink:Event . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation ; + rdfs:subClassOf biolink:NucleosomeModification ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . + owl:someValuesFrom biolink:NucleosomeModification . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:stage_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:LifeStage ; - owl:onProperty biolink:stage_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:AnatomicalEntity ; - owl:onProperty biolink:expression_site ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:phenotypic_state ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:expression_site ], - [ a owl:Restriction ; - owl:allValuesFrom owl:Thing ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:quantifier_qualifier ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:expression_site ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:phenotypic_state ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:DiseaseOrPhenotypicFeature ; - owl:onProperty biolink:phenotypic_state ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:stage_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:quantifier_qualifier ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneExpressionMixin . + rdfs:subClassOf biolink:Agent ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:Agent . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeographicLocationAtTime ; + rdfs:subClassOf biolink:GrossAnatomicalStructure ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeographicLocationAtTime . + owl:someValuesFrom biolink:GrossAnatomicalStructure . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneAffectsChemicalAssociation ; + rdfs:subClassOf biolink:Virus ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneAffectsChemicalAssociation . + owl:someValuesFrom biolink:Virus . [] a owl:Restriction ; - rdfs:subClassOf biolink:Cell ; + rdfs:subClassOf biolink:Treatment ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Cell . + owl:someValuesFrom biolink:Treatment . [] a owl:Restriction ; - rdfs:subClassOf biolink:DruggableGeneToDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DruggableGeneToDiseaseAssociation . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:SensitivityQuantifier . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; owl:minCardinality 0 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:name ], + owl:onProperty biolink:has_biological_sequence ], [ a owl:Restriction ; - owl:allValuesFrom biolink:symbol_type ; - owl:onProperty biolink:name ] ; + owl:allValuesFrom biolink:biological_sequence ; + owl:onProperty biolink:has_biological_sequence ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:MacromolecularMachineMixin . + owl:someValuesFrom biolink:EpigenomicEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Fungus ; + rdfs:subClassOf biolink:Haplotype ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Fungus . + owl:someValuesFrom biolink:Haplotype . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToOrganismTaxonInteraction ; + rdfs:subClassOf biolink:ClinicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToOrganismTaxonInteraction . + owl:someValuesFrom biolink:ClinicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:Serial ; + rdfs:subClassOf biolink:TextMiningResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Serial . + owl:someValuesFrom biolink:TextMiningResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:Association ; + rdfs:subClassOf biolink:ProteinFamily ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Association . + owl:someValuesFrom biolink:ProteinFamily . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToChemicalAssociation ; + rdfs:subClassOf biolink:DiseaseToExposureEventAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToChemicalAssociation . + owl:someValuesFrom biolink:DiseaseToExposureEventAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Genome ; + rdfs:subClassOf biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Genome . + owl:someValuesFrom biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Attribute ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Attribute . + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:Outcome . [] a owl:Restriction ; - rdfs:subClassOf biolink:DiseaseToExposureEventAssociation ; + rdfs:subClassOf biolink:GeneToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiseaseToExposureEventAssociation . + owl:someValuesFrom biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugLabel ; + rdfs:subClassOf biolink:ConfidenceLevel ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugLabel . + owl:someValuesFrom biolink:ConfidenceLevel . [] a owl:Restriction ; - rdfs:subClassOf biolink:Exon ; + rdfs:subClassOf biolink:Food ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Exon . + owl:someValuesFrom biolink:Food . [] a owl:Restriction ; - rdfs:subClassOf biolink:Transcript ; + rdfs:subClassOf biolink:DiseaseOrPhenotypicFeatureToLocationAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Transcript . + owl:someValuesFrom biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceFeatureRelationship ; + rdfs:subClassOf biolink:Book ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceFeatureRelationship . + owl:someValuesFrom biolink:Book . [] a owl:Restriction ; - rdfs:subClassOf biolink:NucleosomeModification ; + rdfs:subClassOf [ a owl:Restriction ; + owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:BiologicalSex ; + owl:onProperty biolink:sex_qualifier ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:PhenotypicFeature ; + owl:onProperty biolink:subject ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhenotypicFeatureToEntityAssociationMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:OrganismalEntityAsAModelOfDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:NucleosomeModification . + owl:someValuesFrom biolink:OrganismalEntityAsAModelOfDiseaseAssociation . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Drug ; + owl:allValuesFrom biolink:Disease ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], + owl:minCardinality 1 ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; - owl:onProperty biolink:subject ], + owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], + owl:allValuesFrom biolink:predicate_type ; + owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; owl:minCardinality 1 ; + owl:onProperty biolink:subject ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ], - [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ] ; + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:DrugToEntityAssociationMixin . + owl:someValuesFrom biolink:DiseaseToEntityAssociationMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypicSex ; + rdfs:subClassOf biolink:PopulationOfIndividualOrganisms ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypicSex . + owl:someValuesFrom biolink:PopulationOfIndividualOrganisms . [] a owl:Restriction ; - rdfs:subClassOf biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:DrugLabel ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:DrugLabel . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismalEntityAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:LogOddsAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismalEntityAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:LogOddsAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugExposure ; + rdfs:subClassOf biolink:SmallMolecule ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugExposure . + owl:someValuesFrom biolink:SmallMolecule . [] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToMolecularActivityAssociation ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PhysicalEssence . + +[] a owl:Restriction ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:PathologicalEntityMixin . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:BiologicalEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToMolecularActivityAssociation . + owl:someValuesFrom biolink:BiologicalEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:EntityToDiseaseAssociation ; + rdfs:subClassOf biolink:Patent ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EntityToDiseaseAssociation . + owl:someValuesFrom biolink:Patent . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismalEntity ; + rdfs:subClassOf biolink:AdministrativeEntity ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismalEntity . + owl:someValuesFrom biolink:AdministrativeEntity . [] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeAsAModelOfDiseaseAssociation ; + rdfs:subClassOf biolink:Publication ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeAsAModelOfDiseaseAssociation . + owl:someValuesFrom biolink:Publication . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:AccessibleDnaRegion ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:AccessibleDnaRegion . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GenotypeToGenotypePartAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GenotypeToGenotypePartAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeneFamily ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeneFamily . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeographicExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeographicExposure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeneToGoTermAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeneToGoTermAssociation . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:EnvironmentalExposure ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:EnvironmentalExposure . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:MacromolecularComplex ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:MacromolecularComplex . + +[] a owl:Restriction ; + rdfs:subClassOf biolink:GeneHasVariantThatContributesToDiseaseAssociation ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:GeneHasVariantThatContributesToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:DrugToGeneInteractionExposure ; + rdfs:subClassOf biolink:ChemicalRole ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DrugToGeneInteractionExposure . + owl:someValuesFrom biolink:ChemicalRole . [] a owl:Restriction ; - rdfs:subClassOf biolink:PairwiseMolecularInteraction ; + rdfs:subClassOf biolink:Association ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PairwiseMolecularInteraction . + owl:someValuesFrom biolink:Association . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToPathwayAssociation ; + rdfs:subClassOf biolink:ChemicalGeneInteractionAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToPathwayAssociation . + owl:someValuesFrom biolink:ChemicalGeneInteractionAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Activity ; + rdfs:subClassOf biolink:MacromolecularMachineToBiologicalProcessAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Activity . + owl:someValuesFrom biolink:MacromolecularMachineToBiologicalProcessAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:MolecularActivity ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MolecularActivity . + rdfs:subClassOf [ a owl:Restriction ; + owl:maxCardinality 1 ; + owl:onProperty biolink:timepoint ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:timepoint ], + [ a owl:Restriction ; + owl:allValuesFrom biolink:time_type ; + owl:onProperty biolink:timepoint ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:ExposureEvent . [] a owl:Restriction ; - rdfs:subClassOf biolink:AnatomicalEntityToAnatomicalEntityAssociation ; + rdfs:subClassOf biolink:DiagnosticAid ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:AnatomicalEntityToAnatomicalEntityAssociation . + owl:someValuesFrom biolink:DiagnosticAid . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneHasVariantThatContributesToDiseaseAssociation ; + rdfs:subClassOf biolink:GeneToGeneProductRelationship ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneHasVariantThatContributesToDiseaseAssociation . + owl:someValuesFrom biolink:GeneToGeneProductRelationship . [] a owl:Restriction ; - rdfs:subClassOf biolink:Behavior ; + rdfs:subClassOf biolink:ChemicalToPathwayAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Behavior . + owl:someValuesFrom biolink:ChemicalToPathwayAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismToOrganismAssociation ; + rdfs:subClassOf biolink:StudyResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismToOrganismAssociation . + owl:someValuesFrom biolink:StudyResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:Cohort ; + rdfs:subClassOf biolink:Gene ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Cohort . + owl:someValuesFrom biolink:Gene . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalAnatomicalExposure ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalAnatomicalExposure . + rdfs:subClassOf [ a owl:Restriction ; + owl:allValuesFrom biolink:Gene ; + owl:onProperty biolink:has_gene_or_gene_product ], + [ a owl:Restriction ; + owl:minCardinality 0 ; + owl:onProperty biolink:has_gene_or_gene_product ] ; + owl:onProperty linkml:mixins ; + owl:someValuesFrom biolink:GeneGroupingMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalExposure ; + rdfs:subClassOf biolink:ChemicalMixture ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalExposure . + owl:someValuesFrom biolink:ChemicalMixture . [] a owl:Restriction ; - rdfs:subClassOf biolink:Entity ; + rdfs:subClassOf biolink:Onset ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Entity . + owl:someValuesFrom biolink:Onset . [] a owl:Restriction ; - rdfs:subClassOf biolink:GeneticInheritance ; + rdfs:subClassOf biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneticInheritance . + owl:someValuesFrom biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ChemicalToChemicalDerivationAssociation ; + rdfs:subClassOf biolink:SequenceVariantModulatesTreatmentAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ChemicalToChemicalDerivationAssociation . + owl:someValuesFrom biolink:SequenceVariantModulatesTreatmentAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:SequenceVariant ; + rdfs:subClassOf biolink:CausalGeneToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:SequenceVariant . + owl:someValuesFrom biolink:CausalGeneToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_percentage ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:double ; - owl:onProperty biolink:has_quotient ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_count ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_quotient ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_total ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty biolink:has_count ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:double ; - owl:onProperty biolink:has_percentage ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_total ], - [ a owl:Restriction ; - owl:allValuesFrom xsd:integer ; - owl:onProperty biolink:has_total ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_quotient ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_count ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:has_percentage ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:FrequencyQuantifier . + rdfs:subClassOf biolink:NoncodingRNAProduct ; + owl:onProperty biolink:category ; + owl:someValuesFrom biolink:NoncodingRNAProduct . [] a owl:Restriction ; - rdfs:subClassOf biolink:PathologicalAnatomicalStructure ; + rdfs:subClassOf biolink:PathologicalProcess ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PathologicalAnatomicalStructure . + owl:someValuesFrom biolink:PathologicalProcess . [] a owl:Restriction ; - rdfs:subClassOf biolink:Case ; + rdfs:subClassOf biolink:ClinicalIntervention ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Case . + owl:someValuesFrom biolink:ClinicalIntervention . [] a owl:Restriction ; - rdfs:subClassOf biolink:PopulationToPopulationAssociation ; + rdfs:subClassOf biolink:ConceptCountAnalysisResult ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:PopulationToPopulationAssociation . + owl:someValuesFrom biolink:ConceptCountAnalysisResult . [] a owl:Restriction ; - rdfs:subClassOf biolink:BiologicalSex ; + rdfs:subClassOf biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:BiologicalSex . + owl:someValuesFrom biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:ReactionToCatalystAssociation ; + rdfs:subClassOf biolink:OrganismToOrganismAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:ReactionToCatalystAssociation . + owl:someValuesFrom biolink:OrganismToOrganismAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:Treatment ; + rdfs:subClassOf biolink:EntityToDiseaseAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:Treatment . + owl:someValuesFrom biolink:EntityToDiseaseAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:EnvironmentalProcess ; + rdfs:subClassOf biolink:ExposureEventToOutcomeAssociation ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:EnvironmentalProcess . + owl:someValuesFrom biolink:ExposureEventToOutcomeAssociation . [] a owl:Restriction ; - rdfs:subClassOf biolink:GrossAnatomicalStructure ; + rdfs:subClassOf biolink:ClinicalModifier ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GrossAnatomicalStructure . + owl:someValuesFrom biolink:ClinicalModifier . [] a owl:Restriction ; rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:ChemicalEntityOrGeneOrGeneProduct ; + owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:maxCardinality 1 ; + owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:minCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:minCardinality 1 ; - owl:onProperty biolink:subject ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:allValuesFrom biolink:predicate_type ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; + owl:minCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ] ; - owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:ChemicalToEntityAssociationMixin . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:MacromolecularMachineToCellularComponentAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:MacromolecularMachineToCellularComponentAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:maxCardinality 1 ; + owl:minCardinality 0 ; owl:onProperty biolink:frequency_qualifier ], - [ a owl:Restriction ; - owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; - owl:onProperty biolink:predicate ], + owl:onProperty biolink:frequency_qualifier ], [ a owl:Restriction ; owl:allValuesFrom biolink:NamedThing ; - owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:minCardinality 1 ; owl:onProperty biolink:subject ], [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:allValuesFrom biolink:NamedThing ; owl:onProperty biolink:object ], - [ a owl:Restriction ; - owl:maxCardinality 1 ; - owl:onProperty biolink:subject ], [ a owl:Restriction ; owl:maxCardinality 1 ; owl:onProperty biolink:object ], [ a owl:Restriction ; - owl:allValuesFrom ; - owl:onProperty biolink:frequency_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:frequency_qualifier ], - [ a owl:Restriction ; - owl:minCardinality 1 ; + owl:maxCardinality 1 ; owl:onProperty biolink:predicate ], [ a owl:Restriction ; - owl:allValuesFrom biolink:predicate_type ; - owl:onProperty biolink:predicate ] ; + owl:allValuesFrom ; + owl:onProperty biolink:frequency_qualifier ] ; owl:onProperty linkml:mixins ; owl:someValuesFrom biolink:FrequencyQualifierMixin . [] a owl:Restriction ; - rdfs:subClassOf biolink:CausalGeneToDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:CausalGeneToDiseaseAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:GenotypeToDiseaseAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GenotypeToDiseaseAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:InformationContentEntityToNamedThingAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:InformationContentEntityToNamedThingAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:GeneToGeneProductRelationship ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:GeneToGeneProductRelationship . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:OrganismTaxonToEnvironmentAssociation ; - owl:onProperty biolink:category ; - owl:someValuesFrom biolink:OrganismTaxonToEnvironmentAssociation . - -[] a owl:Restriction ; - rdfs:subClassOf biolink:DiagnosticAid ; + rdfs:subClassOf biolink:ClinicalFinding ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:DiagnosticAid . + owl:someValuesFrom biolink:ClinicalFinding . [] a owl:Restriction ; - rdfs:subClassOf biolink:VariantToPhenotypicFeatureAssociation ; + rdfs:subClassOf biolink:EnvironmentalFoodContaminant ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:VariantToPhenotypicFeatureAssociation . + owl:someValuesFrom biolink:EnvironmentalFoodContaminant . [] a owl:Restriction ; - rdfs:subClassOf [ a owl:Restriction ; - owl:allValuesFrom biolink:Gene ; - owl:onProperty biolink:has_gene_or_gene_product ], - [ a owl:Restriction ; - owl:minCardinality 0 ; - owl:onProperty biolink:has_gene_or_gene_product ] ; owl:onProperty linkml:mixins ; - owl:someValuesFrom biolink:GeneGroupingMixin . + owl:someValuesFrom biolink:SpecificityQuantifier . [] a owl:Restriction ; - rdfs:subClassOf biolink:TaxonToTaxonAssociation ; + rdfs:subClassOf biolink:EvidenceType ; owl:onProperty biolink:category ; - owl:someValuesFrom biolink:TaxonToTaxonAssociation . + owl:someValuesFrom biolink:EvidenceType . diff --git a/project/shacl/biolink_model.shacl.ttl b/project/shacl/biolink_model.shacl.ttl index 1af09745e..aa751a83e 100644 --- a/project/shacl/biolink_model.shacl.ttl +++ b/project/shacl/biolink_model.shacl.ttl @@ -10,123 +10,123 @@ biolink:AccessibleDnaRegion a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) of a chromatinized genome that has been measured to be more accessible to an enzyme such as DNase-I or Tn5 Transpose" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:has_biological_sequence ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:order 10 ; - sh:path rdf:type ] ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:AccessibleDnaRegion . biolink:Activity a sh:NodeShape ; sh:closed true ; sh:description "An activity is something that occurs over a period of time and acts upon or with entities; it may include consuming, processing, transforming, modifying, relocating, using, or generating entities." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + sh:order 8 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ] ; + sh:order 11 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:Activity . biolink:ActivityAndBehavior a sh:NodeShape ; @@ -138,152 +138,171 @@ biolink:ActivityAndBehavior a sh:NodeShape ; biolink:AdministrativeEntity a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:property [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ] ; + sh:order 4 ; + sh:path biolink:id ] ; sh:targetClass biolink:AdministrativeEntity . biolink:AnatomicalEntityToAnatomicalEntityAssociation a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:AnatomicalEntity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -291,134 +310,121 @@ biolink:AnatomicalEntityToAnatomicalEntityAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ] ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityAssociation . biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:closed true ; sh:description "A relationship between two anatomical entities where the relationship is ontogenic, i.e. the two entities are related by development. A number of different relationship types can be used to specify the precise nature of the relationship." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:AnatomicalEntity ; - sh:description "the structure at an earlier time" ; + sh:description "the structure at a later time" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -426,276 +432,270 @@ biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation a sh:NodeShape ; sh:order 16 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the structure at a later time" ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "the structure at an earlier time" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:object_label_closure ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityOntogenicAssociation . biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation a sh:NodeShape ; sh:closed true ; sh:description "A relationship between two anatomical entities where the relationship is mereological, i.e the two entities are related by parthood. This includes relationships between cellular components and cells, between cells and tissues, tissues and whole organisms" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:property [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the part" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:class biolink:AnatomicalEntity ; + sh:description "the whole" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:AnatomicalEntity ; + sh:description "the part" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "the whole" ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ] ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:AnatomicalEntityToAnatomicalEntityPartOfAssociation . biolink:Annotation a sh:NodeShape ; @@ -708,35 +708,63 @@ biolink:Article a sh:NodeShape ; sh:closed true ; sh:description "a piece of writing on a particular topic presented as a stand-alone section of a larger publication" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 15 ; - sh:path biolink:provided_by ], + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:issue ], + sh:order 2 ; + sh:path biolink:volume ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 10 ; - sh:path dct:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 20 ; - sh:path biolink:category ], + sh:order 21 ; + sh:path rdf:type ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:authors ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:format ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:creation_date ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 20 ; + sh:path biolink:category ], + [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:published_in ], [ sh:datatype xsd:string ; - sh:order 21 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 9 ; - sh:path biolink:xref ], + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 18 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:summary ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 15 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -746,289 +774,251 @@ biolink:Article a sh:NodeShape ; sh:order 17 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; - sh:order 18 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path dct:description ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:authors ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path rdfs:label ], + sh:order 10 ; + sh:path dct:type ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 8 ; + sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:order 5 ; sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 7 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:string ; - sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:iso_abbreviation ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:summary ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:rights ], - [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:published_in ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 8 ; - sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 7 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:license ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:iri ], + sh:order 22 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:volume ], + sh:order 3 ; + sh:path biolink:issue ], + [ sh:datatype xsd:string ; + sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:iso_abbreviation ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:format ] ; + sh:order 25 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:Article . biolink:Association a sh:NodeShape ; sh:closed true ; sh:description "A typed association between two entities, supported by evidence" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:description "a point in time" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 31 ; + sh:path dct:description ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ] ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ] ; sh:targetClass biolink:Association . biolink:Bacterium a sh:NodeShape ; sh:closed true ; sh:description "A member of a group of unicellular microorganisms lacking a nuclear membrane, that reproduce by binary fission and are often motile." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; @@ -1038,285 +1028,291 @@ biolink:Bacterium a sh:NodeShape ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; - sh:path biolink:provided_by ] ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:Bacterium . biolink:BehaviorToBehavioralFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between an mixture behavior and a behavioral feature manifested by the individual exhibited or has exhibited the behavior." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 30 ; sh:path rdf:type ], - [ sh:datatype xsd:double ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], + sh:order 31 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 38 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 11 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], - [ sh:class biolink:BehavioralFeature ; - sh:description "behavioral feature that is the object of the association" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Behavior ; + sh:description "behavior that is the subject of the association" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Behavior ; - sh:description "behavior that is the subject of the association" ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:BehavioralFeature ; + sh:description "behavioral feature that is the object of the association" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 36 ; sh:path biolink:has_total ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ] ; + sh:order 16 ; + sh:path biolink:subject_category ] ; sh:targetClass biolink:BehaviorToBehavioralFeatureAssociation . biolink:BehavioralExposure a sh:NodeShape ; sh:closed true ; sh:description "A behavioral exposure is a factor relating to behavior impacting an individual." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -1324,37 +1320,41 @@ biolink:BehavioralExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "a point in time" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ] ; + sh:order 1 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:BehavioralExposure . biolink:BehavioralOutcome a sh:NodeShape ; @@ -1366,46 +1366,13 @@ biolink:BehavioralOutcome a sh:NodeShape ; biolink:BiologicalEntity a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -1415,153 +1382,172 @@ biolink:BiologicalEntity a sh:NodeShape ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ] ; sh:targetClass biolink:BiologicalEntity . biolink:BiologicalProcessOrActivity a sh:NodeShape ; sh:closed true ; sh:description "Either an individual molecular activity, or a collection of causally connected molecular activities in a biological system." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_output ], [ sh:class biolink:PhysicalEntity ; sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:enabled_by ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:order 14 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_input ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:order 3 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path biolink:id ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:BiologicalProcessOrActivity . + +biolink:BioticExposure a sh:NodeShape ; + sh:closed true ; + sh:description "An external biotic exposure is an intake of (sometimes pathological) biological organisms (including viruses)." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_output ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ] ; - sh:targetClass biolink:BiologicalProcessOrActivity . - -biolink:BioticExposure a sh:NodeShape ; - sh:closed true ; - sh:description "An external biotic exposure is an intake of (sometimes pathological) biological organisms (including viruses)." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 3 ; sh:path biolink:has_quantitative_value ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -1569,17 +1555,31 @@ biolink:BioticExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:BioticExposure . biolink:Book a sh:NodeShape ; @@ -1587,647 +1587,608 @@ biolink:Book a sh:NodeShape ; sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:license ], + sh:description "Should generally be set to an ontology class defined term for 'book'." ; + sh:order 17 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 6 ; - sh:path dct:type ], - [ sh:description "a human-readable description of an entity" ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 19 ; - sh:path dct:description ], + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:order 1 ; sh:path biolink:pages ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], + sh:order 18 ; + sh:path rdfs:label ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:creation_date ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], + sh:order 8 ; + sh:path biolink:rights ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 16 ; sh:path biolink:category ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "Should generally be set to an ontology class defined term for 'book'." ; - sh:order 17 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "Books should have industry-standard identifier such as from ISBN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 14 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:format ], + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:Book . - -biolink:BookChapter a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:order 7 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 21 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:format ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path dct:description ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 13 ; + sh:order 10 ; sh:path biolink:creation_date ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:Book . + +biolink:BookChapter a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:summary ], [ sh:datatype xsd:string ; + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:license ], + sh:order 1 ; + sh:path biolink:volume ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 7 ; + sh:path biolink:mesh_terms ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 23 ; sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 6 ; + sh:path biolink:keywords ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 14 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 9 ; - sh:path dct:type ], - [ sh:datatype xsd:string ; - sh:description "chapter of a book" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:chapter ], + sh:order 17 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:volume ], + sh:order 20 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:format ], + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 4 ; + sh:path biolink:pages ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:authors ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:deprecated ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 7 ; - sh:path biolink:mesh_terms ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 12 ; + sh:path biolink:format ], + [ sh:description "The enclosing parent book containing the chapter should have industry-standard identifier from ISBN." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 19 ; - sh:path biolink:category ], + sh:order 0 ; + sh:path biolink:published_in ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; - sh:order 17 ; - sh:path biolink:id ], + sh:order 9 ; + sh:path dct:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 6 ; - sh:path biolink:keywords ], + sh:description "chapter of a book" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:chapter ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:license ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 19 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 4 ; - sh:path biolink:pages ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 16 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:summary ], - [ sh:datatype xsd:string ; - sh:order 20 ; - sh:path rdf:type ], - [ sh:description "The enclosing parent book containing the chapter should have industry-standard identifier from ISBN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:published_in ] ; + sh:path biolink:synonym ] ; sh:targetClass biolink:BookChapter . biolink:CaseToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An abstract association for use where the case is the subject" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:class biolink:Case ; + sh:description "the case (e.g. patient) that has the property" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:Case ; - sh:description "the case (e.g. patient) that has the property" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:CaseToEntityAssociationMixin . biolink:CaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a case (e.g. individual patient) and a phenotypic feature in which the individual has or has had the phenotype." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:order 17 ; + sh:path biolink:object_category ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 11 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:object_label_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:has_count ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:order 38 ; + sh:path biolink:has_percentage ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:sex_qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:Case ; + sh:description "the case (e.g. patient) that has the property" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_quotient ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 42 ; sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 36 ; sh:path biolink:has_total ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:class biolink:Case ; - sh:description "the case (e.g. patient) that has the property" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ] ; sh:targetClass biolink:CaseToPhenotypicFeatureAssociation . biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:Disease ; - sh:description "disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], + sh:order 33 ; + sh:path rdfs:label ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 40 ; sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:sex_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 6 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 42 ; sh:path biolink:object_aspect_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 36 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:double ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 37 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "gene in which variation is shown to cause the disease." ; sh:maxCount 1 ; @@ -2235,235 +2196,254 @@ biolink:CausalGeneToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 30 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 21 ; sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 16 ; - sh:path biolink:original_predicate ] ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:CausalGeneToDiseaseAssociation . biolink:Cell a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; + sh:order 4 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:Cell . biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:frequency_qualifier ], + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:CellLine ; - sh:description "A cell line derived from an organismal entity with a disease state that is used as a model of that disease." ; + [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "The relationship to the disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 35 ; sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -2471,119 +2451,123 @@ biolink:CellLineAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 39 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ] ; - sh:targetClass biolink:CellLineAsAModelOfDiseaseAssociation . - -biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:CellLine ; + sh:description "A cell line derived from an organismal entity with a disease state that is used as a model of that disease." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ] ; + sh:targetClass biolink:CellLineAsAModelOfDiseaseAssociation . + +biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An relationship between a cell line and a disease or a phenotype, where the cell line is derived from an individual with that disease or phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; @@ -2593,120 +2577,134 @@ biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ] ; + sh:path biolink:subject_label_closure ] ; sh:targetClass biolink:CellLineToDiseaseOrPhenotypicFeatureAssociation . biolink:CellLineToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An relationship between a cell line and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:CellLine ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -2714,151 +2712,141 @@ biolink:CellLineToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:CellLine ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ] ; sh:targetClass biolink:CellLineToEntityAssociationMixin . biolink:CellularOrganism a sh:NodeShape ; sh:closed true ; sh:description "" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; + sh:property [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ] ; sh:targetClass biolink:CellularOrganism . biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "Describes an effect that a chemical has on a gene or gene product (e.g. an impact of on its abundance, activity,localization, processing, expression, etc.)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:timepoint ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:qualifier ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:property [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:subject_namespace ], + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:anatomical_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 25 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 46 ; - sh:path dct:description ], + sh:order 23 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 32 ; + sh:path biolink:subject_closure ], + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:in ( "metabolite" ) ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 33 ; - sh:path biolink:object_closure ], + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 28 ; sh:path biolink:original_predicate ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; - sh:maxCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:anatomical_context_qualifier ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:order 35 ; + sh:path biolink:object_category_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:causal_mechanism_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 46 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 47 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 32 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 20 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:has_evidence ], + sh:order 34 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 48 ; + sh:path biolink:deprecated ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:class biolink:ChemicalEntity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -2866,57 +2854,49 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path rdf:subject ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:subject_category ], + sh:order 19 ; + sh:path biolink:qualifier ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:original_subject ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:order 37 ; + sh:path biolink:object_namespace ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:minCount 1 ; + sh:order 16 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 39 ; + sh:path biolink:object_label_closure ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:negated ], + sh:order 7 ; + sh:path biolink:object_part_qualifier ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 40 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; - sh:in ( "metabolite" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 44 ; + sh:path rdf:type ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -2924,62 +2904,77 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 17 ; sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:iri ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_namespace ], + sh:order 27 ; + sh:path biolink:original_subject ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:publications ], + [ sh:class biolink:AnatomicalEntity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:subject_context_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:qualified_predicate ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 36 ; + sh:path biolink:subject_namespace ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 16 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 11 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 39 ; - sh:path biolink:object_label_closure ], + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 45 ; sh:path rdfs:label ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_part_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 31 ; - sh:path biolink:object_category ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 43 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 29 ; sh:path biolink:original_object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 43 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 48 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -2987,188 +2982,202 @@ biolink:ChemicalAffectsGeneAssociation a sh:NodeShape ; sh:order 41 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 44 ; - sh:path rdf:type ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path biolink:object_closure ], + [ sh:class biolink:AnatomicalEntity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:object_context_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 31 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 38 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:qualifiers ], [ sh:class biolink:OrganismTaxon ; sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:species_context_qualifier ], - [ sh:class biolink:AnatomicalEntity ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:object_context_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:AnatomicalEntity ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:subject_context_qualifier ], + sh:order 18 ; + sh:path biolink:negated ], [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:object_form_or_variant_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:publications ] ; + sh:order 22 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 47 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 25 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:ChemicalAffectsGeneAssociation . biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:ChemicalEntity ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -3176,29 +3185,20 @@ biolink:ChemicalEntityAssessesNamedThingAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ] ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:ChemicalEntityAssessesNamedThingAssociation . biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape ; @@ -3206,91 +3206,85 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:description "A regulatory relationship between two genes" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:description "a point in time" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 0 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -3299,59 +3293,71 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:order 1 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], - [ sh:description "the direction is always from regulator to regulated" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:object_direction_qualifier ], + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "the direction is always from regulator to regulated" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -3364,16 +3370,10 @@ biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation a sh:NodeShape sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ] ; + sh:order 31 ; + sh:path rdfs:label ] ; sh:targetClass biolink:ChemicalEntityOrGeneOrGeneProductRegulatesGeneAssociation . biolink:ChemicalEntityOrProteinOrPolypeptide a sh:NodeShape ; @@ -3386,11 +3386,13 @@ biolink:ChemicalEntityToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An interaction between a chemical entity and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity that is an interactor" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -3398,258 +3400,288 @@ biolink:ChemicalEntityToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity that is an interactor" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:ChemicalEntityToEntityAssociationMixin . biolink:ChemicalExposure a sh:NodeShape ; sh:closed true ; sh:description "A chemical exposure is an intake of a particular chemical entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:timepoint ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; sh:path biolink:provided_by ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path biolink:has_quantitative_value ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path rdfs:label ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_attribute_type ], + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:timepoint ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path biolink:has_quantitative_value ] ; sh:targetClass biolink:ChemicalExposure . biolink:ChemicalGeneInteractionAssociation a sh:NodeShape ; sh:closed true ; sh:description "describes a physical interaction between a chemical entity and a gene or gene product. Any biological or chemical effect resulting from such an interaction are out of scope, and covered by the ChemicalAffectsGeneAssociation type (e.g. impact of a chemical on the abundance, activity, structure, etc, of either participant in the interaction)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 37 ; + sh:path rdf:type ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:class biolink:AnatomicalEntity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:object_context_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 32 ; + sh:path biolink:object_label_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 36 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:iri ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:object_form_or_variant_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 40 ; - sh:path biolink:has_attribute ], + sh:order 23 ; + sh:path biolink:subject_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 34 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 31 ; - sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:subject_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 36 ; - sh:path biolink:category ], + sh:order 24 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_closure ], [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:anatomical_context_qualifier ], + sh:order 3 ; + sh:path biolink:subject_context_qualifier ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:object_part_qualifier ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 9 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 30 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 10 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_closure ], - [ sh:class biolink:AnatomicalEntity ; + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; + sh:in ( "metabolite" ) ; sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:object_context_qualifier ], + sh:order 27 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 40 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:negated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_evidence ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:description "a point in time" ; + sh:order 20 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:timepoint ], + sh:order 12 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:object_namespace ], + sh:order 22 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 29 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 18 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; - sh:in ( "metabolite" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:original_object ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 10 ; - sh:path rdf:object ], - [ sh:class biolink:AnatomicalEntity ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:subject_context_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path biolink:subject_label_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path rdfs:label ], + sh:order 19 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 18 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:knowledge_source ], + sh:order 7 ; + sh:path biolink:anatomical_context_qualifier ], [ sh:class biolink:ChemicalEntity ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; @@ -3657,42 +3689,10 @@ biolink:ChemicalGeneInteractionAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path rdf:subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:original_predicate ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 32 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:object_category_closure ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:object_part_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 37 ; - sh:path rdf:type ] ; + sh:order 38 ; + sh:path rdfs:label ] ; sh:targetClass biolink:ChemicalGeneInteractionAssociation . biolink:ChemicalMixture a sh:NodeShape ; @@ -3700,97 +3700,97 @@ biolink:ChemicalMixture a sh:NodeShape ; sh:description "A chemical mixture is a chemical entity composed of two or more molecular entities." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:trade_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_chemical_role ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 12 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], + sh:order 0 ; + sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:datatype xsd:string ; sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; sh:order 3 ; sh:path biolink:routes_of_delivery ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:order 16 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_supplement ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 20 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], + sh:order 14 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:is_toxic ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ] ; + sh:order 11 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:ChemicalMixture . biolink:ChemicalOrDrugOrTreatment a sh:NodeShape ; @@ -3802,103 +3802,122 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation sh:closed true ; sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary, typically (but not always) undesirable effect." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 21 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 31 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:deprecated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -3906,92 +3925,103 @@ biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation sh:order 17 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "" ; sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:FDA_adverse_event_level ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 23 ; + sh:path biolink:object_namespace ] ; + sh:targetClass biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . + +biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary undesirable effect." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 28 ; sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 29 ; sh:path biolink:category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:order 13 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ] ; - sh:targetClass biolink:ChemicalOrDrugOrTreatmentSideEffectDiseaseOrPhenotypicFeatureAssociation . - -biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "This association defines a relationship between a chemical or treatment (or procedure) and a disease or phenotypic feature where the disesae or phenotypic feature is a secondary undesirable effect." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "" ; - sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:FDA_adverse_event_level ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:order 23 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; @@ -4001,11 +4031,48 @@ biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:No sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; sh:path biolink:object_closure ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -4015,6 +4082,30 @@ biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:No sh:maxCount 1 ; sh:order 32 ; sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; @@ -4027,125 +4118,34 @@ biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation a sh:No sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "" ; + sh:in ( "life_threatening_adverse_event" "serious_adverse_event" "suspected_adverse_reaction" "unexpected_adverse_event" ) ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 0 ; + sh:path biolink:FDA_adverse_event_level ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ] ; + sh:path biolink:subject_category_closure ] ; sh:targetClass biolink:ChemicalOrDrugOrTreatmentToDiseaseOrPhenotypicFeatureAssociation . biolink:ChemicalToChemicalAssociation a sh:NodeShape ; @@ -4156,323 +4156,274 @@ biolink:ChemicalToChemicalAssociation a sh:NodeShape ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical element that is the target of the statement" ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:ChemicalEntityOrGeneOrGeneProduct ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ] ; - sh:targetClass biolink:ChemicalToChemicalAssociation . - -biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 catalyst qualifier P" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 32 ; + sh:order 31 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 15 ; + sh:order 14 ; sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the upstream chemical entity" ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:path rdf:predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 26 ; + sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:ChemicalEntity ; - sh:description "the downstream chemical entity" ; + sh:description "the chemical element that is the target of the statement" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; + sh:order 2 ; sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ] ; + sh:targetClass biolink:ChemicalToChemicalAssociation . + +biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "A causal relationship between two chemical entities, where the subject represents the upstream entity and the object represents the downstream. For any such association there is an implicit reaction: IF R has-input C1 AND R has-output C2 AND R enabled-by P AND R type Reaction THEN C1 derives-into C2 catalyst qualifier P" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:subject_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "this connects the derivation edge to the chemical entity that catalyzes the reaction that causes the subject chemical to transform into the object chemical." ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path biolink:catalyst_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:ChemicalEntity ; + sh:description "the upstream chemical entity" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 1 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 30 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "this connects the derivation edge to the chemical entity that catalyzes the reaction that causes the subject chemical to transform into the object chemical." ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path biolink:catalyst_qualifier ], + sh:order 31 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 28 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -4480,130 +4431,147 @@ biolink:ChemicalToChemicalDerivationAssociation a sh:NodeShape ; sh:order 17 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ] ; - sh:targetClass biolink:ChemicalToChemicalDerivationAssociation . - -biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 4 ; + sh:order 5 ; sh:path biolink:qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; + sh:order 19 ; sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the downstream chemical entity" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; + sh:order 21 ; sh:path biolink:object_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; + sh:order 23 ; sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 7 ; + sh:path biolink:publications ] ; + sh:targetClass biolink:ChemicalToChemicalDerivationAssociation . + +biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An interaction between a chemical entity and a phenotype or disease, where the presence of the chemical gives rise to or exacerbates the phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "a point in time" ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; @@ -4616,38 +4584,71 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "the disease or phenotype that is affected by the chemical" ; sh:maxCount 1 ; @@ -4655,19 +4656,23 @@ biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ] ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ] ; sh:targetClass biolink:ChemicalToDiseaseOrPhenotypicFeatureAssociation . biolink:ChemicalToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An interaction between a chemical entity and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -4680,91 +4685,46 @@ biolink:ChemicalToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:path rdf:subject ] ; sh:targetClass biolink:ChemicalToEntityAssociationMixin . biolink:ChemicalToPathwayAssociation a sh:NodeShape ; sh:closed true ; sh:description "An interaction between a chemical entity and a biological process or pathway." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; + sh:property [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:description "a point in time" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; @@ -4773,89 +4733,129 @@ biolink:ChemicalToPathwayAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Pathway ; - sh:description "the pathway that is affected by the chemical" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical entity that is affecting the pathway" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical entity that is affecting the pathway" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; - sh:path biolink:publications ] ; + sh:path biolink:publications ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Pathway ; + sh:description "the pathway that is affected by the chemical" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:ChemicalToPathwayAssociation . biolink:ChiSquaredAnalysisResult a sh:NodeShape ; @@ -4863,107 +4863,126 @@ biolink:ChiSquaredAnalysisResult a sh:NodeShape ; sh:description "A result of a chi squared analysis." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ] ; + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ] ; sh:targetClass biolink:ChiSquaredAnalysisResult . biolink:ClinicalCourse a sh:NodeShape ; sh:closed true ; sh:description "The course a disease typically takes from its onset, progression in time, and eventual resolution or death of the affected individual" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 4 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -4971,188 +4990,162 @@ biolink:ClinicalCourse a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ] ; + sh:order 0 ; + sh:path rdfs:label ] ; sh:targetClass biolink:ClinicalCourse . biolink:ClinicalEntity a sh:NodeShape ; sh:closed true ; sh:description "Any entity or process that exists in the clinical domain and outside the biological realm. Diseases are placed under biological entities" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ] ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:ClinicalEntity . biolink:ClinicalFinding a sh:NodeShape ; sh:closed true ; sh:description "this category is currently considered broad enough to tag clinical lab measurements and other biological attributes taken as 'clinical traits' with some statistical score, for example, a p value in genetic associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:ClinicalAttribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:class biolink:ClinicalAttribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ] ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:ClinicalFinding . biolink:ClinicalIntervention a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; @@ -5161,129 +5154,108 @@ biolink:ClinicalIntervention a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; - sh:path biolink:category ] ; + sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:ClinicalIntervention . biolink:ClinicalMeasurement a sh:NodeShape ; sh:closed true ; sh:description "A clinical measurement is a special kind of attribute which results from a laboratory observation from a subject individual or sample. Measurements can be connected to their subject by the 'has attribute' slot." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 12 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; - sh:path biolink:has_qualitative_value ] ; + sh:path biolink:has_qualitative_value ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ] ; sh:targetClass biolink:ClinicalMeasurement . biolink:ClinicalModifier a sh:NodeShape ; sh:closed true ; sh:description "Used to characterize and specify the phenotypic abnormalities defined in the phenotypic abnormality sub-ontology, with respect to severity, laterality, and other aspects" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:property [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -5293,145 +5265,158 @@ biolink:ClinicalModifier a sh:NodeShape ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ] ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:ClinicalModifier . biolink:ClinicalTrial a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:ClinicalTrial . biolink:CodingSequence a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 3 ; sh:path biolink:provided_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 6 ; sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 2 ; @@ -5440,7 +5425,22 @@ biolink:CodingSequence a sh:NodeShape ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:deprecated ] ; + sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ] ; sh:targetClass biolink:CodingSequence . biolink:Cohort a sh:NodeShape ; @@ -5451,110 +5451,97 @@ biolink:Cohort a sh:NodeShape ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ] ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:Cohort . biolink:CommonDataElement a sh:NodeShape ; sh:closed true ; sh:description "A Common Data Element (CDE) is a standardized, precisely defined question, paired with a set of allowable responses, used systematically across different sites, studies, or clinical trials to ensure consistent data collection. Multiple CDEs (from one or more Collections) can be curated into Forms. (https://cde.nlm.nih.gov/home)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 9 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; @@ -5563,221 +5550,224 @@ biolink:CommonDataElement a sh:NodeShape ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 1 ; + sh:path biolink:rights ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ] ; + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:CommonDataElement . biolink:ComplexChemicalExposure a sh:NodeShape ; sh:closed true ; sh:description "A complex chemical exposure is an intake of a chemical mixture (e.g. gasoline), other than a drug." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path biolink:category ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ] ; + sh:order 5 ; + sh:path biolink:id ] ; sh:targetClass biolink:ComplexChemicalExposure . biolink:ComplexMolecularMixture a sh:NodeShape ; sh:closed true ; sh:description "A complex molecular mixture is a chemical mixture composed of two or more molecular entities with unknown concentration and stoichiometry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:trade_name ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:highest_FDA_approval_status ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:is_toxic ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 5 ; sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:is_supplement ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], + sh:order 20 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 17 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 15 ; sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ] ; + sh:order 18 ; + sh:path dct:description ] ; sh:targetClass biolink:ComplexMolecularMixture . biolink:ConceptCountAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a concept count analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; @@ -5786,64 +5776,63 @@ biolink:ConceptCountAnalysisResult a sh:NodeShape ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 2 ; + sh:path biolink:format ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ] ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ] ; sh:targetClass biolink:ConceptCountAnalysisResult . biolink:ConfidenceLevel a sh:NodeShape ; sh:closed true ; sh:description "Level of confidence in a statement" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 6 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -5854,454 +5843,504 @@ biolink:ConfidenceLevel a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 2 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ] ; + sh:order 9 ; + sh:path biolink:iri ] ; sh:targetClass biolink:ConfidenceLevel . biolink:ContributorAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between an entity (such as a publication) and various agents that contribute to its realisation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:Agent ; - sh:description "agent helping to realise the given entity (e.g. such as a publication)" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "generally one of the predicate values 'provider', 'publisher', 'editor' or 'author'" ; + sh:property [ sh:class biolink:InformationContentEntity ; + sh:description "information content entity which an agent has helped realise" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "this field can be used to annotate special characteristics of an agent relationship, such as the fact that a given author agent of a publication is the 'corresponding author'" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "generally one of the predicate values 'provider', 'publisher', 'editor' or 'author'" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:InformationContentEntity ; - sh:description "information content entity which an agent has helped realise" ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:Agent ; + sh:description "agent helping to realise the given entity (e.g. such as a publication)" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ] ; - sh:targetClass biolink:ContributorAssociation . - -biolink:CorrelatedGeneToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 25 ; + sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; + sh:order 29 ; sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 14 ; + sh:path biolink:original_object ] ; + sh:targetClass biolink:ContributorAssociation . + +biolink:CorrelatedGeneToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:order 39 ; sh:path biolink:has_quotient ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_total ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is shown to correlate with the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 20 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 34 ; + sh:path dct:description ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:sex_qualifier ], + sh:order 40 ; + sh:path biolink:has_percentage ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is shown to correlate with the disease." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:subject_label_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "a point in time" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 35 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:has_attribute ] ; + sh:targetClass biolink:CorrelatedGeneToDiseaseAssociation . + +biolink:DatasetSummary a sh:NodeShape ; + sh:closed true ; + sh:description "an item that holds summary level information about a dataset." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 16 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:Disease ; - sh:description "disease" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 4 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], + sh:order 1 ; + sh:path schema1:logo ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:order 2 ; + sh:path biolink:license ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:path biolink:rights ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ] ; - sh:targetClass biolink:CorrelatedGeneToDiseaseAssociation . - -biolink:DatasetSummary a sh:NodeShape ; - sh:closed true ; - sh:description "an item that holds summary level information about a dataset." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path schema1:logo ], + sh:order 11 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; @@ -6315,56 +6354,17 @@ biolink:DatasetSummary a sh:NodeShape ; sh:maxCount 1 ; sh:order 15 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:rights ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:creation_date ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:format ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 10 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ] ; + sh:path biolink:id ] ; sh:targetClass biolink:DatasetSummary . biolink:DatasetVersion a sh:NodeShape ; @@ -6372,85 +6372,85 @@ biolink:DatasetVersion a sh:NodeShape ; sh:description "an item that holds version level information about a dataset." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:license ], + sh:order 1 ; + sh:path biolink:ingest_date ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 10 ; sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:rights ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:creation_date ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 18 ; sh:path biolink:deprecated ], - [ sh:class biolink:DatasetDistribution ; + [ sh:class biolink:Dataset ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path dct:distribution ], - [ sh:datatype xsd:string ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_dataset ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:ingest_date ], + sh:order 6 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 14 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 13 ; sh:path biolink:category ], - [ sh:class biolink:Dataset ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_dataset ], + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:rights ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 16 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:order 14 ; - sh:path rdf:type ], + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:format ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:DatasetDistribution ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:iri ] ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path dct:distribution ] ; sh:targetClass biolink:DatasetVersion . biolink:DiagnosticAid a sh:NodeShape ; @@ -6465,6 +6465,14 @@ biolink:DiagnosticAid a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -6473,35 +6481,27 @@ biolink:DiagnosticAid a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; @@ -6512,20 +6512,38 @@ biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; sh:closed true ; sh:description "A disease or phenotypic feature state, when viewed as an exposure, represents an precondition, leading to or influencing an outcome, e.g. HIV predisposing an individual to infections; a relative deficiency of skin pigmentation predisposing an individual to skin cancer." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 1 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 8 ; sh:path biolink:xref ], @@ -6536,53 +6554,35 @@ biolink:DiseaseOrPhenotypicFeatureExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], + sh:order 5 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ] ; + sh:path biolink:category ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureExposure . biolink:DiseaseOrPhenotypicFeatureOutcome a sh:NodeShape ; @@ -6618,249 +6618,191 @@ biolink:DiseaseOrPhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between either a disease or a phenotypic feature and its mode of (genetic) inheritance." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:GeneticInheritance ; - sh:description "genetic inheritance associated with the specified disease or phenotypic feature." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "disease or phenotype" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ] ; - sh:targetClass biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . - -biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:class biolink:GeneticInheritance ; + sh:description "genetic inheritance associated with the specified disease or phenotypic feature." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "disease or phenotype" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:DiseaseOrPhenotypicFeatureToGeneticInheritanceAssociation . + +biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between either a disease or a phenotypic feature and an anatomical entity, where the disease/feature manifests in that site." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -6870,60 +6812,83 @@ biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "anatomical entity in which the disease or feature is found." ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "disease or phenotype" ; sh:maxCount 1 ; @@ -6935,24 +6900,59 @@ biolink:DiseaseOrPhenotypicFeatureToLocationAssociation a sh:NodeShape ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "anatomical entity in which the disease or feature is found." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeatureToLocationAssociation . biolink:DiseaseToEntityAssociationMixin a sh:NodeShape ; @@ -6984,46 +6984,70 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:description "An association between an exposure event and a disease." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:class biolink:ExposureEvent ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -7031,45 +7055,51 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:Disease ; sh:description "disease class" ; sh:maxCount 1 ; @@ -7077,102 +7107,57 @@ biolink:DiseaseToExposureEventAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ] ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ] ; sh:targetClass biolink:DiseaseToExposureEventAssociation . biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a disease and a phenotypic feature in which the phenotypic feature is associated with the disease in some way." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path dct:description ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path rdf:object ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], + sh:order 12 ; + sh:path biolink:has_evidence ], [ sh:class biolink:Disease ; sh:description "disease class" ; sh:maxCount 1 ; @@ -7180,40 +7165,10 @@ biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_source ], + sh:order 36 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -7224,121 +7179,166 @@ biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 34 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 13 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], + sh:order 25 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 24 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_total ], + sh:order 8 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 29 ; - sh:path biolink:object_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_subject ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 35 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path rdf:object ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:has_percentage ], + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 31 ; - sh:path biolink:id ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 2 ; + sh:path biolink:has_quotient ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 19 ; sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; @@ -7346,218 +7346,213 @@ biolink:DiseaseToPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 7 ; sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:double ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_quotient ], + sh:minCount 1 ; + sh:order 31 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:qualifiers ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 33 ; - sh:path biolink:category ] ; + sh:order 0 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:has_percentage ] ; sh:targetClass biolink:DiseaseToPhenotypicFeatureAssociation . biolink:DrugExposure a sh:NodeShape ; sh:closed true ; sh:description "A drug exposure is an intake of a particular drug." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 1 ; sh:path biolink:has_quantitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_attribute_type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:id ] ; sh:targetClass biolink:DrugExposure . biolink:DrugLabel a sh:NodeShape ; sh:closed true ; sh:description "a document accompanying a drug or its container that provides written, printed or graphic information about the drug, including drug contents, specific instructions or warnings for administration, storage and disposal instructions, etc." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path dct:description ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 16 ; - sh:path biolink:category ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:datatype xsd:string ; - sh:order 17 ; - sh:path rdf:type ], [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:order 18 ; sh:path rdfs:label ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 6 ; - sh:path dct:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:format ], + sh:order 2 ; + sh:path biolink:summary ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:id ], + sh:order 7 ; + sh:path biolink:license ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 17 ; + sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:iri ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], [ sh:description "mesh terms tagging a publication" ; sh:order 4 ; sh:path biolink:mesh_terms ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:rights ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:authors ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:order 3 ; sh:path biolink:keywords ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 16 ; + sh:path biolink:category ] ; sh:targetClass biolink:DrugLabel . biolink:DrugToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An interaction between a drug and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Drug ; + sh:property [ sh:class biolink:Drug ; sh:description "the drug that is an interactor" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -7570,146 +7565,162 @@ biolink:DrugToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ] ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:DrugToEntityAssociationMixin . biolink:DrugToGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "An interaction between a drug and a gene or gene product." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the gene or gene product that is affected by the drug" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Drug ; + sh:description "the drug that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -7717,89 +7728,60 @@ biolink:DrugToGeneAssociation a sh:NodeShape ; sh:order 16 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Drug ; - sh:description "the drug that is an interactor" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the gene or gene product that is affected by the drug" ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:order 3 ; + sh:path biolink:negated ] ; sh:targetClass biolink:DrugToGeneAssociation . biolink:DrugToGeneInteractionExposure a sh:NodeShape ; sh:closed true ; sh:description "drug to gene interaction exposure is a drug exposure is where the interactions of the drug with specific genes are known to constitute an 'exposure' to the organism, leading to or influencing an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 3 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_attribute_type ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:full_name ], + sh:order 1 ; + sh:path biolink:timepoint ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:iri ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 11 ; sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 9 ; - sh:path biolink:xref ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:timepoint ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 8 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_attribute_type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -7808,213 +7790,226 @@ biolink:DrugToGeneInteractionExposure a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 13 ; sh:path rdf:type ], - [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 12 ; + sh:path biolink:category ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], + sh:order 5 ; + sh:path biolink:has_qualitative_value ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path rdfs:label ] ; + sh:order 10 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:DrugToGeneInteractionExposure . biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_direction_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 27 ; sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:order 39 ; sh:path biolink:has_quotient ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_subject ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 40 ; sh:path biolink:has_percentage ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:description "connects an association to an instance of supporting evidence" ; - sh:in ( "tclin" "tbio" "tchem" "tdark" ) ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the disease in a protective manner, or if the product produced by the gene can be targeted by a small molecule and this leads to a protective or improving disease state." ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 34 ; sh:path dct:description ], - [ sh:description "a point in time" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 28 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -8023,266 +8018,271 @@ biolink:DruggableGeneToDiseaseAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:object_namespace ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "connects an association to an instance of supporting evidence" ; + sh:in ( "tclin" "tbio" "tchem" "tdark" ) ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ] ; + sh:order 38 ; + sh:path biolink:has_total ] ; sh:targetClass biolink:DruggableGeneToDiseaseAssociation . biolink:Entity a sh:NodeShape ; sh:closed false ; sh:description "Root Biolink Model class for all things and informational relationships, real or imagined." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:deprecated ], + sh:order 1 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 3 ; - sh:path rdf:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 2 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:order 3 ; + sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 4 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:Entity . - -biolink:EntityToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 34 ; + sh:order 6 ; sh:path biolink:has_attribute ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 7 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:Entity . + +biolink:EntityToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 30 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:object ], + sh:order 34 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:original_object ], - [ sh:description "" ; - sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:clinical_approval_status ], + sh:order 1 ; + sh:path biolink:max_research_phase ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 29 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:subject ], + sh:order 35 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 28 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 27 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "" ; + sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:iri ], + sh:order 0 ; + sh:path biolink:clinical_approval_status ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path dct:description ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:subject_namespace ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_predicate ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; + sh:minCount 1 ; + sh:order 28 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:max_research_phase ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 5 ; + sh:path biolink:negated ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ] ; + sh:order 2 ; + sh:path rdf:subject ] ; sh:targetClass biolink:EntityToDiseaseAssociation . biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "mixin class for any association whose object (target node) is a disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path rdf:predicate ], + sh:order 2 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_direction_qualifier ], [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:frequency_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:object_direction_qualifier ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8295,11 +8295,11 @@ biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualified_predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 3 ; + sh:path biolink:object_direction_qualifier ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -8307,16 +8307,16 @@ biolink:EntityToDiseaseAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:object_aspect_qualifier ] ; + sh:path biolink:subject_aspect_qualifier ] ; sh:targetClass biolink:EntityToDiseaseAssociationMixin . biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin a sh:NodeShape ; @@ -8329,32 +8329,25 @@ biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ] ; + sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:EntityToDiseaseOrPhenotypicFeatureAssociationMixin . biolink:EntityToExposureEventAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An association between some entity and an exposure event." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ExposureEvent ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -8365,17 +8358,25 @@ biolink:EntityToExposureEventAssociationMixin a sh:NodeShape ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; - sh:path rdf:predicate ] ; + sh:path rdf:predicate ], + [ sh:class biolink:ExposureEvent ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:EntityToExposureEventAssociationMixin . biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; sh:closed false ; sh:description "Qualifiers for entity to disease or phenotype associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:frequency_qualifier ], + sh:minCount 1 ; + sh:order 7 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8383,16 +8384,27 @@ biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualified_predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path rdf:object ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; @@ -8403,41 +8415,29 @@ biolink:EntityToFeatureOrDiseaseQualifiersMixin a sh:NodeShape ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_direction_qualifier ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path rdf:object ] ; + sh:path biolink:object_direction_qualifier ] ; sh:targetClass biolink:EntityToFeatureOrDiseaseQualifiersMixin . biolink:EntityToOutcomeAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An association between some entity and an outcome" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:Outcome ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8450,207 +8450,185 @@ biolink:EntityToOutcomeAssociationMixin a sh:NodeShape ; biolink:EntityToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:subject ], - [ sh:description "a point in time" ; + sh:order 7 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 33 ; + sh:path dct:description ], + [ sh:description "" ; + sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:order 0 ; + sh:path biolink:clinical_approval_status ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 12 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 35 ; + sh:path biolink:deprecated ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ], + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 30 ; + sh:path biolink:category ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], - [ sh:description "" ; - sh:in ( "approved_for_condition" "fda_approved_for_condition" "not_approved_for_condition" "post_approval_withdrawal" "off_label_use" "not_provided" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:clinical_approval_status ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 29 ; sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:deprecated ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], + sh:minCount 1 ; + sh:order 28 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:negated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 34 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], + sh:order 9 ; + sh:path biolink:has_evidence ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:publications ], [ sh:in ( "pre_clinical_research_phase" "clinical_trial_phase" "clinical_trial_phase_1" "clinical_trial_phase_2" "clinical_trial_phase_3" "clinical_trial_phase_4" "not_provided" ) ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:max_research_phase ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 28 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 20 ; sh:path biolink:object_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 30 ; - sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], + sh:order 17 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 10 ; - sh:path biolink:knowledge_source ] ; - sh:targetClass biolink:EntityToPhenotypicFeatureAssociation . - -biolink:EntityToPhenotypicFeatureAssociationMixin a sh:NodeShape ; - sh:closed false ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:has_percentage ], + sh:path rdf:subject ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ] ; + sh:targetClass biolink:EntityToPhenotypicFeatureAssociation . + +biolink:EntityToPhenotypicFeatureAssociationMixin a sh:NodeShape ; + sh:closed false ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; @@ -8660,21 +8638,6 @@ biolink:EntityToPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:qualified_predicate ], [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:order 6 ; @@ -8684,11 +8647,39 @@ biolink:EntityToPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:has_total ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -8696,28 +8687,61 @@ biolink:EntityToPhenotypicFeatureAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:object_direction_qualifier ] ; + sh:order 4 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:qualified_predicate ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:frequency_qualifier ] ; sh:targetClass biolink:EntityToPhenotypicFeatureAssociationMixin . biolink:EnvironmentalExposure a sh:NodeShape ; sh:closed true ; sh:description "A environmental exposure is a factor relating to abiotic processes in the environment including sunlight (UV-B), atmospheric (heat, cold, general pollution) and water-born contaminants." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -8725,30 +8749,25 @@ biolink:EnvironmentalExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -8758,112 +8777,75 @@ biolink:EnvironmentalExposure a sh:NodeShape ; [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ] ; + sh:path biolink:iri ] ; sh:targetClass biolink:EnvironmentalExposure . biolink:EnvironmentalFeature a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ] ; sh:targetClass biolink:EnvironmentalFeature . biolink:EnvironmentalFoodContaminant a sh:NodeShape ; sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_chemical_role ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:max_tolerated_dose ], + sh:order 11 ; + sh:path biolink:category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; @@ -8873,6 +8855,14 @@ biolink:EnvironmentalFoodContaminant a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:is_toxic ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 1 ; @@ -8882,49 +8872,52 @@ biolink:EnvironmentalFoodContaminant a sh:NodeShape ; sh:order 13 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:trade_name ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_chemical_role ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], + sh:order 0 ; + sh:path biolink:trade_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ] ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:max_tolerated_dose ] ; sh:targetClass biolink:EnvironmentalFoodContaminant . biolink:EnvironmentalProcess a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:property [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -8934,10 +8927,6 @@ biolink:EnvironmentalProcess a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -8949,21 +8938,32 @@ biolink:EnvironmentalProcess a sh:NodeShape ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:EnvironmentalProcess . biolink:EpidemiologicalOutcome a sh:NodeShape ; @@ -8985,94 +8985,105 @@ biolink:Event a sh:NodeShape ; sh:closed true ; sh:description "Something that happens at a given place and time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 3 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:iri ] ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Event . biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:closed true ; sh:description "A transcript is formed from multiple exons" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; + sh:property [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:Exon ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -9080,213 +9091,140 @@ biolink:ExonToTranscriptRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Transcript ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:Transcript ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ] ; - sh:targetClass biolink:ExonToTranscriptRelationship . - -biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between an exposure event and an outcome." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:object_closure ], - [ sh:description "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:temporal_context_qualifier ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 34 ; + sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; + sh:order 5 ; + sh:path biolink:qualifiers ] ; + sh:targetClass biolink:ExonToTranscriptRelationship . + +biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between an exposure event and an outcome." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:deprecated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 21 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -9294,51 +9232,49 @@ biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:subject_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 30 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:object_category ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:negated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 30 ; - sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + [ sh:class biolink:Outcome ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 4 ; + sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; + sh:order 29 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:population_context_qualifier ], - [ sh:class biolink:Outcome ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 8 ; + sh:path biolink:publications ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 4 ; - sh:path rdf:object ], + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:description "a constraint of time placed upon the truth value of an association. for time intervales, use temporal interval qualifier." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:temporal_context_qualifier ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; @@ -9350,306 +9286,370 @@ biolink:ExposureEventToOutcomeAssociation a sh:NodeShape ; sh:minCount 1 ; sh:order 28 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 17 ; sh:path biolink:subject_category ], - [ sh:description "a point in time" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 33 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ] ; - sh:targetClass biolink:ExposureEventToOutcomeAssociation . - -biolink:ExposureEventToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Any association between an environment and a phenotypic feature, where being in the environment influences the phenotype." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; + sh:order 20 ; sh:path biolink:object_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:order 7 ; + sh:path biolink:qualifiers ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 33 ; + sh:order 34 ; sh:path biolink:has_attribute ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], + sh:order 16 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], + sh:order 27 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; + sh:order 25 ; sh:path biolink:subject_label_closure ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 31 ; + sh:order 32 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 0 ; + sh:path biolink:population_context_qualifier ], [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:qualifier ] ; + sh:targetClass biolink:ExposureEventToOutcomeAssociation . + +biolink:ExposureEventToPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Any association between an environment and a phenotypic feature, where being in the environment influences the phenotype." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 30 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 39 ; sh:path biolink:subject_aspect_qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 4 ; + sh:path biolink:negated ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:ExposureEvent ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 43 ; sh:path biolink:qualified_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:ExposureEvent ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], + sh:order 34 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_percentage ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:knowledge_source ] ; + sh:path biolink:knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ] ; sh:targetClass biolink:ExposureEventToPhenotypicFeatureAssociation . biolink:FeatureOrDiseaseQualifiersToEntityMixin a sh:NodeShape ; sh:closed false ; sh:description "Qualifiers for disease or phenotype to entity associations." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 1 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path rdf:subject ], + sh:order 3 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:object_aspect_qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:object_direction_qualifier ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path rdf:subject ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path rdf:predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 5 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -9669,182 +9669,189 @@ biolink:Food a sh:NodeShape ; sh:description "A substance consumed by a living organism as a source of nutrition" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:order 20 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], + sh:order 11 ; + sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 15 ; sh:path biolink:category ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], + sh:order 7 ; + sh:path biolink:is_toxic ], [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:is_supplement ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 12 ; sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:trade_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ] ; - sh:targetClass biolink:Food . - -biolink:FoodAdditive a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "" ; + sh:order 17 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], + [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; + sh:order 5 ; sh:path biolink:available_from ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 2 ; + sh:order 6 ; sh:path biolink:max_tolerated_dose ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:class biolink:ChemicalRole ; + sh:order 14 ; + sh:path biolink:iri ] ; + sh:targetClass biolink:Food . + +biolink:FoodAdditive a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:deprecated ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 1 ; + sh:path biolink:available_from ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 13 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "" ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:is_toxic ], + sh:order 2 ; + sh:path biolink:max_tolerated_dose ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:trade_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ] ; + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:is_toxic ] ; sh:targetClass biolink:FoodAdditive . biolink:FrequencyQualifierMixin a sh:NodeShape ; sh:closed false ; sh:description "Qualifier for frequency type associations" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; @@ -9859,14 +9866,7 @@ biolink:FrequencyQualifierMixin a sh:NodeShape ; [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ] ; + sh:path biolink:frequency_qualifier ] ; sh:targetClass biolink:FrequencyQualifierMixin . biolink:FrequencyQuantifier a sh:NodeShape ; @@ -9878,34 +9878,59 @@ biolink:FrequencyQuantifier a sh:NodeShape ; sh:order 0 ; sh:path biolink:has_count ], [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_quotient ], + sh:order 3 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:has_total ], [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:has_percentage ] ; + sh:order 2 ; + sh:path biolink:has_quotient ] ; sh:targetClass biolink:FrequencyQuantifier . biolink:FunctionalAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a macromolecular machine mixin (gene, gene product or complex of gene products) and either a molecular activity, a biological process or a cellular location in which a function is executed." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; @@ -9915,128 +9940,61 @@ biolink:FunctionalAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "class describing the activity, process or localization of the gene product" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -10051,23 +10009,94 @@ biolink:FunctionalAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; - sh:path biolink:subject_closure ] ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "class describing the activity, process or localization of the gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ] ; sh:targetClass biolink:FunctionalAssociation . biolink:Fungus a sh:NodeShape ; sh:closed true ; sh:description "A kingdom of eukaryotic, heterotrophic organisms that live as saprobes or parasites, including mushrooms, yeasts, smuts, molds, etc. They reproduce either sexually or asexually, and have life cycles that range from simple to complex. Filamentous fungi refer to those that grow as multicellular colonies (mushrooms and molds)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], [ sh:datatype xsd:string ; @@ -10081,19 +10110,6 @@ biolink:Fungus a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; @@ -10101,26 +10117,10 @@ biolink:Fungus a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; @@ -10131,311 +10131,262 @@ biolink:GeneAffectsChemicalAssociation a sh:NodeShape ; sh:closed true ; sh:description "Describes an effect that a gene or gene product has on a chemical entity (e.g. an impact of on its abundance, activity, localization, processing, transport, etc.)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:AnatomicalEntity ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:subject_context_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 39 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:publications ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:causal_mechanism_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 46 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:subject_namespace ], + sh:order 10 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 30 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 42 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:original_subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 47 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:species_context_qualifier ], - [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path rdf:object ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 49 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:negated ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:object_category ], + sh:order 46 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 40 ; - sh:path biolink:object_label_closure ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 42 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 34 ; sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 31 ; - sh:path biolink:subject_category ], - [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; - sh:in ( "metabolite" ) ; + sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:object_derivative_qualifier ], + sh:order 2 ; + sh:path biolink:subject_derivative_qualifier ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:primary_knowledge_source ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 45 ; + sh:path rdf:type ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 41 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_part_qualifier ], - [ sh:class biolink:AnatomicalEntity ; + sh:order 27 ; + sh:path biolink:timepoint ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:object_context_qualifier ], + sh:order 29 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 20 ; sh:path biolink:qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 44 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:qualifiers ], + sh:order 13 ; + sh:path biolink:anatomical_context_qualifier ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 16 ; + sh:path rdf:subject ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 47 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 48 ; sh:path biolink:has_attribute ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:has_evidence ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_aspect_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:object_category_closure ], - [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; - sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; + sh:order 21 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_part_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:object_category ], + [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 17 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:subject_context_qualifier ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:causal_mechanism_qualifier ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_derivative_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:iri ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:qualified_predicate ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 16 ; - sh:path rdf:subject ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:anatomical_context_qualifier ], - [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; + sh:order 22 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 39 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:subject_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 44 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:AnatomicalEntity ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:subject_category_closure ], + sh:order 9 ; + sh:path biolink:object_context_qualifier ], [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:object_form_or_variant_qualifier ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; sh:maxCount 1 ; - sh:order 49 ; - sh:path biolink:deprecated ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:species_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 26 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a point in time" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 45 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 28 ; + sh:path biolink:original_subject ], + [ sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; + sh:in ( "metabolite" ) ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:negated ], + sh:order 11 ; + sh:path biolink:object_derivative_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 33 ; - sh:path biolink:subject_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:original_predicate ] ; - sh:targetClass biolink:GeneAffectsChemicalAssociation . - -biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:GeneOrGeneProduct ; - sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 40 ; + sh:path biolink:object_label_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 17 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; sh:order 7 ; - sh:path biolink:qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], + sh:path biolink:object_part_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 31 ; + sh:path biolink:subject_category ], + [ sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "genetic_variant_form" "modified_form" "loss_of_function_variant_form" "gain_of_function_variant_form" "polymorphic_form" "snp_form" "analog_form" ) ; sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:order 35 ; + sh:path biolink:subject_category_closure ], + [ sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:in ( "3_prime_utr" "5_prime_utr" "polya_tail" "promoter" "enhancer" "exon" "intron" ) ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:order 1 ; + sh:path biolink:subject_part_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:iri ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; sh:order 5 ; - sh:path biolink:sex_qualifier ], + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 26 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], + sh:order 18 ; + sh:path rdf:object ] ; + sh:targetClass biolink:GeneAffectsChemicalAssociation . + +biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -10443,29 +10394,20 @@ biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_total ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -10475,155 +10417,213 @@ biolink:GeneAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 34 ; sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], + sh:order 37 ; + sh:path biolink:has_count ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 9 ; + sh:path biolink:publications ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 40 ; + sh:path biolink:has_percentage ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:negated ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 35 ; sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 33 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ] ; + sh:order 7 ; + sh:path biolink:qualifier ] ; sh:targetClass biolink:GeneAsAModelOfDiseaseAssociation . biolink:GeneExpressionMixin a sh:NodeShape ; sh:closed false ; sh:description "Observed gene expression intensity, context (site, stage) and associated phenotypic status within which the expression occurs." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; + sh:property [ sh:class biolink:AnatomicalEntity ; + sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], + sh:order 1 ; + sh:path biolink:expression_site ], [ sh:class biolink:OntologyClass ; sh:description "Optional quantitative value indicating degree of expression." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:quantifier_qualifier ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:expression_site ], + sh:order 2 ; + sh:path biolink:stage_qualifier ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; sh:maxCount 1 ; @@ -10646,88 +10646,51 @@ biolink:GeneGroupingMixin a sh:NodeShape ; biolink:GeneHasVariantThatContributesToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 41 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_source ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 45 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:object_direction_qualifier ], + sh:order 26 ; + sh:path biolink:object_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:timepoint ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:has_percentage ], + sh:order 44 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 30 ; - sh:path biolink:id ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; @@ -10735,475 +10698,509 @@ biolink:GeneHasVariantThatContributesToDiseaseAssociation a sh:NodeShape ; sh:order 6 ; sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], + sh:order 25 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:subject_closure ], + sh:minCount 1 ; + sh:order 30 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Disease ; + sh:description "disease" ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:object_aspect_qualifier ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:qualified_predicate ], + sh:order 5 ; + sh:path biolink:object_direction_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 23 ; sh:path biolink:subject_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:object_namespace ], + sh:order 15 ; + sh:path biolink:timepoint ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 42 ; sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:double ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_quotient ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:deprecated ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 1 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 38 ; + sh:path biolink:has_count ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 39 ; sh:path biolink:has_total ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ], + sh:order 9 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:negated ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_count ], + sh:order 18 ; + sh:path biolink:original_object ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 32 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ] ; - sh:targetClass biolink:GeneHasVariantThatContributesToDiseaseAssociation . - -biolink:GeneProductIsoformMixin a sh:NodeShape ; - sh:closed false ; - sh:description "This is an abstract class that can be mixed in with different kinds of gene products to indicate that the gene product is intended to represent a specific isoform rather than a canonical or reference or generic product. The designation of canonical or reference may be arbitrary, or it may represent the superclass of all isoforms." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; sh:order 2 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ] ; - sh:targetClass biolink:GeneProductIsoformMixin . - -biolink:GeneToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 43 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; + sh:order 31 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category ], [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model" ; + sh:description "A gene that has a role in modeling the disease. This may be a model organism ortholog of a known disease gene, or it may be a gene whose mutants recapitulate core features of the disease." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; - sh:order 0 ; + sh:order 1 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:datatype xsd:double ; + sh:order 4 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 37 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:object_direction_qualifier ], + sh:order 0 ; + sh:path biolink:subject_form_or_variant_qualifier ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 35 ; + sh:order 36 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 40 ; - sh:path biolink:has_percentage ], + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 12 ; + sh:path biolink:knowledge_source ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:order 45 ; + sh:path biolink:frequency_qualifier ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 16 ; + sh:order 17 ; sh:path biolink:original_predicate ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 9 ; + sh:order 10 ; sh:path biolink:publications ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_subject ] ; + sh:targetClass biolink:GeneHasVariantThatContributesToDiseaseAssociation . + +biolink:GeneProductIsoformMixin a sh:NodeShape ; + sh:closed false ; + sh:description "This is an abstract class that can be mixed in with different kinds of gene products to indicate that the gene product is intended to represent a specific isoform rather than a canonical or reference or generic product. The designation of canonical or reference may be arbitrary, or it may represent the superclass of all isoforms." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; + sh:targetClass biolink:GeneProductIsoformMixin . + +biolink:GeneToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_total ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 34 ; sh:path dct:description ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the disease, may be protective or causative or associative, or as a model" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 41 ; sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 37 ; sh:path biolink:has_count ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], + sh:order 39 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 22 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:negated ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:subject_label_closure ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:sex_qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:order 40 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:subject_aspect_qualifier ] ; - sh:targetClass biolink:GeneToDiseaseAssociation . - -biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 35 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 27 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path biolink:original_predicate ] ; + sh:targetClass biolink:GeneToDiseaseAssociation . + +biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 20 ; sh:path biolink:subject_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_quotient ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_total ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:double ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 30 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:sex_qualifier ], - [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -11211,106 +11208,117 @@ biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:order 16 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 42 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], + sh:order 9 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 13 ; sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 19 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:has_percentage ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 15 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "gene in which variation is correlated with the phenotypic feature" ; sh:maxCount 1 ; @@ -11318,36 +11326,28 @@ biolink:GeneToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_count ] ; + sh:order 40 ; + sh:path biolink:has_percentage ] ; sh:targetClass biolink:GeneToDiseaseOrPhenotypicFeatureAssociation . biolink:GeneToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:GeneOrGeneProduct ; + sh:property [ sh:class biolink:GeneOrGeneProduct ; sh:description "gene that is the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -11361,165 +11361,162 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a gene and a gene expression site, possibly qualified by stage/timing info." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path rdfs:label ], + [ sh:description "expression relationship" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 31 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 29 ; - sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:object_category_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "Gene or gene product positively within the specified anatomical entity (or subclass, i.e. cellular component) location." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:publications ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 31 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:subject_label_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:timepoint ], + sh:order 29 ; + sh:path biolink:iri ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:LifeStage ; - sh:description "stage at which the gene is expressed in the site" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:stage_qualifier ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:order 33 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:subject_category ], + sh:order 22 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:deprecated ], - [ sh:description "expression relationship" ; + sh:order 5 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], + sh:order 14 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "can be used to indicate magnitude, or also ranking" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:quantifier_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:subject_closure ], + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "Gene or gene product positively within the specified anatomical entity (or subclass, i.e. cellular component) location." ; + sh:order 6 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:subject ], + sh:order 35 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:subject_label_closure ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:object_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 12 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 30 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 28 ; sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 30 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 27 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_subject ], + sh:order 24 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 12 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_predicate ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 34 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:LifeStage ; + sh:description "stage at which the gene is expressed in the site" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:stage_qualifier ], [ sh:class biolink:AnatomicalEntity ; sh:description "location in which the gene is expressed" ; sh:maxCount 1 ; @@ -11527,294 +11524,303 @@ biolink:GeneToExpressionSiteAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path rdf:object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 34 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:timepoint ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:qualifiers ] ; + sh:order 27 ; + sh:path biolink:retrieval_source_ids ] ; sh:targetClass biolink:GeneToExpressionSiteAssociation . biolink:GeneToGeneAssociation a sh:NodeShape ; sh:closed false ; sh:description "abstract parent class for different kinds of gene-gene or gene product to gene product relationships. Includes homology and interaction." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; sh:order 2 ; - sh:path rdf:object ] ; - sh:targetClass biolink:GeneToGeneAssociation . - -biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Indicates that two genes are co-expressed, generally under the same conditions." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ], + sh:path rdf:object ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 29 ; + sh:order 25 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 5 ; + sh:order 1 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:qualifier ] ; + sh:targetClass biolink:GeneToGeneAssociation . + +biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Indicates that two genes are co-expressed, generally under the same conditions." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:stage_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:negated ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 18 ; sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 37 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 6 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 33 ; sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 31 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 12 ; + sh:path biolink:knowledge_source ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], + sh:order 35 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:subject_closure ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:subject_label_closure ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 32 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:subject_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:qualifier ], + [ sh:class biolink:DiseaseOrPhenotypicFeature ; + sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:phenotypic_state ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; @@ -11822,85 +11828,79 @@ biolink:GeneToGeneCoexpressionAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 4 ; sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 30 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], + sh:order 25 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:expression_site ], - [ sh:class biolink:DiseaseOrPhenotypicFeature ; - sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:phenotypic_state ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:negated ], + sh:order 16 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Optional quantitative value indicating degree of expression." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:quantifier_qualifier ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; - sh:maxCount 1 ; + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], + sh:order 9 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 26 ; sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:timepoint ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], + sh:order 1 ; + sh:path biolink:expression_site ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ] ; + sh:minCount 1 ; + sh:order 30 ; + sh:path biolink:id ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 6 ; + sh:path rdf:object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:publications ] ; sh:targetClass biolink:GeneToGeneCoexpressionAssociation . biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; @@ -11908,92 +11908,122 @@ biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; sh:description "Set membership of a gene in a family of genes related by common evolutionary ancestry usually inferred by sequence comparisons. The genes in a given family generally share common sequence motifs which generally map onto shared gene product structure-function relationships." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:Gene ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "membership of the gene in the given gene family." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:GeneFamily ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -12002,70 +12032,40 @@ biolink:GeneToGeneFamilyAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "membership of the gene in the given gene family." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; @@ -12077,104 +12077,86 @@ biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; sh:closed true ; sh:description "A homology association between two genes. May be orthology (in which case the species of subject and object should differ) or paralogy (in which case the species may be the same)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:class biolink:GeneOrGeneProduct ; sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; @@ -12182,163 +12164,176 @@ biolink:GeneToGeneHomologyAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "homology relationship type" ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "homology relationship type" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ] ; + sh:path biolink:object_category_closure ] ; sh:targetClass biolink:GeneToGeneHomologyAssociation . biolink:GeneToGeneProductRelationship a sh:NodeShape ; sh:closed true ; sh:description "A gene is transcribed and potentially translated to a gene product" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:GeneProductMixin ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:GeneProductMixin ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:Gene ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -12346,15 +12341,10 @@ biolink:GeneToGeneProductRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -12362,160 +12352,100 @@ biolink:GeneToGeneProductRelationship a sh:NodeShape ; sh:order 16 ; sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ] ; - sh:targetClass biolink:GeneToGeneProductRelationship . - -biolink:GeneToGoTermAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 7 ; + sh:path biolink:has_evidence ] ; + sh:targetClass biolink:GeneToGeneProductRelationship . + +biolink:GeneToGoTermAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:Gene ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; @@ -12523,73 +12453,87 @@ biolink:GeneToGoTermAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ] ; - sh:targetClass biolink:GeneToGoTermAssociation . - -biolink:GeneToPathwayAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An interaction between a gene or gene product and a biological process or pathway." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -12597,253 +12541,232 @@ biolink:GeneToPathwayAssociation a sh:NodeShape ; sh:order 15 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:Gene ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ] ; + sh:targetClass biolink:GeneToGoTermAssociation . + +biolink:GeneToPathwayAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An interaction between a gene or gene product and a biological process or pathway." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Pathway ; + sh:description "the pathway that includes or is affected by the gene or gene product" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the gene or gene product entity that participates or influences the pathway" ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:Pathway ; - sh:description "the pathway that includes or is affected by the gene or gene product" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a point in time" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ] ; - sh:targetClass biolink:GeneToPathwayAssociation . - -biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:class biolink:GeneOrGeneProduct ; - sh:description "gene in which variation is correlated with the phenotypic feature" ; + sh:description "the gene or gene product entity that participates or influences the pathway" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a point in time" ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:double ; + sh:order 20 ; + sh:path biolink:object_category_closure ] ; + sh:targetClass biolink:GeneToPathwayAssociation . + +biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:GeneOrGeneProduct ; + sh:description "gene in which variation is correlated with the phenotypic feature" ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:has_quotient ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; @@ -12853,21 +12776,55 @@ biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 33 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], + sh:order 3 ; + sh:path biolink:sex_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -12879,201 +12836,225 @@ biolink:GeneToPhenotypicFeatureAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_total ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:order 11 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 40 ; sh:path biolink:has_percentage ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 42 ; sh:path biolink:object_aspect_qualifier ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 21 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], [ sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:in ( "activity_or_abundance" "abundance" "activity" "expression" "synthesis" "degradation" "cleavage" "hydrolysis" "metabolic_processing" "mutation_rate" "stability" "folding" "localization" "transport" "secretion" "uptake" "splicing" "molecular_interaction" "molecular_modification" "acetylation" "acylation" "alkylation" "amination" "carbamoylation" "ethylation" "glutathionylation" "glycation" "glycosylation" "glucuronidation" "n_linked_glycosylation" "o_linked_glycosylation" "hydroxylation" "lipidation" "farnesylation" "geranoylation" "myristoylation" "palmitoylation" "prenylation" "methylation" "nitrosation" "nucleotidylation" "phosphorylation" "ribosylation" "ADP-ribosylation" "sulfation" "sumoylation" "ubiquitination" "oxidation" "reduction" "carboxylation" ) ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 21 ; - sh:path biolink:object_closure ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 31 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 37 ; sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 27 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 23 ; + sh:path biolink:object_category_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 30 ; - sh:path biolink:iri ] ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:object_direction_qualifier ] ; sh:targetClass biolink:GeneToPhenotypicFeatureAssociation . biolink:Genome a sh:NodeShape ; sh:closed true ; sh:description "A genome is the sum of genetic material within a cell or virion." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:order 10 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 12 ; + sh:path dct:description ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ] ; + sh:path biolink:id ] ; sh:targetClass biolink:Genome . biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:closed true ; sh:description "A genomic background exposure is where an individual's specific genomic background of genes, sequence variants or other pre-existing genomic conditions constitute a kind of 'exposure' to the organism, leading to or influencing an outcome." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_gene_or_gene_product ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 14 ; - sh:path biolink:synonym ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:in_taxon_label ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 6 ; sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -13081,38 +13062,50 @@ biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_attribute_type ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path dct:description ], - [ sh:class biolink:QuantityValue ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 8 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:in_taxon_label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 12 ; - sh:path biolink:xref ], + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 18 ; sh:path biolink:has_attribute ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:has_biological_sequence ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ], + [ sh:class biolink:Gene ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_gene_or_gene_product ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; @@ -13123,19 +13116,26 @@ biolink:GenomicBackgroundExposure a sh:NodeShape ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 14 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 19 ; - sh:path biolink:deprecated ] ; + sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 12 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:full_name ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 8 ; + sh:path biolink:has_quantitative_value ] ; sh:targetClass biolink:GenomicBackgroundExposure . biolink:GenomicEntity a sh:NodeShape ; @@ -13151,79 +13151,109 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:closed true ; sh:description "A relationship between a sequence feature and a nucleic acid entity it is localized to. The reference entity may be a chromosome, chromosome region or information entity such as a contig." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 31 ; - sh:path biolink:id ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], + sh:order 20 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 34 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:subject_closure ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:publications ], + [ sh:description "The version of the genome on which a feature is located. For example, GRCh38 for Homo sapiens." ; + sh:in ( "+" "-" "." "?" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:genome_build ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 29 ; sh:path biolink:object_label_closure ], - [ sh:description "The strand on which a feature is located. Has a value of '+' (sense strand or forward strand) or '-' (anti-sense strand or reverse strand)." ; - sh:in ( "+" "-" "." "?" ) ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:strand ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 34 ; - sh:path rdf:type ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], + sh:order 25 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:negated ], - [ sh:description "a point in time" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:subject_namespace ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 35 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_source ], + sh:order 38 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -13234,42 +13264,43 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:start_interbase_coordinate ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:subject ], - [ sh:datatype xsd:integer ; - sh:description "The position at which the subject nucleic acid entity ends on the chromosome or other entity to which it is located on." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:end_interbase_coordinate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:subject_namespace ], + sh:order 10 ; + sh:path biolink:qualifiers ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 36 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "The strand on which a feature is located. Has a value of '+' (sense strand or forward strand) or '-' (anti-sense strand or reverse strand)." ; + sh:in ( "+" "-" "." "?" ) ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], + sh:order 3 ; + sh:path biolink:strand ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:publications ], + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:integer ; + sh:description "The position at which the subject nucleic acid entity ends on the chromosome or other entity to which it is located on." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:end_interbase_coordinate ], [ sh:class biolink:NucleicAcidEntity ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -13277,39 +13308,28 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path rdf:object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 19 ; sh:path biolink:original_object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 5 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], + sh:minCount 1 ; + sh:order 31 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -13319,197 +13339,183 @@ biolink:GenomicSequenceLocalization a sh:NodeShape ; sh:in ( "0" "1" "2" ) ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:phase ], - [ sh:description "The version of the genome on which a feature is located. For example, GRCh38 for Homo sapiens." ; - sh:in ( "+" "-" "." "?" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:genome_build ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ] ; + sh:path biolink:phase ] ; sh:targetClass biolink:GenomicSequenceLocalization . biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:qualified_predicate ], - [ sh:description "a human-readable description of an entity" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:description "The relationship to the disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 39 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Genotype ; + sh:description "A genotype that has a role in modeling the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -13517,231 +13523,230 @@ biolink:GenotypeAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:Genotype ; - sh:description "A genotype that has a role in modeling the disease." ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:order 5 ; + sh:path biolink:qualifiers ] ; sh:targetClass biolink:GenotypeAsAModelOfDiseaseAssociation . biolink:GenotypeToDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:description "a point in time" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 39 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 37 ; sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:qualified_predicate ], + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:Genotype ; + sh:description "a genotype that is associated in some way with a disease state" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "E.g. is pathogenic for" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Disease ; + sh:description "a disease that is associated with that genotype" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Genotype ; - sh:description "a genotype that is associated in some way with a disease state" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:Disease ; - sh:description "a disease that is associated with that genotype" ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:qualified_predicate ], + [ sh:description "E.g. is pathogenic for" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ] ; + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ] ; sh:targetClass biolink:GenotypeToDiseaseAssociation . biolink:GenotypeToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; @@ -13754,746 +13759,741 @@ biolink:GenotypeToEntityAssociationMixin a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:path rdf:subject ] ; sh:targetClass biolink:GenotypeToEntityAssociationMixin . biolink:GenotypeToGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between a genotype and a gene. The genotype have have multiple variants in that gene or a single one. There is no assumption of cardinality" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; + sh:property [ sh:class biolink:Gene ; + sh:description "gene implicated in genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:class biolink:Genotype ; + sh:description "parent genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "the relationship type used to connect genotype to gene" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "the relationship type used to connect genotype to gene" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ] ; + sh:targetClass biolink:GenotypeToGeneAssociation . + +biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "Any association between one genotype and a genotypic entity that is a sub-component of it" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:Gene ; - sh:description "gene implicated in genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ] ; - sh:targetClass biolink:GenotypeToGeneAssociation . - -biolink:GenotypeToGenotypePartAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "Any association between one genotype and a genotypic entity that is a sub-component of it" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], [ sh:class biolink:Genotype ; - sh:description "child genotype" ; + sh:description "parent genotype" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:Genotype ; + sh:description "child genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ] ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:GenotypeToGenotypePartAssociation . biolink:GenotypeToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between one genotype and a phenotypic feature, where having the genotype confers the phenotype, either in isolation or through environment" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:order 37 ; + sh:path biolink:has_quotient ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 29 ; sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:PhenotypicFeature ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 23 ; sh:path biolink:object_namespace ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:double ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:order 17 ; + sh:path biolink:object_category ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:sex_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 25 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Genotype ; + sh:description "genotype that is associated with the phenotypic feature" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:has_percentage ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], + sh:order 32 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:publications ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 42 ; sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_total ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 43 ; sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:Genotype ; - sh:description "genotype that is associated with the phenotypic feature" ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:class biolink:PhenotypicFeature ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ] ; + sh:order 2 ; + sh:path rdf:object ] ; sh:targetClass biolink:GenotypeToPhenotypicFeatureAssociation . biolink:GenotypeToVariantAssociation a sh:NodeShape ; sh:closed true ; sh:description "Any association between a genotype and a sequence variant." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "the relationship type used to connect genotype to gene" ; + sh:property [ sh:description "the relationship type used to connect genotype to gene" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:SequenceVariant ; + sh:description "gene implicated in genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Genotype ; + sh:description "parent genotype" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:SequenceVariant ; - sh:description "gene implicated in genotype" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Genotype ; - sh:description "parent genotype" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ] ; sh:targetClass biolink:GenotypeToVariantAssociation . biolink:GenotypicSex a sh:NodeShape ; @@ -14504,109 +14504,79 @@ biolink:GenotypicSex a sh:NodeShape ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; - sh:path biolink:deprecated ] ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:GenotypicSex . biolink:GeographicExposure a sh:NodeShape ; sh:closed true ; sh:description "A geographic exposure is a factor relating to geographic proximity to some impactful entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 1 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -14614,26 +14584,15 @@ biolink:GeographicExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; @@ -14643,27 +14602,62 @@ biolink:GeographicExposure a sh:NodeShape ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; - sh:path biolink:has_qualitative_value ] ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:GeographicExposure . biolink:GeographicLocation a sh:NodeShape ; sh:closed true ; sh:description "a location that can be described in lat/long coordinates" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], @@ -14672,43 +14666,49 @@ biolink:GeographicLocation a sh:NodeShape ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:longitude ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], [ sh:datatype xsd:float ; sh:description "latitude" ; sh:maxCount 1 ; sh:order 0 ; - sh:path biolink:latitude ] ; + sh:path biolink:latitude ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:GeographicLocation . biolink:GeographicLocationAtTime a sh:NodeShape ; @@ -14718,23 +14718,40 @@ biolink:GeographicLocationAtTime a sh:NodeShape ; sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 4 ; sh:path biolink:xref ], - [ sh:description "a point in time" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:float ; + sh:description "longitude" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:longitude ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:float ; + sh:description "latitude" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:latitude ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; @@ -14748,221 +14765,204 @@ biolink:GeographicLocationAtTime a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 9 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:float ; - sh:description "latitude" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:latitude ], - [ sh:datatype xsd:float ; - sh:description "longitude" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:longitude ] ; + sh:path biolink:category ] ; sh:targetClass biolink:GeographicLocationAtTime . biolink:GrossAnatomicalStructure a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ] ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ] ; sh:targetClass biolink:GrossAnatomicalStructure . biolink:Haplotype a sh:NodeShape ; sh:closed true ; sh:description "A set of zero or more Alleles on a single instance of a Sequence[VMC]" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 9 ; sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ] ; + sh:order 2 ; + sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Haplotype . biolink:Hospitalization a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ] ; + sh:order 5 ; + sh:path biolink:iri ] ; sh:targetClass biolink:Hospitalization . biolink:HospitalizationOutcome a sh:NodeShape ; @@ -14975,22 +14975,39 @@ biolink:Human a sh:NodeShape ; sh:closed true ; sh:description "A member of the the species Homo sapiens." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -15000,39 +15017,22 @@ biolink:Human a sh:NodeShape ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + sh:path biolink:synonym ] ; sh:targetClass biolink:Human . biolink:InformationContentEntityToNamedThingAssociation a sh:NodeShape ; @@ -15040,80 +15040,94 @@ biolink:InformationContentEntityToNamedThingAssociation a sh:NodeShape ; sh:description "association between a named thing and a information content entity where the specific context of the relationship between that named thing and the publication is unknown. For example, model organisms databases often capture the knowledge that a gene is found in a journal article, but not specifically the context in which that gene was documented in the article. In these cases, this association with the accompanying predicate 'mentions' could be used. Conversely, for more specific associations (like 'gene to disease association', the publication should be captured as an edge property)." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; @@ -15123,303 +15137,304 @@ biolink:InformationContentEntityToNamedThingAssociation a sh:NodeShape ; sh:order 29 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ] ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ] ; sh:targetClass biolink:InformationContentEntityToNamedThingAssociation . biolink:Invertebrate a sh:NodeShape ; sh:closed true ; sh:description "An animal lacking a vertebral column. This group consists of 98% of all animal species." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + sh:path biolink:in_taxon_label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:Invertebrate . biolink:JournalArticle a sh:NodeShape ; sh:closed true ; sh:description "an article, typically presenting results of research, that is published in an issue of a scientific journal." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:creation_date ], + sh:order 13 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 5 ; + sh:path biolink:pages ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 20 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 18 ; + sh:path biolink:id ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 8 ; + sh:path biolink:mesh_terms ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:volume ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 23 ; + sh:path dct:description ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:iri ], + sh:order 22 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; sh:order 10 ; sh:path dct:type ], - [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 17 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:issue ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 14 ; + sh:path biolink:creation_date ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:has_attribute ], + sh:order 4 ; + sh:path biolink:authors ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 9 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 15 ; - sh:path biolink:provided_by ], + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:summary ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; + [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 18 ; - sh:path biolink:id ], + sh:order 0 ; + sh:path biolink:published_in ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 9 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 15 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 17 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 21 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:summary ], [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:format ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 20 ; - sh:path biolink:category ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:authors ], - [ sh:description "The enclosing parent serial containing the article should have industry-standard identifier from ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:published_in ], + sh:order 3 ; + sh:path biolink:issue ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:order 7 ; sh:path biolink:keywords ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 5 ; - sh:path biolink:pages ], + sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:volume ], + [ sh:datatype xsd:string ; + sh:order 21 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 24 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Optional value, if used locally as a convenience, is set to the iso abbreviation of the 'published in' parent." ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:iso_abbreviation ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path rdfs:label ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 8 ; - sh:path biolink:mesh_terms ] ; + sh:path biolink:iso_abbreviation ] ; sh:targetClass biolink:JournalArticle . biolink:LogOddsAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a log odds ratio analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; + sh:property [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], + sh:order 2 ; + sh:path biolink:format ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + sh:order 12 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; @@ -15428,99 +15443,84 @@ biolink:LogOddsAnalysisResult a sh:NodeShape ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ] ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:LogOddsAnalysisResult . biolink:MacromolecularComplex a sh:NodeShape ; sh:closed true ; sh:description "A stable assembly of two or more macromolecules, i.e. proteins, nucleic acids, carbohydrates or lipids, in which at least one component is a protein and the constituent parts function together." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:full_name ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 2 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], + sh:order 10 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:in_taxon_label ] ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:MacromolecularComplex . biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; @@ -15528,111 +15528,101 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a biological process or pathway (as represented in the GO biological process branch), where the entity carries out some part of the process, regulates it, or acts upstream of it." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:BiologicalProcess ; - sh:description "class describing the activity, process or localization of the gene product" ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 1 ; + sh:path rdf:predicate ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -15642,143 +15632,85 @@ biolink:MacromolecularMachineToBiologicalProcessAssociation a sh:NodeShape ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ] ; - sh:targetClass biolink:MacromolecularMachineToBiologicalProcessAssociation . - -biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:BiologicalProcess ; + sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ] ; + sh:targetClass biolink:MacromolecularMachineToBiologicalProcessAssociation . + +biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a cellular component (as represented in the GO cellular component branch), where the entity carries out its function in the cellular component." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:class biolink:CellularComponent ; sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; @@ -15786,81 +15718,149 @@ biolink:MacromolecularMachineToCellularComponentAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ] ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ] ; sh:targetClass biolink:MacromolecularMachineToCellularComponentAssociation . biolink:MacromolecularMachineToEntityAssociationMixin a sh:NodeShape ; @@ -15892,54 +15892,20 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:closed true ; sh:description "A functional association between a macromolecular machine (gene, gene product or complex) and a molecular activity (as represented in the GO molecular function branch), where the entity carries out the activity, or contributes to its execution." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], [ sh:class biolink:MolecularActivity ; sh:description "class describing the activity, process or localization of the gene product" ; sh:maxCount 1 ; @@ -15948,34 +15914,80 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:MacromolecularMachineMixin ; sh:description "gene, product or macromolecular complex that has the function associated with the GO term" ; sh:maxCount 1 ; @@ -15983,56 +15995,16 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:nodeKind sh:BlankNode ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -16040,86 +16012,114 @@ biolink:MacromolecularMachineToMolecularActivityAssociation a sh:NodeShape ; sh:order 26 ; sh:path biolink:id ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ] ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ] ; sh:targetClass biolink:MacromolecularMachineToMolecularActivityAssociation . biolink:Mammal a sh:NodeShape ; sh:closed true ; sh:description "A member of the class Mammalia, a clade of endothermic amniotes distinguished from reptiles and birds by the possession of hair, three middle ear bones, mammary glands, and a neocortex" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ] ; + sh:order 1 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:Mammal . biolink:MappingCollection a sh:NodeShape ; @@ -16137,69 +16137,21 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a material sample and the material entity from which it is derived." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:description "derivation relationship" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], [ sh:class biolink:MaterialSample ; sh:description "the material sample being described" ; sh:maxCount 1 ; @@ -16207,100 +16159,148 @@ biolink:MaterialSampleDerivationAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:NamedThing ; - sh:description "the material entity the sample was derived from. This may be another material sample, or any other material entity, including for example an organism, a geographic feature, or some environmental material." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:NamedThing ; + sh:description "the material entity the sample was derived from. This may be another material sample, or any other material entity, including for example an organism, a geographic feature, or some environmental material." ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ] ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ] ; sh:targetClass biolink:MaterialSampleDerivationAssociation . biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; @@ -16308,92 +16308,42 @@ biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:description "An association between a material sample and a disease or phenotype." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:MaterialSample ; - sh:description "the material sample being described" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 31 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -16406,29 +16356,15 @@ biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 16 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "disease or phenotype" ; sh:maxCount 1 ; @@ -16437,58 +16373,122 @@ biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation a sh:NodeShape ; sh:order 2 ; sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:MaterialSample ; + sh:description "the material sample being described" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "a point in time" ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ] ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ] ; sh:targetClass biolink:MaterialSampleToDiseaseOrPhenotypicFeatureAssociation . biolink:MaterialSampleToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "An association between a material sample and something." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:NamedThing ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:class biolink:MaterialSample ; sh:description "the material sample being described" ; sh:maxCount 1 ; @@ -16502,31 +16502,54 @@ biolink:MicroRNA a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; @@ -16535,41 +16558,20 @@ biolink:MicroRNA a sh:NodeShape ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:MicroRNA . biolink:ModelToDiseaseAssociationMixin a sh:NodeShape ; sh:closed false ; sh:description "This mixin is used for any association class for which the subject (source node) plays the role of a 'model', in that it recapitulates some features of the disease in a way that is useful for studying the disease outside a patient carrying the disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The relationship to the disease" ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:NamedThing ; sh:description "The entity that serves as the model of the disease. This may be an organism, a strain of organism, a genotype or variant that exhibits similar features, or a gene that when mutated exhibits features of the disease" ; sh:maxCount 1 ; @@ -16577,58 +16579,25 @@ biolink:ModelToDiseaseAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:order 1 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:ModelToDiseaseAssociationMixin . biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; sh:closed true ; sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -16636,124 +16605,155 @@ biolink:MolecularActivityToChemicalEntityAssociation a sh:NodeShape ; sh:order 15 ; sh:path biolink:subject_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:ChemicalEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ] ; + sh:order 8 ; + sh:path biolink:knowledge_source ] ; sh:targetClass biolink:MolecularActivityToChemicalEntityAssociation . biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; @@ -16761,98 +16761,130 @@ biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; sh:description "Added in response to capturing relationship between microbiome activities as measured via measurements of blood analytes as collected via blood and stool samples" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; @@ -16863,67 +16895,35 @@ biolink:MolecularActivityToMolecularActivityAssociation a sh:NodeShape ; sh:order 22 ; sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ] ; + sh:path biolink:retrieval_source_ids ] ; sh:targetClass biolink:MolecularActivityToMolecularActivityAssociation . biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; @@ -16931,65 +16931,104 @@ biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:description "Association that holds the relationship between a reaction and the pathway it participates in." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:class biolink:MolecularActivity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:Pathway ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -16997,201 +17036,162 @@ biolink:MolecularActivityToPathwayAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:MolecularActivity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ] ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ] ; sh:targetClass biolink:MolecularActivityToPathwayAssociation . biolink:MolecularMixture a sh:NodeShape ; sh:closed true ; sh:description "A molecular mixture is a chemical mixture composed of two or more molecular entities with known concentration and stoichiometry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:max_tolerated_dose ], - [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], + sh:order 14 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:description "" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], + sh:order 0 ; + sh:path biolink:is_supplement ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:is_toxic ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_chemical_role ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_supplement ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], [ sh:description "" ; sh:in ( "over_the_counter" "prescription" ) ; sh:order 5 ; sh:path biolink:available_from ], [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:drug_regulatory_status_world_wide ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 20 ; sh:path biolink:deprecated ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_chemical_role ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:has_attribute ], - [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 18 ; sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 17 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:drug_regulatory_status_world_wide ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 10 ; sh:path biolink:xref ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], + sh:order 6 ; + sh:path biolink:max_tolerated_dose ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ] ; + sh:path biolink:trade_name ] ; sh:targetClass biolink:MolecularMixture . biolink:MortalityOutcome a sh:NodeShape ; @@ -17204,239 +17204,233 @@ biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation a sh:NodeShape sh:closed true ; sh:description "" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:publications ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path rdf:predicate ], + sh:order 9 ; + sh:path biolink:qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:object_context_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 33 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 29 ; + sh:path biolink:object_label_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_subject ], + sh:order 36 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:primary_knowledge_source ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 34 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path rdfs:label ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:population_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 34 ; - sh:path rdf:type ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path rdf:predicate ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:qualifiers ], - [ sh:class biolink:NamedThing ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:object ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 37 ; sh:path biolink:has_attribute ], - [ sh:description "a point in time" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:object_closure ], + sh:order 38 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 29 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 31 ; - sh:path biolink:id ], + sh:order 2 ; + sh:path biolink:subject_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:negated ], + sh:order 27 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 35 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 33 ; - sh:path biolink:category ], + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 26 ; sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:negated ], [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:subject_context_qualifier ], + sh:order 21 ; + sh:path biolink:object_category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:object_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 1 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:publications ], + [ sh:class biolink:NamedThing ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:deprecated ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 31 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "a biological population (general, study, cohort, etc.) with a specific set of characteristics to constrain an association." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:population_context_qualifier ] ; + sh:order 20 ; + sh:path biolink:subject_category ] ; sh:targetClass biolink:NamedThingAssociatedWithLikelihoodOfNamedThingAssociation . biolink:NoncodingRNAProduct a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:in_taxon_label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:category ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -17450,9 +17444,15 @@ biolink:NoncodingRNAProduct a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 10 ; @@ -17469,29 +17469,22 @@ biolink:NucleicAcidSequenceMotif a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -17501,166 +17494,173 @@ biolink:NucleicAcidSequenceMotif a sh:NodeShape ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:NucleicAcidSequenceMotif . biolink:NucleosomeModification a sh:NodeShape ; sh:closed true ; sh:description "A chemical modification of a histone protein within a nucleosome octomer or a substitution of a histone with a variant histone isoform. e.g. Histone 4 Lysine 20 methylation (H4K20me), histone variant H2AZ substituting H2A." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 4 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 3 ; sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:in_taxon_label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 11 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ] ; + sh:order 10 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ] ; sh:targetClass biolink:NucleosomeModification . biolink:ObservedExpectedFrequencyAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a observed expected frequency analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + sh:property [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 0 ; + sh:path biolink:license ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:rights ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ] ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ] ; sh:targetClass biolink:ObservedExpectedFrequencyAnalysisResult . biolink:Occurrent a sh:NodeShape ; @@ -17673,80 +17673,101 @@ biolink:Onset a sh:NodeShape ; sh:closed true ; sh:description "The age group in which (disease) symptom manifestations appear" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Onset . biolink:OrganismAttribute a sh:NodeShape ; sh:closed true ; sh:description "describes a characteristic of an organismal entity." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:QuantityValue ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; @@ -17754,10 +17775,17 @@ biolink:OrganismAttribute a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], + sh:order 4 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -17765,61 +17793,38 @@ biolink:OrganismAttribute a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:path dct:description ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; - sh:path biolink:synonym ] ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:OrganismAttribute . biolink:OrganismTaxonToEntityAssociation a sh:NodeShape ; sh:closed false ; sh:description "An association between an organism taxon and another entity" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; + sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OrganismTaxon ; sh:description "organism taxon that is the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; @@ -17832,56 +17837,21 @@ biolink:OrganismTaxonToEntityAssociation a sh:NodeShape ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 2 ; - sh:path rdf:object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; + sh:path rdf:object ] ; sh:targetClass biolink:OrganismTaxonToEntityAssociation . biolink:OrganismTaxonToEnvironmentAssociation a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], [ sh:class biolink:OrganismTaxon ; sh:description "the taxon that is the subject of the association" ; sh:maxCount 1 ; @@ -17889,254 +17859,274 @@ biolink:OrganismTaxonToEnvironmentAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:description "predicate describing the relationship between the taxon and the environment" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:NamedThing ; + sh:description "the environment in which the organism occurs" ; sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ] ; + sh:targetClass biolink:OrganismTaxonToEnvironmentAssociation . + +biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; + sh:closed false ; + sh:description "A relationship between two organism taxon nodes" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:NamedThing ; - sh:description "the environment in which the organism occurs" ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; - sh:path biolink:publications ] ; - sh:targetClass biolink:OrganismTaxonToEnvironmentAssociation . - -biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; - sh:closed false ; - sh:description "A relationship between two organism taxon nodes" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "organism taxon that is the subject of the association" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -18144,11 +18134,23 @@ biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 16 ; + sh:path biolink:object_category ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; @@ -18158,25 +18160,23 @@ biolink:OrganismTaxonToOrganismTaxonAssociation a sh:NodeShape ; sh:order 17 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:class biolink:OrganismTaxon ; - sh:description "organism taxon that is the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ] ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ] ; sh:targetClass biolink:OrganismTaxonToOrganismTaxonAssociation . biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; @@ -18184,123 +18184,95 @@ biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; sh:description "An interaction relationship between two taxa. This may be a symbiotic relationship (encompassing mutualism and parasitism), or it may be non-symbiotic. Example: plague transmitted_by flea; cattle domesticated_by Homo sapiens; plague infects Homo sapiens" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:class biolink:OrganismTaxon ; - sh:description "the taxon that is the subject of the association" ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "the environment in which the two taxa interact" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:associated_environmental_context ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:class biolink:OrganismTaxon ; sh:description "the taxon that is the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path rdf:subject ], + sh:order 3 ; + sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 23 ; + sh:path biolink:object_namespace ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:original_subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:order 31 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:negated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 29 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 19 ; @@ -18311,173 +18283,105 @@ biolink:OrganismTaxonToOrganismTaxonInteraction a sh:NodeShape ; sh:order 7 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 34 ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OrganismTaxon ; + sh:description "the taxon that is the subject of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path rdf:subject ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 26 ; - sh:path biolink:retrieval_source_ids ] ; - sh:targetClass biolink:OrganismTaxonToOrganismTaxonInteraction . - -biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; - sh:closed true ; - sh:description "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; + sh:order 16 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "the environment in which the two taxa interact" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 0 ; + sh:path biolink:associated_environmental_context ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:path biolink:object_category ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 8 ; + sh:path biolink:has_evidence ] ; + sh:targetClass biolink:OrganismTaxonToOrganismTaxonInteraction . + +biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; + sh:closed true ; + sh:description "A child-parent relationship between two taxa. For example: Homo sapiens subclass_of Homo" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -18485,20 +18389,9 @@ biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; sh:order 16 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:OrganismTaxon ; sh:description "the more general taxon" ; sh:maxCount 1 ; @@ -18506,6 +18399,17 @@ biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:class biolink:OrganismTaxon ; sh:description "the more specific taxon" ; sh:maxCount 1 ; @@ -18514,225 +18418,225 @@ biolink:OrganismTaxonToOrganismTaxonSpecialization a sh:NodeShape ; sh:order 0 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "a point in time" ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ] ; - sh:targetClass biolink:OrganismTaxonToOrganismTaxonSpecialization . - -biolink:OrganismToOrganismAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 31 ; + sh:path dct:description ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:IndividualOrganism ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ] ; + sh:targetClass biolink:OrganismTaxonToOrganismTaxonSpecialization . + +biolink:OrganismToOrganismAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], + [ sh:class biolink:IndividualOrganism ; + sh:description "An association between two individual organisms." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:IndividualOrganism ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:class biolink:IndividualOrganism ; - sh:description "An association between two individual organisms." ; + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a point in time" ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ] ; - sh:targetClass biolink:OrganismToOrganismAssociation . - -biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:qualified_predicate ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -18743,70 +18647,103 @@ biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:path biolink:object_label_closure ] ; + sh:targetClass biolink:OrganismToOrganismAssociation . + +biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:frequency_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OrganismalEntity ; - sh:description "A organismal entity (strain, breed) with a predisposition to a disease, or bred/created specifically to model a disease." ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -18814,251 +18751,314 @@ biolink:OrganismalEntityAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "The relationship to the disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ], + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; sh:path rdf:type ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 38 ; + sh:path biolink:qualified_predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OrganismalEntity ; + sh:description "A organismal entity (strain, breed) with a predisposition to a disease, or bred/created specifically to model a disease." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "The relationship to the disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ] ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ] ; sh:targetClass biolink:OrganismalEntityAsAModelOfDiseaseAssociation . biolink:PairwiseGeneToGeneInteraction a sh:NodeShape ; sh:closed true ; sh:description "An interaction between two genes or two gene products. May be physical (e.g. protein binding) or genetic (between genes). May be symmetric (e.g. protein interaction) or directed (e.g. phosphorylation)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:property [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:minCount 1 ; + sh:nodeKind sh:BlankNode ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 3 ; + sh:path biolink:negated ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], + sh:order 14 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:description "interaction relationship type" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "a human-readable description of an entity" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "a point in time" ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:iri ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path rdf:object ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 0 ; - sh:path rdf:subject ] ; + sh:path biolink:subject_category ] ; sh:targetClass biolink:PairwiseGeneToGeneInteraction . biolink:PairwiseMolecularInteraction a sh:NodeShape ; @@ -19066,99 +19066,67 @@ biolink:PairwiseMolecularInteraction a sh:NodeShape ; sh:description "An interaction at the molecular level between two physical entities" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:original_object ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], + sh:order 34 ; + sh:path biolink:deprecated ], [ sh:description "interaction relationship type" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path rdf:predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 33 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], + sh:order 9 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:order 17 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "identifier for the interaction. This may come from an interaction database such as IMEX." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 33 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:MolecularEntity ; + sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], + sh:order 3 ; + sh:path rdf:object ], [ sh:class biolink:MolecularEntity ; sh:description "the subject gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; sh:maxCount 1 ; @@ -19167,171 +19135,203 @@ biolink:PairwiseMolecularInteraction a sh:NodeShape ; sh:order 1 ; sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "identifier for the interaction. This may come from an interaction database such as IMEX." ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], + sh:order 28 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path rdfs:label ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:negated ], - [ sh:class biolink:MolecularEntity ; - sh:description "the object gene in the association. If the relation is symmetric, subject vs object is arbitrary. We allow a gene product to stand as a proxy for the gene or vice versa." ; + [ sh:class biolink:OntologyClass ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 0 ; + sh:path biolink:interacting_molecules_category ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:interacting_molecules_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ] ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ] ; sh:targetClass biolink:PairwiseMolecularInteraction . biolink:Patent a sh:NodeShape ; sh:closed true ; sh:description "a legal document granted by a patent issuing authority which confers upon the patenter the sole right to make, use and sell an invention for a set period of time." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:license ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 6 ; - sh:path dct:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], - [ sh:description "a human-readable description of an entity" ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 19 ; - sh:path dct:description ], + sh:order 10 ; + sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], - [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], [ sh:datatype xsd:string ; sh:order 17 ; sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:creation_date ], + sh:order 2 ; + sh:path biolink:summary ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:id ], + sh:order 8 ; + sh:path biolink:rights ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 16 ; sh:path biolink:category ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:rights ], + sh:order 7 ; + sh:path biolink:license ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:deprecated ], [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:order 18 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:format ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ] ; + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ] ; sh:targetClass biolink:Patent . biolink:PathognomonicityQuantifier a sh:NodeShape ; @@ -19345,33 +19345,11 @@ biolink:PathologicalAnatomicalExposure a sh:NodeShape ; sh:description "An abnormal anatomical structure, when viewed as an exposure, representing an precondition, leading to or influencing an outcome, e.g. thrombosis leading to an ischemic disease outcome." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; @@ -19380,17 +19358,13 @@ biolink:PathologicalAnatomicalExposure a sh:NodeShape ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; @@ -19400,21 +19374,47 @@ biolink:PathologicalAnatomicalExposure a sh:NodeShape ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ] ; sh:targetClass biolink:PathologicalAnatomicalExposure . biolink:PathologicalAnatomicalOutcome a sh:NodeShape ; @@ -19427,64 +19427,64 @@ biolink:PathologicalAnatomicalStructure a sh:NodeShape ; sh:closed true ; sh:description "An anatomical structure with the potential of have an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ] ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:PathologicalAnatomicalStructure . biolink:PathologicalEntityMixin a sh:NodeShape ; @@ -19497,58 +19497,53 @@ biolink:PathologicalProcess a sh:NodeShape ; sh:closed true ; sh:description "A biologic function or a process having an abnormal or deleterious effect at the subcellular, cellular, multicellular, or organismal level." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:in_taxon_label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], [ sh:class biolink:PhysicalEntity ; sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:enabled_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; @@ -19558,44 +19553,89 @@ biolink:PathologicalProcess a sh:NodeShape ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ] ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ] ; sh:targetClass biolink:PathologicalProcess . biolink:PathologicalProcessExposure a sh:NodeShape ; sh:closed true ; sh:description "A pathological process, when viewed as an exposure, representing a precondition, leading to or influencing an outcome, e.g. autoimmunity leading to disease." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_qualitative_value ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 7 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 1 ; @@ -19603,50 +19643,10 @@ biolink:PathologicalProcessExposure a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:full_name ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_attribute_type ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 7 ; - sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ] ; + sh:path biolink:full_name ] ; sh:targetClass biolink:PathologicalProcessExposure . biolink:PathologicalProcessOutcome a sh:NodeShape ; @@ -19670,36 +19670,10 @@ biolink:Phenomenon a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -19707,59 +19681,75 @@ biolink:Phenomenon a sh:NodeShape ; sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:order 7 ; - sh:path rdf:type ] ; - sh:targetClass biolink:Phenomenon . - -biolink:PhenotypicFeatureToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 27 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], - [ sh:class biolink:BiologicalSex ; - sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; - sh:path biolink:sex_qualifier ], + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:double ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ] ; + sh:targetClass biolink:Phenomenon . + +biolink:PhenotypicFeatureToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:double ; sh:maxCount 1 ; sh:order 37 ; sh:path biolink:has_quotient ], + [ sh:class biolink:Disease ; + sh:description "disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:object ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -19767,180 +19757,190 @@ biolink:PhenotypicFeatureToDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path rdf:subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path rdf:predicate ], + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 43 ; sh:path biolink:qualified_predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "a human-readable description of an entity" ; + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 31 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:order 6 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:description "number of things with a particular property" ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], - [ sh:description "a point in time" ; + sh:order 35 ; + sh:path biolink:has_count ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], + sh:order 22 ; + sh:path biolink:subject_namespace ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 2 ; + sh:path rdf:predicate ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], + sh:order 4 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 38 ; + sh:path biolink:has_percentage ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], - [ sh:class biolink:Disease ; - sh:description "disease" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:object ], + sh:order 8 ; + sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:publications ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:BiologicalSex ; + sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:sex_qualifier ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:minCount 1 ; + sh:order 27 ; + sh:path biolink:id ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:negated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 28 ; + sh:path biolink:iri ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 31 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 12 ; + sh:path biolink:timepoint ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 44 ; + sh:path biolink:frequency_qualifier ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 10 ; - sh:path biolink:primary_knowledge_source ] ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], + [ sh:datatype xsd:integer ; + sh:description "total number of things in a particular reference set" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:has_total ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ] ; sh:targetClass biolink:PhenotypicFeatureToDiseaseAssociation . biolink:PhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:subject_direction_qualifier ], + sh:order 9 ; + sh:path biolink:qualified_predicate ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; @@ -19952,30 +19952,16 @@ biolink:PhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:subject_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualified_predicate ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:object_direction_qualifier ], + sh:order 6 ; + sh:path biolink:subject_direction_qualifier ], [ sh:datatype xsd:integer ; sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:has_total ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:frequency_qualifier ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -19988,15 +19974,10 @@ biolink:PhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:has_percentage ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 12 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:double ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:has_quotient ], + sh:order 10 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -20004,157 +19985,176 @@ biolink:PhenotypicFeatureToEntityAssociationMixin a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:double ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:has_quotient ], [ sh:datatype xsd:integer ; sh:description "number of things with a particular property" ; sh:maxCount 1 ; sh:order 1 ; - sh:path biolink:has_count ] ; + sh:path biolink:has_count ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 12 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:PhenotypicFeatureToEntityAssociationMixin . biolink:PhenotypicQuality a sh:NodeShape ; sh:closed true ; sh:description "A property of a phenotype" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + sh:order 0 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; - sh:path biolink:has_attribute ] ; + sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:PhenotypicQuality . biolink:PhenotypicSex a sh:NodeShape ; sh:closed true ; sh:description "An attribute corresponding to the phenotypic sex of the individual, based upon the reproductive organs present." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:order 0 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ] ; + sh:path biolink:has_attribute_type ] ; sh:targetClass biolink:PhenotypicSex . biolink:PhysicalEssence a sh:NodeShape ; @@ -20172,104 +20172,100 @@ biolink:PhysicalEssenceOrOccurrent a sh:NodeShape ; biolink:PhysiologicalProcess a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_input ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_output ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ] ; + sh:path biolink:synonym ] ; sh:targetClass biolink:PhysiologicalProcess . biolink:PlanetaryEntity a sh:NodeShape ; sh:closed true ; sh:description "Any entity or process that exists at the level of the whole planet" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; @@ -20280,85 +20276,89 @@ biolink:PlanetaryEntity a sh:NodeShape ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ] ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:PlanetaryEntity . biolink:Plant a sh:NodeShape ; sh:closed true ; sh:description "" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -20370,19 +20370,45 @@ biolink:Polypeptide a sh:NodeShape ; sh:closed true ; sh:description "A polypeptide is a molecular entity characterized by availability in protein databases of amino-acid-based sequence representations of its precise primary structure; for convenience of representation, partial sequences of various kinds are included, even if they do not represent a physical molecule." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; @@ -20393,41 +20419,15 @@ biolink:Polypeptide a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:Polypeptide . biolink:PopulationToPopulationAssociation a sh:NodeShape ; @@ -20437,38 +20437,117 @@ biolink:PopulationToPopulationAssociation a sh:NodeShape ; sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "A relationship type that holds between the subject and object populations. Standard mereological relations can be used. E.g. subject part-of object, subject overlaps object. Derivation relationships can also be used" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that form the object of the association" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; @@ -20479,169 +20558,65 @@ biolink:PopulationToPopulationAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that form the subject of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that form the object of the association" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "A relationship type that holds between the subject and object populations. Standard mereological relations can be used. E.g. subject part-of object, subject overlaps object. Derivation relationships can also be used" ; + sh:description "the population that form the subject of the association" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; - sh:path biolink:retrieval_source_ids ] ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ] ; sh:targetClass biolink:PopulationToPopulationAssociation . biolink:PosttranslationalModification a sh:NodeShape ; sh:closed true ; sh:description "A chemical modification of a polypeptide or protein that occurs after translation. e.g. polypeptide cleavage to form separate proteins, methylation or acetylation of histone tail amino acids, protein ubiquitination." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; @@ -20654,64 +20629,80 @@ biolink:PosttranslationalModification a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:PosttranslationalModification . biolink:PreprintPublication a sh:NodeShape ; sh:closed true ; sh:description "a document reresenting an early version of an author's original scholarly work, such as a research paper or a review, prior to formal peer review and publication in a peer-reviewed scholarly or scientific journal." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:format ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:deprecated ], + sh:order 15 ; + sh:path biolink:iri ], [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; sh:order 18 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:id ], + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], + sh:order 7 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 19 ; - sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], + sh:order 8 ; + sh:path biolink:rights ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; @@ -20723,11 +20714,16 @@ biolink:PreprintPublication a sh:NodeShape ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:license ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], + sh:order 9 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:order 17 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 16 ; @@ -20737,105 +20733,96 @@ biolink:PreprintPublication a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:order 17 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 6 ; - sh:path dct:type ], - [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:rights ], + sh:order 2 ; + sh:path biolink:summary ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ] ; + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:PreprintPublication . biolink:ProcessedMaterial a sh:NodeShape ; sh:closed true ; sh:description "A chemical entity (often a mixture) processed for consumption for nutritional, medical or technical use. Is a material entity that is created or changed during material processing." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; - sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; - sh:order 3 ; - sh:path biolink:routes_of_delivery ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 10 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "" ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:is_toxic ], + sh:order 17 ; + sh:path rdfs:label ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 5 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 9 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], + sh:order 1 ; + sh:path biolink:highest_FDA_approval_status ], [ sh:datatype xsd:string ; sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:datatype xsd:string ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 12 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:trade_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 7 ; + sh:path biolink:is_toxic ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:id ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 5 ; - sh:path biolink:available_from ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ], + sh:order 11 ; + sh:path biolink:full_name ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:is_supplement ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], + [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; + sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; + sh:order 3 ; + sh:path biolink:routes_of_delivery ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; @@ -20846,219 +20833,232 @@ biolink:ProcessedMaterial a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 8 ; sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:highest_FDA_approval_status ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 12 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 18 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:full_name ] ; + sh:order 14 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 20 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 9 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 10 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:trade_name ] ; sh:targetClass biolink:ProcessedMaterial . biolink:Protein a sh:NodeShape ; sh:closed true ; sh:description "A gene product that is composed of a chain of amino acid sequences and is produced by ribosome-mediated translation of mRNA" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ] ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:Protein . biolink:ProteinDomain a sh:NodeShape ; sh:closed true ; sh:description "A conserved part of protein sequence and (tertiary) structure that can evolve, function, and exist independently of the rest of the protein chain. Protein domains maintain their structure and function independently of the proteins in which they are found. e.g. an SH3 domain." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], [ sh:class biolink:Gene ; sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_gene_or_gene_product ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:in_taxon_label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ] ; sh:targetClass biolink:ProteinDomain . biolink:ProteinFamily a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 3 ; - sh:path biolink:provided_by ], + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 4 ; sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], + sh:order 5 ; + sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 9 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], [ sh:class biolink:Gene ; - sh:description "connects an entity with one or more gene or gene products" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene_or_gene_product ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ] ; + sh:description "connects an entity with one or more gene or gene products" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene_or_gene_product ] ; sh:targetClass biolink:ProteinFamily . biolink:ProteinIsoform a sh:NodeShape ; @@ -21068,48 +21068,52 @@ biolink:ProteinIsoform a sh:NodeShape ; sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; @@ -21118,74 +21122,70 @@ biolink:ProteinIsoform a sh:NodeShape ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ] ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:ProteinIsoform . biolink:RNAProduct a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:in_taxon_label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:full_name ] ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:RNAProduct . biolink:RNAProductIsoform a sh:NodeShape ; @@ -21195,36 +21195,20 @@ biolink:RNAProductIsoform a sh:NodeShape ; sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; @@ -21234,150 +21218,198 @@ biolink:RNAProductIsoform a sh:NodeShape ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ] ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:RNAProductIsoform . biolink:ReactionToCatalystAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:MolecularEntity ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:GeneOrGeneProduct ; + sh:description "the chemical element that is the target of the statement" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], + sh:nodeKind sh:BlankNode ; + sh:order 5 ; + sh:path rdf:object ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 21 ; sh:path biolink:object_closure ], + [ sh:class biolink:MolecularEntity ; + sh:description "the chemical entity or entity that is an interactor" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:original_subject ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], + sh:order 18 ; + sh:path biolink:subject_category ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 35 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 32 ; sh:path rdf:type ], - [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; - sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:reaction_direction ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 25 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 24 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 35 ; - sh:path biolink:has_attribute ], + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:negated ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:publications ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 26 ; sh:path biolink:subject_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], [ sh:datatype xsd:integer ; sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:stoichiometry ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "a human-readable description of an entity" ; + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_evidence ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 4 ; + sh:path rdf:predicate ], [ sh:description "the side of a reaction being modeled (ie: left or right)" ; sh:in ( "left" "right" ) ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:reaction_side ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], + sh:order 17 ; + sh:path biolink:original_object ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 27 ; - sh:path biolink:object_label_closure ], + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; @@ -21387,244 +21419,239 @@ biolink:ReactionToCatalystAssociation a sh:NodeShape ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 20 ; sh:path biolink:subject_closure ], - [ sh:class biolink:GeneOrGeneProduct ; - sh:description "the chemical element that is the target of the statement" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:BlankNode ; - sh:order 5 ; - sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; + sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:reaction_direction ] ; + sh:targetClass biolink:ReactionToCatalystAssociation . + +biolink:ReactionToParticipantAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:subject_category ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:publications ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], + [ sh:description "the side of a reaction being modeled (ie: left or right)" ; + sh:in ( "left" "right" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:reaction_side ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 33 ; sh:path rdfs:label ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 32 ; + sh:path rdf:type ], + [ sh:class biolink:MolecularEntity ; + sh:description "the chemical entity or entity that is an interactor" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 13 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_object ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_evidence ] ; - sh:targetClass biolink:ReactionToCatalystAssociation . - -biolink:ReactionToParticipantAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:integer ; + sh:order 16 ; + sh:path biolink:original_predicate ], + [ sh:datatype xsd:integer ; sh:description "the relationship between the relative quantities of substances taking part in a reaction or forming a compound, typically a ratio of whole integers." ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:stoichiometry ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 29 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 12 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:object_category_closure ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 28 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 22 ; - sh:path biolink:subject_category_closure ], + sh:order 36 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 26 ; - sh:path biolink:subject_label_closure ], - [ sh:description "the side of a reaction being modeled (ie: left or right)" ; - sh:in ( "left" "right" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:reaction_side ], - [ sh:class biolink:ChemicalEntity ; - sh:description "the chemical element that is the target of the statement" ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:subject_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path rdf:object ], + sh:order 34 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:knowledge_source ], - [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; - sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; + sh:order 25 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:reaction_direction ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 31 ; - sh:path biolink:category ], + sh:order 6 ; + sh:path biolink:negated ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:ChemicalEntity ; + sh:description "the chemical element that is the target of the statement" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:qualifier ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 26 ; + sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 17 ; sh:path biolink:original_object ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:deprecated ], + sh:order 24 ; + sh:path biolink:subject_namespace ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 35 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 32 ; - sh:path rdf:type ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 29 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 21 ; sh:path biolink:object_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 31 ; + sh:path biolink:category ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 27 ; sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path biolink:iri ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 20 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:object_namespace ], + sh:order 19 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "a point in time" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:timepoint ], + sh:order 7 ; + sh:path biolink:qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 13 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_category_closure ], + [ sh:description "the direction of a reaction as constrained by the direction enum (ie: left_to_right, neutral, etc.)" ; + sh:in ( "left_to_right" "right_to_left" "bidirectional" "neutral" ) ; sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:subject_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 1 ; + sh:path biolink:reaction_direction ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_predicate ], + sh:order 30 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:object_category ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 23 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path rdfs:label ], - [ sh:class biolink:MolecularEntity ; - sh:description "the chemical entity or entity that is an interactor" ; + sh:order 11 ; + sh:path biolink:knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path rdf:subject ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 28 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 4 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:negated ] ; + sh:order 15 ; + sh:path biolink:original_subject ] ; sh:targetClass biolink:ReactionToParticipantAssociation . biolink:ReagentTargetedGene a sh:NodeShape ; sh:closed true ; sh:description "A gene altered in its expression level in the context of some experiment as a result of being targeted by gene-knockdown reagent(s) such as a morpholino or RNAi." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; sh:path rdfs:label ], @@ -21632,35 +21659,20 @@ biolink:ReagentTargetedGene a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:order 10 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 8 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -21669,91 +21681,79 @@ biolink:ReagentTargetedGene a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ] ; + sh:targetClass biolink:ReagentTargetedGene . + +biolink:RegulatoryRegion a sh:NodeShape ; + sh:closed true ; + sh:description "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:order 10 ; + sh:path rdf:type ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ] ; - sh:targetClass biolink:ReagentTargetedGene . - -biolink:RegulatoryRegion a sh:NodeShape ; - sh:closed true ; - sh:description "A region (or regions) of the genome that contains known or putative regulatory elements that act in cis- or trans- to affect the transcription of gene" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:in_taxon ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], - [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 3 ; - sh:path biolink:in_taxon_label ] ; + sh:path biolink:in_taxon_label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:RegulatoryRegion . biolink:RelationshipQuantifier a sh:NodeShape ; @@ -21777,72 +21777,72 @@ biolink:RelativeFrequencyAnalysisResult a sh:NodeShape ; sh:closed true ; sh:description "A result of a relative frequency analysis." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 13 ; + sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:full_name ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:license ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ] ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:RelativeFrequencyAnalysisResult . biolink:SensitivityQuantifier a sh:NodeShape ; @@ -21854,49 +21854,60 @@ biolink:SequenceAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a sequence feature and a nucleic acid entity it is localized to." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 30 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -21904,96 +21915,57 @@ biolink:SequenceAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -22004,10 +21976,11 @@ biolink:SequenceAssociation a sh:NodeShape ; [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; @@ -22015,16 +21988,17 @@ biolink:SequenceAssociation a sh:NodeShape ; sh:order 16 ; sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ] ; - sh:targetClass biolink:SequenceAssociation . - -biolink:SequenceFeatureRelationship a sh:NodeShape ; - sh:closed true ; - sh:description "For example, a particular exon is part of a particular transcript or gene" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 31 ; sh:path dct:description ], @@ -22034,155 +22008,181 @@ biolink:SequenceFeatureRelationship a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ] ; + sh:targetClass biolink:SequenceAssociation . + +biolink:SequenceFeatureRelationship a sh:NodeShape ; + sh:closed true ; + sh:description "For example, a particular exon is part of a particular transcript or gene" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:NucleicAcidEntity ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:NucleicAcidEntity ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 27 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; @@ -22194,47 +22194,21 @@ biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:closed false ; sh:description "An association between a sequence variant and a treatment or health intervention. The treatment object itself encompasses both the disease and the drug used." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:Publication ; + sh:property [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; sh:path biolink:publications ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:class biolink:Treatment ; sh:description "treatment whose efficacy is modulated by the subject variant" ; sh:maxCount 1 ; @@ -22242,62 +22216,88 @@ biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:SequenceVariant ; - sh:description "variant that modulates the treatment of some disease" ; + sh:order 30 ; + sh:path rdfs:label ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 31 ; + sh:path dct:description ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; @@ -22308,90 +22308,84 @@ biolink:SequenceVariantModulatesTreatmentAssociation a sh:NodeShape ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], + [ sh:class biolink:SequenceVariant ; + sh:description "variant that modulates the treatment of some disease" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ] ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ] ; sh:targetClass biolink:SequenceVariantModulatesTreatmentAssociation . biolink:Serial a sh:NodeShape ; sh:closed true ; sh:description "This class may rarely be instantiated except if use cases of a given knowledge graph support its utility." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:property [ sh:datatype xsd:string ; + sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path biolink:issue ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 24 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "keywords tagging a publication" ; sh:order 6 ; sh:path biolink:keywords ], [ sh:datatype xsd:string ; - sh:description "Serials (journals) should have industry-standard identifier such as from ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 17 ; - sh:path biolink:id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; + sh:order 10 ; + sh:path biolink:license ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:summary ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 19 ; - sh:path biolink:category ], + sh:order 21 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; @@ -22400,110 +22394,128 @@ biolink:Serial a sh:NodeShape ; [ sh:description "Alternate human-readable names for a thing" ; sh:order 16 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "Standard abbreviation for periodicals in the International Organization for Standardization (ISO) 4 system See https://www.issn.org/services/online-services/access-to-the-ltwa/. If the 'published in' property is set, then the iso abbreviation pertains to the broader publication context (the journal) within which the given publication node is embedded, not the publication itself." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:iso_abbreviation ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 24 ; - sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "volume of a book or music release in a collection/series or a published collection of journal issues in a serial publication" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:volume ], [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 9 ; - sh:path dct:type ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:authors ], - [ sh:datatype xsd:string ; - sh:description "issue of a newspaper, a scientific journal or magazine for reference purpose" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:issue ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:iri ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 7 ; - sh:path biolink:mesh_terms ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 14 ; + sh:path biolink:provided_by ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "Should generally be set to an ontology class defined term for 'serial' or 'journal'." ; - sh:order 20 ; - sh:path rdf:type ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; sh:order 4 ; sh:path biolink:pages ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 7 ; + sh:path biolink:mesh_terms ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "Serials (journals) should have industry-standard identifier such as from ISSN." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 17 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Standard abbreviation for periodicals in the International Organization for Standardization (ISO) 4 system See https://www.issn.org/services/online-services/access-to-the-ltwa/. If the 'published in' property is set, then the iso abbreviation pertains to the broader publication context (the journal) within which the given publication node is embedded, not the publication itself." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:iso_abbreviation ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 22 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 14 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:license ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], + sh:order 18 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:rights ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:authors ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 19 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 12 ; - sh:path biolink:format ] ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; + sh:description "Should generally be set to an ontology class defined term for 'serial' or 'journal'." ; + sh:order 20 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 9 ; + sh:path dct:type ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:summary ] ; sh:targetClass biolink:Serial . biolink:SeverityValue a sh:NodeShape ; sh:closed true ; sh:description "describes the severity of a phenotypic feature or disease" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; @@ -22515,67 +22527,71 @@ biolink:SeverityValue a sh:NodeShape ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ] ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:SeverityValue . biolink:SiRNA a sh:NodeShape ; sh:closed true ; sh:description "A small RNA molecule that is the product of a longer exogenous or endogenous dsRNA, which is either a bimolecular duplex or very long hairpin, processed (via the Dicer pathway) such that numerous siRNAs accumulate from both strands of the dsRNA. SRNAs trigger the cleavage of their target molecules." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:full_name ], + sh:order 11 ; + sh:path dct:description ], [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 0 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; @@ -22585,64 +22601,40 @@ biolink:SiRNA a sh:NodeShape ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 0 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 5 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ] ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:SiRNA . biolink:SmallMolecule a sh:NodeShape ; sh:closed true ; sh:description "A small molecule entity is a molecular entity characterized by availability in small-molecule databases of SMILES, InChI, IUPAC, or other unambiguous representation of its precise chemical structure; for convenience of representation, any valid chemical representation is included, even if it is not strictly molecular (e.g., sodium ion)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:max_tolerated_dose ], + sh:order 4 ; + sh:path biolink:is_toxic ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 15 ; sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:has_attribute ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ], + sh:order 10 ; + sh:path biolink:id ], + [ sh:datatype xsd:boolean ; + sh:description "indicates whether a molecular entity is a metabolite" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:is_metabolite ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 14 ; @@ -22653,166 +22645,146 @@ biolink:SmallMolecule a sh:NodeShape ; sh:order 5 ; sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:trade_name ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 2 ; - sh:path biolink:available_from ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:order 3 ; + sh:path biolink:max_tolerated_dose ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:has_attribute ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 2 ; + sh:path biolink:available_from ], [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_metabolite ], - [ sh:datatype xsd:boolean ; + sh:order 17 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; sh:description "" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:is_toxic ] ; + sh:order 1 ; + sh:path biolink:trade_name ] ; sh:targetClass biolink:SmallMolecule . biolink:Snv a sh:NodeShape ; sh:closed true ; sh:description "SNVs are single nucleotide positions in genomic DNA at which different sequence alternatives exist" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Gene ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], + [ sh:description "The state of the sequence w.r.t a reference sequence" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:has_biological_sequence ], + [ sh:class biolink:Gene ; sh:description "Each allele can be associated with any number of genes" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:has_gene ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:in_taxon_label ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "The state of the sequence w.r.t a reference sequence" ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:has_biological_sequence ] ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Snv . biolink:SocioeconomicExposure a sh:NodeShape ; sh:closed true ; sh:description "A socioeconomic exposure is a factor relating to social and financial status of an affected individual (e.g. poverty)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 7 ; sh:path biolink:provided_by ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 8 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -22820,30 +22792,58 @@ biolink:SocioeconomicExposure a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_attribute_type ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:has_quantitative_value ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], [ sh:class biolink:SocioeconomicAttribute ; sh:description "connects any entity to an attribute" ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 8 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 4 ; sh:path biolink:has_qualitative_value ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; - sh:path biolink:iri ] ; + sh:path biolink:iri ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:timepoint ] ; sh:targetClass biolink:SocioeconomicExposure . biolink:SocioeconomicOutcome a sh:NodeShape ; @@ -22861,191 +22861,191 @@ biolink:Study a sh:NodeShape ; sh:closed true ; sh:description "a detailed investigation and/or analysis" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:order 8 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ] ; + sh:path biolink:category ] ; sh:targetClass biolink:Study . biolink:StudyPopulation a sh:NodeShape ; sh:closed true ; sh:description "A group of people banded together or treated as a group as participants in a research study." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ] ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:StudyPopulation . biolink:StudyResult a sh:NodeShape ; sh:closed false ; sh:description "A collection of data items from a study that are about a particular study subject or experimental unit (the 'focus' of the Result) - optionally with context/provenance metadata that may be relevant to the interpretation of this data as evidence." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; + sh:property [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:license ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; - sh:path biolink:synonym ] ; + sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:StudyResult . biolink:StudyVariable a sh:NodeShape ; @@ -23053,20 +23053,27 @@ biolink:StudyVariable a sh:NodeShape ; sh:description "a variable that is used as a measure in the investigation of a study" ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; @@ -23074,46 +23081,39 @@ biolink:StudyVariable a sh:NodeShape ; [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:datatype xsd:string ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "a human-readable description of an entity" ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], + sh:order 12 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:license ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; @@ -23129,156 +23129,155 @@ biolink:SubjectOfInvestigation a sh:NodeShape ; biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OrganismTaxon ; sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:knowledge_source ], - [ sh:class biolink:OrganismTaxon ; - sh:description "An association between individuals of different taxa." ; + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 20 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 33 ; sh:path biolink:deprecated ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:class biolink:OrganismTaxon ; + sh:description "An association between individuals of different taxa." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 31 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 17 ; sh:path biolink:subject_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; @@ -23290,33 +23289,61 @@ biolink:TaxonToTaxonAssociation a sh:NodeShape ; sh:order 32 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ] ; - sh:targetClass biolink:TaxonToTaxonAssociation . - -biolink:TextMiningResult a sh:NodeShape ; - sh:closed true ; - sh:description "A result of text mining." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ] ; + sh:targetClass biolink:TaxonToTaxonAssociation . + +biolink:TextMiningResult a sh:NodeShape ; + sh:closed true ; + sh:description "A result of text mining." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], + sh:order 0 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -23326,45 +23353,18 @@ biolink:TextMiningResult a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ] ; sh:targetClass biolink:TextMiningResult . biolink:ThingWithTaxon a sh:NodeShape ; @@ -23386,405 +23386,386 @@ biolink:TranscriptToGeneRelationship a sh:NodeShape ; sh:closed true ; sh:description "A gene is a collection of transcripts" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "a point in time" ; + sh:property [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + [ sh:class biolink:Gene ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 32 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 22 ; sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:subject_category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:Transcript ; + sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:class biolink:Transcript ; - sh:description "connects an association to the subject of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; - sh:path biolink:object_category_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ] ; + sh:path biolink:object_category_closure ] ; sh:targetClass biolink:TranscriptToGeneRelationship . biolink:TranscriptionFactorBindingSite a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) of the genome that contains a region of DNA known or predicted to bind a protein that modulates gene transcription" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], [ sh:datatype xsd:string ; - sh:order 10 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:in_taxon_label ], + sh:minCount 1 ; + sh:order 1 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], + [ sh:description "connects a genomic feature to its sequence" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path biolink:id ], + sh:order 10 ; + sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 5 ; sh:path biolink:xref ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:in_taxon_label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:description "connects a genomic feature to its sequence" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ] ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:TranscriptionFactorBindingSite . biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], + sh:property [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_aspect_qualifier ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 28 ; - sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ], + [ sh:class biolink:SequenceVariant ; + sh:description "A variant that has a role in modeling the disease." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; sh:order 5 ; sh:path biolink:qualifiers ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:subject_label_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 4 ; + sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; sh:order 29 ; - sh:path rdf:type ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], + sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + [ sh:description "The relationship to the disease" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:EvidenceType ; sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; sh:order 7 ; sh:path biolink:has_evidence ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:class biolink:SequenceVariant ; - sh:description "A variant that has a role in modeling the disease." ; + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:minCount 1 ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], [ sh:class biolink:Disease ; sh:description "disease" ; sh:maxCount 1 ; @@ -23792,245 +23773,264 @@ biolink:VariantAsAModelOfDiseaseAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 38 ; sh:path biolink:qualified_predicate ], - [ sh:description "The relationship to the disease" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ] ; - sh:targetClass biolink:VariantAsAModelOfDiseaseAssociation . - -biolink:VariantToDiseaseAssociation a sh:NodeShape ; - sh:closed true ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 28 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 26 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:original_subject ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; sh:order 6 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:path biolink:publications ] ; + sh:targetClass biolink:VariantAsAModelOfDiseaseAssociation . + +biolink:VariantToDiseaseAssociation a sh:NodeShape ; + sh:closed true ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], + sh:order 30 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:qualified_predicate ], - [ sh:class biolink:Disease ; - sh:description "a disease that is associated with that variant" ; + sh:order 36 ; + sh:path biolink:object_aspect_qualifier ], + [ sh:description "E.g. is pathogenic for" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:frequency_qualifier ], + sh:order 37 ; + sh:path biolink:object_direction_qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 33 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; sh:order 10 ; sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 24 ; sh:path biolink:object_label_closure ], - [ sh:description "E.g. is pathogenic for" ; + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 25 ; + sh:path biolink:retrieval_source_ids ], + [ sh:class biolink:Disease ; + sh:description "a disease that is associated with that variant" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:timepoint ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:subject_namespace ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:object_direction_qualifier ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 30 ; - sh:path rdfs:label ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category_closure ], [ sh:datatype xsd:string ; sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:object_closure ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated in some way with the disease state" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 15 ; + sh:path biolink:subject_category ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:original_subject ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:object_aspect_qualifier ], + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:object_category ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:negated ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated in some way with the disease state" ; + sh:maxCount 1 ; + sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:retrieval_source_ids ], + sh:order 0 ; + sh:path rdf:subject ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], + sh:minCount 1 ; + sh:order 26 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category_closure ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; - sh:path biolink:category ] ; + sh:path biolink:category ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:frequency_qualifier ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], + [ sh:datatype xsd:string ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:subject_category_closure ] ; sh:targetClass biolink:VariantToDiseaseAssociation . biolink:VariantToEntityAssociationMixin a sh:NodeShape ; sh:closed false ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:SequenceVariant ; + sh:property [ sh:class biolink:SequenceVariant ; sh:description "a sequence variant in which the allele state is associated with some other entity" ; sh:maxCount 1 ; sh:minCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], [ sh:class biolink:NamedThing ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -24044,127 +24044,154 @@ biolink:VariantToGeneAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a variant and a gene, where the variant has a genetic association with the gene (i.e. is in linkage disequilibrium)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:property [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated with some other entity" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 18 ; - sh:path biolink:object_closure ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:knowledge_source ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 27 ; - sh:path biolink:iri ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_predicate ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:order 14 ; + sh:path biolink:original_object ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 32 ; - sh:path biolink:has_attribute ], + sh:order 5 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 17 ; + sh:path biolink:subject_closure ], [ sh:class biolink:RetrievalSource ; sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; sh:order 25 ; sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 21 ; + sh:path biolink:subject_namespace ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:order 28 ; sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 27 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:negated ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:object_label_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 22 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 18 ; + sh:path biolink:object_closure ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:has_evidence ], [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 1 ; sh:path rdf:predicate ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 10 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:object_category ], + sh:order 4 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:primary_knowledge_source ], [ sh:description "a point in time" ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:timepoint ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:original_subject ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 31 ; + sh:path dct:description ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 32 ; + sh:path biolink:has_attribute ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 30 ; sh:path rdfs:label ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_object ], + sh:order 8 ; + sh:path biolink:knowledge_source ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 29 ; + sh:path rdf:type ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:object_namespace ], + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:object_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 10 ; - sh:path biolink:aggregator_knowledge_source ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:subject_category_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:object_label_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 21 ; - sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 26 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 29 ; - sh:path rdf:type ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:publications ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 17 ; - sh:path biolink:subject_closure ], [ sh:class biolink:Gene ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -24172,256 +24199,235 @@ biolink:VariantToGeneAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:negated ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 33 ; - sh:path biolink:deprecated ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 7 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:subject_category ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 23 ; sh:path biolink:subject_label_closure ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated with some other entity" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 31 ; - sh:path dct:description ] ; + sh:order 33 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:VariantToGeneAssociation . biolink:VariantToGeneExpressionAssociation a sh:NodeShape ; sh:closed true ; sh:description "An association between a variant and expression of a gene (i.e. e-QTL)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:object_closure ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 32 ; + sh:path biolink:category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 23 ; + sh:path biolink:subject_category_closure ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 34 ; - sh:path rdfs:label ], + sh:order 13 ; + sh:path biolink:primary_knowledge_source ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 21 ; sh:path biolink:subject_closure ], - [ sh:class biolink:AnatomicalEntity ; - sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:expression_site ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 36 ; - sh:path biolink:has_attribute ], + sh:minCount 1 ; + sh:order 30 ; + sh:path biolink:id ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 31 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:object_label_closure ], + [ sh:class biolink:Gene ; + sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path rdf:object ], + [ sh:class biolink:LifeStage ; + sh:description "stage during which gene or protein expression of takes place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:stage_qualifier ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 11 ; + sh:path biolink:has_evidence ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 35 ; sh:path dct:description ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 27 ; sh:path biolink:subject_label_closure ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 33 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:negated ], - [ sh:class biolink:LifeStage ; - sh:description "stage during which gene or protein expression of takes place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:stage_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 25 ; - sh:path biolink:subject_namespace ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; - sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:has_evidence ], + sh:order 17 ; + sh:path biolink:original_predicate ], [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:qualifiers ], + sh:order 24 ; + sh:path biolink:object_category_closure ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:object_category ], + sh:order 19 ; + sh:path biolink:subject_category ], [ sh:class biolink:OntologyClass ; sh:description "Optional quantitative value indicating degree of expression." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:quantifier_qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 37 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 30 ; - sh:path biolink:id ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:object_category_closure ], - [ sh:class biolink:SequenceVariant ; - sh:description "a sequence variant in which the allele state is associated with some other entity" ; + sh:order 18 ; + sh:path biolink:original_object ], + [ sh:class biolink:AnatomicalEntity ; + sh:description "location in which gene or protein expression takes place. May be cell, tissue, or organ." ; sh:maxCount 1 ; - sh:minCount 1 ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path rdf:subject ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_predicate ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 32 ; - sh:path biolink:category ], + sh:order 1 ; + sh:path biolink:expression_site ], [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 33 ; - sh:path rdf:type ], - [ sh:class biolink:Gene ; - sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path rdf:object ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 23 ; - sh:path biolink:subject_category_closure ], + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:object_closure ], [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:primary_knowledge_source ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 16 ; + sh:path biolink:original_subject ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 29 ; - sh:path biolink:retrieval_source_ids ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 10 ; + sh:path biolink:publications ], + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path rdf:predicate ], + sh:order 15 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:object_category ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:object_label_closure ], + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 14 ; + sh:path biolink:aggregator_knowledge_source ], [ sh:class biolink:DiseaseOrPhenotypicFeature ; sh:description "in experiments (e.g. gene expression) assaying diseased or unhealthy tissue, the phenotypic state can be put here, e.g. MONDO ID. For healthy tissues, use XXX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:phenotypic_state ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 25 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 14 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_object ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:subject_category ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:publications ], + sh:order 9 ; + sh:path biolink:qualifiers ], [ sh:datatype xsd:string ; sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:knowledge_source ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path rdf:predicate ], + [ sh:class biolink:SequenceVariant ; + sh:description "a sequence variant in which the allele state is associated with some other entity" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path rdf:subject ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 36 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 29 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 26 ; - sh:path biolink:object_namespace ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:original_subject ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:deprecated ] ; + sh:path biolink:object_namespace ] ; sh:targetClass biolink:VariantToGeneExpressionAssociation . biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:property [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; sh:nodeKind sh:IRI ; - sh:order 8 ; - sh:path biolink:has_evidence ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:order 17 ; + sh:path biolink:object_category ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 26 ; - sh:path biolink:retrieval_source_ids ], + sh:order 21 ; + sh:path biolink:object_category_closure ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 23 ; + sh:path biolink:object_namespace ], + [ sh:datatype xsd:double ; + sh:description "equivalent to has quotient multiplied by 100" ; + sh:maxCount 1 ; + sh:order 38 ; + sh:path biolink:has_percentage ], [ sh:class biolink:SequenceVariant ; sh:description "a sequence variant in which the allele state is associated in some way with the phenotype state" ; sh:maxCount 1 ; @@ -24429,116 +24435,184 @@ biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path rdf:subject ], - [ sh:datatype xsd:double ; - sh:description "equivalent to has quotient multiplied by 100" ; + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:has_percentage ], + sh:order 14 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 32 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:original_object ], + sh:order 41 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; - sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 19 ; + sh:path biolink:object_closure ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:order 43 ; - sh:path biolink:qualified_predicate ], + sh:order 9 ; + sh:path biolink:knowledge_source ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 24 ; + sh:path biolink:subject_label_closure ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 16 ; + sh:path biolink:subject_category ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 34 ; + sh:path biolink:deprecated ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 40 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:class biolink:Publication ; + sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:nodeKind sh:IRI ; + sh:order 7 ; + sh:path biolink:publications ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; + sh:nodeKind sh:IRI ; + sh:order 6 ; + sh:path biolink:qualifiers ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 8 ; + sh:path biolink:has_evidence ], + [ sh:datatype xsd:string ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:integer ; + sh:description "number of things with a particular property" ; + sh:maxCount 1 ; + sh:order 35 ; + sh:path biolink:has_count ], [ sh:datatype xsd:string ; sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 18 ; sh:path biolink:subject_closure ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 11 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:datatype xsd:double ; sh:maxCount 1 ; - sh:order 22 ; - sh:path biolink:subject_namespace ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 29 ; - sh:path biolink:category ], + sh:order 37 ; + sh:path biolink:has_quotient ], + [ sh:description "a point in time" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:timepoint ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 27 ; sh:path biolink:id ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:subject_category_closure ], [ sh:datatype xsd:string ; sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:double ; + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; sh:maxCount 1 ; - sh:order 37 ; - sh:path biolink:has_quotient ], + sh:order 44 ; + sh:path biolink:frequency_qualifier ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 29 ; + sh:path biolink:category ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 28 ; + sh:path biolink:iri ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 31 ; sh:path rdfs:label ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:object_category ], + sh:order 15 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 30 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 41 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:datatype xsd:integer ; - sh:description "total number of things in a particular reference set" ; + sh:order 13 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; - sh:order 36 ; - sh:path biolink:has_total ], + sh:order 22 ; + sh:path biolink:subject_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; - sh:order 23 ; - sh:path biolink:object_namespace ], + sh:order 43 ; + sh:path biolink:qualified_predicate ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 25 ; + sh:path biolink:object_label_closure ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 42 ; + sh:path biolink:object_direction_qualifier ], + [ sh:datatype xsd:string ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:maxCount 1 ; + sh:order 39 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; + sh:nodeKind sh:IRI ; + sh:order 26 ; + sh:path biolink:retrieval_source_ids ], [ sh:datatype xsd:boolean ; sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:negated ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 34 ; - sh:path biolink:deprecated ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 44 ; - sh:path biolink:frequency_qualifier ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 28 ; - sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 33 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 21 ; - sh:path biolink:object_category_closure ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 19 ; - sh:path biolink:object_closure ], [ sh:class biolink:BiologicalSex ; sh:description "a qualifier used in a phenotypic association to state whether the association is specific to a particular sex." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:sex_qualifier ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:original_subject ], [ sh:class biolink:PhenotypicFeature ; sh:description "connects an association to the object of the association. For example, in a gene-to-phenotype association, the gene is subject and phenotype is object." ; sh:maxCount 1 ; @@ -24546,340 +24620,266 @@ biolink:VariantToPhenotypicFeatureAssociation a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path rdf:object ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path dct:description ], [ sh:datatype xsd:integer ; - sh:description "number of things with a particular property" ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path biolink:has_count ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 24 ; - sh:path biolink:subject_label_closure ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; + sh:description "total number of things in a particular reference set" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 36 ; + sh:path biolink:has_total ] ; + sh:targetClass biolink:VariantToPhenotypicFeatureAssociation . + +biolink:VariantToPopulationAssociation a sh:NodeShape ; + sh:closed true ; + sh:description "An association between a variant and a population, where the variant has particular frequency in the population" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 42 ; - sh:path biolink:object_direction_qualifier ], + sh:order 32 ; + sh:path biolink:iri ], [ sh:class biolink:Publication ; sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; sh:nodeKind sh:IRI ; - sh:order 7 ; + sh:order 11 ; sh:path biolink:publications ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; - sh:maxCount 1 ; - sh:order 39 ; - sh:path biolink:subject_aspect_qualifier ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; sh:maxCount 1 ; sh:order 9 ; - sh:path biolink:knowledge_source ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:path biolink:qualifier ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 16 ; - sh:path biolink:subject_category ], + sh:order 38 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; - sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 25 ; - sh:path biolink:object_label_closure ], - [ sh:description "a point in time" ; + sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:timepoint ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 30 ; - sh:path rdf:type ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:order 17 ; + sh:path biolink:original_subject ], + [ sh:datatype xsd:boolean ; + sh:description "if set to true, then the association is negated i.e. is not true" ; sh:maxCount 1 ; - sh:order 40 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 6 ; - sh:path biolink:qualifiers ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 11 ; - sh:path biolink:aggregator_knowledge_source ] ; - sh:targetClass biolink:VariantToPhenotypicFeatureAssociation . - -biolink:VariantToPopulationAssociation a sh:NodeShape ; - sh:closed true ; - sh:description "An association between a variant and a population, where the variant has particular frequency in the population" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:qualifiers ], + sh:order 8 ; + sh:path biolink:negated ], [ sh:datatype xsd:double ; sh:description "frequency of allele in population, expressed as a number with allele divided by number in reference population, aka allele frequency" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:has_quotient ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 35 ; - sh:path rdfs:label ], - [ sh:class biolink:RetrievalSource ; - sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; - sh:nodeKind sh:IRI ; - sh:order 30 ; - sh:path biolink:retrieval_source_ids ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 31 ; - sh:path biolink:id ], [ sh:datatype xsd:double ; sh:description "equivalent to has quotient multiplied by 100" ; sh:maxCount 1 ; sh:order 6 ; sh:path biolink:has_percentage ], - [ sh:description "a point in time" ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:timepoint ], - [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 24 ; - sh:path biolink:subject_category_closure ], - [ sh:class biolink:SequenceVariant ; - sh:description "an allele that has a certain frequency in a given population" ; + sh:order 37 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path rdf:subject ], + sh:order 13 ; + sh:path biolink:knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:subject_category ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 36 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; - sh:order 34 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "grouping slot for all qualifiers on an edge. useful for testing compliance with association classes" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 23 ; - sh:path biolink:object_closure ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 19 ; - sh:path biolink:original_object ], - [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:frequency_qualifier ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 22 ; - sh:path biolink:subject_closure ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 38 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; - sh:order 15 ; - sh:path biolink:aggregator_knowledge_source ], - [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path biolink:original_predicate ], - [ sh:datatype xsd:string ; - sh:description "used to hold the original subject of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; - sh:maxCount 1 ; - sh:order 17 ; - sh:path biolink:original_subject ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 32 ; - sh:path biolink:iri ], - [ sh:class biolink:PopulationOfIndividualOrganisms ; - sh:description "the population that is observed to have the frequency" ; + [ sh:description "a point in time" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path rdf:object ], - [ sh:class biolink:Publication ; - sh:description "One or more publications that report the statement expressed in an Association, or provide information used as evidence supporting this statement." ; + sh:order 16 ; + sh:path biolink:timepoint ], + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the subject category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 11 ; - sh:path biolink:publications ], - [ sh:datatype xsd:string ; - sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; + sh:order 24 ; + sh:path biolink:subject_category_closure ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:primary_knowledge_source ], - [ sh:datatype xsd:string ; - sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:order 28 ; - sh:path biolink:subject_label_closure ], + sh:minCount 1 ; + sh:order 1 ; + sh:path rdf:predicate ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:order 33 ; + sh:path biolink:category ], + [ sh:class biolink:SequenceVariant ; + sh:description "an allele that has a certain frequency in a given population" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path rdf:subject ], [ sh:datatype xsd:string ; sh:description "Used to hold the object namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:order 27 ; sh:path biolink:object_namespace ], [ sh:datatype xsd:string ; - sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; - sh:maxCount 1 ; - sh:order 26 ; - sh:path biolink:subject_namespace ], + sh:description "Used to hold the subject closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 22 ; + sh:path biolink:subject_closure ], [ sh:datatype xsd:integer ; sh:description "number all populations that carry a particular allele, aka allele number" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:has_total ], - [ sh:datatype xsd:integer ; - sh:description "number in object population that carry a particular allele, aka allele count" ; + [ sh:datatype xsd:string ; + sh:description "rdf:type of biolink:Association should be fixed at rdf:Statement" ; + sh:order 34 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The most upstream source of the knowledge expressed in an Association that an implementer can identify. Performing a rigorous analysis of upstream data providers is expected; every effort is made to catalog the most upstream source of data in this property. Only one data source should be declared primary in any association. \"aggregator knowledge source\" can be used to capture non-primary sources." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:has_count ], + sh:order 14 ; + sh:path biolink:primary_knowledge_source ], [ sh:class biolink:OntologyClass ; sh:description "Used to hold the biolink class/category of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 21 ; sh:path biolink:object_category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:OntologyClass ; + sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:nodeKind sh:IRI ; - sh:order 37 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:EvidenceType ; - sh:description "connects an association to an instance of supporting evidence" ; + sh:order 25 ; + sh:path biolink:object_category_closure ], + [ sh:class biolink:RetrievalSource ; + sh:description "A list of retrieval sources that served as a source of knowledge expressed in an Edge, or a source of data used to generate this knowledge." ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_evidence ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 30 ; + sh:path biolink:retrieval_source_ids ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject namespace of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:maxCount 1 ; + sh:order 26 ; + sh:path biolink:subject_namespace ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; - sh:order 1 ; - sh:path rdf:predicate ], + sh:order 31 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "used to hold the original object of a relation (or predicate) that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 19 ; + sh:path biolink:original_object ], [ sh:datatype xsd:string ; sh:description "Used to hold the object label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; sh:order 29 ; sh:path biolink:object_label_closure ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:order 33 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "An Information Resource from which the knowledge expressed in an Association was retrieved, directly or indirectly. This can be any resource through which the knowledge passed on its way to its currently serialized form. In practice, implementers should use one of the more specific subtypes of this generic property." ; + [ sh:datatype xsd:integer ; + sh:description "number in object population that carry a particular allele, aka allele count" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:knowledge_source ], - [ sh:datatype xsd:boolean ; - sh:description "if set to true, then the association is negated i.e. is not true" ; + sh:order 3 ; + sh:path biolink:has_count ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:negated ], + sh:order 35 ; + sh:path rdfs:label ], + [ sh:class biolink:EvidenceType ; + sh:description "connects an association to an instance of supporting evidence" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_evidence ], + [ sh:description "a qualifier used in a phenotypic association to state how frequent the phenotype is observed in the subject" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:frequency_qualifier ], [ sh:class biolink:OntologyClass ; - sh:description "Used to hold the object category closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:description "connects an association to qualifiers that modify or qualify the meaning of that association" ; sh:nodeKind sh:IRI ; - sh:order 25 ; - sh:path biolink:object_category_closure ] ; + sh:order 10 ; + sh:path biolink:qualifiers ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the object closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 23 ; + sh:path biolink:object_closure ], + [ sh:class biolink:PopulationOfIndividualOrganisms ; + sh:description "the population that is observed to have the frequency" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path rdf:object ], + [ sh:datatype xsd:string ; + sh:description "An intermediate aggregator resource from which knowledge expressed in an Association was retrieved downstream of the original source, on its path to its current serialized form." ; + sh:order 15 ; + sh:path biolink:aggregator_knowledge_source ], + [ sh:description "used to hold the original relation/predicate that an external knowledge source uses before transformation to match the biolink-model specification." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path biolink:original_predicate ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 36 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "Used to hold the subject label closure of an association. This is a denormalized field used primarily in the SQL serialization of a knowledge graph via KGX." ; + sh:order 28 ; + sh:path biolink:subject_label_closure ] ; sh:targetClass biolink:VariantToPopulationAssociation . biolink:Vertebrate a sh:NodeShape ; sh:closed true ; sh:description "A sub-phylum of animals consisting of those having a bony or cartilaginous vertebral column." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ] ; @@ -24889,78 +24889,87 @@ biolink:Virus a sh:NodeShape ; sh:closed true ; sh:description "A virus is a microorganism that replicates itself as a microRNA and infects the host cell." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:property [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:description "a human-readable description of an entity" ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ] ; sh:targetClass biolink:Virus . biolink:WebPage a sh:NodeShape ; sh:closed true ; sh:description "a document that is published according to World Wide Web standards, which may incorporate text, graphics, sound, and/or other features." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:property [ sh:datatype xsd:string ; + sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; + sh:minCount 1 ; + sh:order 6 ; + sh:path dct:type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 20 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; @@ -24971,16 +24980,10 @@ biolink:WebPage a sh:NodeShape ; sh:order 12 ; sh:path biolink:full_name ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 17 ; - sh:path rdf:type ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 18 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path biolink:summary ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 15 ; @@ -24990,24 +24993,30 @@ biolink:WebPage a sh:NodeShape ; sh:order 1 ; sh:path biolink:pages ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:format ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:license ], + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 16 ; sh:path biolink:category ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path rdfs:label ], [ sh:datatype xsd:string ; + sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:rights ], + sh:minCount 1 ; + sh:order 14 ; + sh:path biolink:id ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -25018,54 +25027,69 @@ biolink:WebPage a sh:NodeShape ; sh:order 19 ; sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 14 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], - [ sh:datatype xsd:string ; - sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; - sh:minCount 1 ; - sh:order 6 ; - sh:path dct:type ], + sh:order 7 ; + sh:path biolink:license ], [ sh:class biolink:Agent ; sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:authors ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ] ; + [ sh:datatype xsd:string ; + sh:order 17 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:rights ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ] ; sh:targetClass biolink:WebPage . biolink:Behavior a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 7 ; sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 13 ; @@ -25074,101 +25098,50 @@ biolink:Behavior a sh:NodeShape ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + sh:order 10 ; + sh:path biolink:iri ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_input ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ] ; + sh:order 15 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:Behavior . biolink:BehavioralFeature a sh:NodeShape ; sh:closed true ; sh:description "A phenotypic feature which is behavioral in nature." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -25180,181 +25153,206 @@ biolink:BehavioralFeature a sh:NodeShape ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; + sh:order 11 ; + sh:path dct:description ] ; sh:targetClass biolink:BehavioralFeature . -biolink:BiologicalProcess a sh:NodeShape ; - sh:closed true ; - sh:description "One or more causally connected executions of molecular functions" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], - [ sh:class biolink:PhysicalEntity ; - sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:enabled_by ], +biolink:BiologicalProcess a sh:NodeShape ; + sh:closed true ; + sh:description "One or more causally connected executions of molecular functions" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; sh:path dct:description ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:id ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:in_taxon_label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:NamedThing ; sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_output ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ] ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:class biolink:PhysicalEntity ; + sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:enabled_by ] ; sh:targetClass biolink:BiologicalProcess . biolink:CellularComponent a sh:NodeShape ; sh:closed true ; sh:description "A location in or around a cell" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 11 ; + sh:path dct:description ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ] ; + sh:path biolink:full_name ] ; sh:targetClass biolink:CellularComponent . biolink:ClinicalAttribute a sh:NodeShape ; sh:closed true ; sh:description "Attributes relating to a clinical manifestation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -25362,66 +25360,62 @@ biolink:ClinicalAttribute a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; - sh:path biolink:provided_by ] ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ] ; sh:targetClass biolink:ClinicalAttribute . biolink:Dataset a sh:NodeShape ; sh:closed true ; sh:description "an item that refers to a collection of data from a data source." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; @@ -25430,182 +25424,188 @@ biolink:Dataset a sh:NodeShape ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:creation_date ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:rights ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ] ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:format ] ; sh:targetClass biolink:Dataset . biolink:DatasetDistribution a sh:NodeShape ; sh:closed true ; sh:description "an item that holds distribution level information about a dataset." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:license ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:distribution_download_url ], + sh:order 4 ; + sh:path biolink:creation_date ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 6 ; sh:path biolink:xref ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:format ], - [ sh:description "a human-readable description of an entity" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:id ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], + sh:order 13 ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 8 ; sh:path biolink:synonym ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:license ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:format ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:creation_date ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], + sh:order 0 ; + sh:path biolink:distribution_download_url ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 16 ; sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:rights ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:id ], [ sh:datatype xsd:string ; sh:order 12 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ] ; + sh:path rdf:type ] ; sh:targetClass biolink:DatasetDistribution . biolink:Device a sh:NodeShape ; sh:closed true ; sh:description "A thing made or adapted for a particular purpose, especially a piece of mechanical or electronic equipment" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:Device . biolink:Exon a sh:NodeShape ; @@ -25613,36 +25613,23 @@ biolink:Exon a sh:NodeShape ; sh:description "A region of the transcript sequence within a gene which is not removed from the primary RNA transcript by RNA splicing." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; @@ -25651,6 +25638,15 @@ biolink:Exon a sh:NodeShape ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; @@ -25660,63 +25656,29 @@ biolink:Exon a sh:NodeShape ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ] ; - sh:targetClass biolink:Exon . - -biolink:GeneFamily a sh:NodeShape ; - sh:closed true ; - sh:description "any grouping of multiple genes or gene products related by common descent" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], + sh:order 11 ; + sh:path dct:description ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 2 ; + sh:order 1 ; sh:path biolink:in_taxon_label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 4 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 3 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ] ; + sh:targetClass biolink:Exon . + +biolink:GeneFamily a sh:NodeShape ; + sh:closed true ; + sh:description "any grouping of multiple genes or gene products related by common descent" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; sh:order 10 ; sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 6 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:iri ], [ sh:class biolink:Gene ; sh:description "connects an entity with one or more gene or gene products" ; sh:nodeKind sh:IRI ; @@ -25726,32 +25688,70 @@ biolink:GeneFamily a sh:NodeShape ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 4 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 3 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 6 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 11 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:iri ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:GeneFamily . biolink:GeneProductMixin a sh:NodeShape ; sh:closed false ; sh:description "The functional molecular product of a single gene locus. Gene products are either proteins or functional RNA molecules." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; sh:maxCount 1 ; sh:order 2 ; sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 0 ; sh:path biolink:synonym ] ; @@ -25761,39 +25761,28 @@ biolink:GeneticInheritance a sh:NodeShape ; sh:closed true ; sh:description "The pattern or 'mode' in which a particular genetic trait or disorder is passed from one generation to the next, e.g. autosomal dominant, autosomal recessive, etc." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], @@ -25802,159 +25791,170 @@ biolink:GeneticInheritance a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; - sh:path rdfs:label ] ; + sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:GeneticInheritance . biolink:InformationContentEntity a sh:NodeShape ; sh:closed false ; sh:description "a piece of information that typically describes some topic of discourse or is used as support." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:creation_date ], - [ sh:datatype xsd:string ; + sh:property [ sh:datatype xsd:string ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:format ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], + sh:order 1 ; + sh:path biolink:rights ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 4 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 3 ; + sh:path biolink:creation_date ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ] ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:InformationContentEntity . biolink:OrganismalEntity a sh:NodeShape ; sh:closed false ; sh:description "A named entity that is either a part of an organism, a whole organism, population or clade of organisms, excluding chemical entities" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:property [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:OrganismalEntity . biolink:PredicateMapping a sh:NodeShape ; @@ -25962,130 +25962,133 @@ biolink:PredicateMapping a sh:NodeShape ; sh:description "A deprecated predicate mapping object contains the deprecated predicate and an example of the rewiring that should be done to use a qualified statement in its place." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:subject_aspect_qualifier ], + sh:order 9 ; + sh:path biolink:object_aspect_qualifier ], [ sh:datatype xsd:string ; sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the subject of an association (or statement)." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:subject_derivative_qualifier ], - [ sh:class biolink:NamedThing ; - sh:description "a list of terms from different schemas or terminology systems that have a broader, more general meaning. Broader terms are typically shown as parents in a hierarchy or tree." ; - sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:broad_match ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:subject_context_qualifier ], [ sh:datatype xsd:string ; + sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:object_context_qualifier ], + sh:order 16 ; + sh:path biolink:anatomical_context_qualifier ], [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the object of an association (aka: statement)." ; sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:object_direction_qualifier ], - [ sh:class biolink:OrganismTaxon ; - sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:species_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; + sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:object_part_qualifier ], + sh:order 4 ; + sh:path biolink:subject_part_qualifier ], [ sh:datatype xsd:string ; - sh:description "The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:mapped_predicate ], + sh:order 6 ; + sh:path biolink:subject_context_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "a list of terms from different schemas or terminology systems that have a broader, more general meaning. Broader terms are typically shown as parents in a hierarchy or tree." ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:broad_match ], [ sh:datatype xsd:string ; sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:subject_form_or_variant_qualifier ], - [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; - sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:subject_direction_qualifier ], - [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:object_derivative_qualifier ], [ sh:datatype xsd:string ; - sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the subject of an association (or statement)." ; + sh:description "The predicate that is being replaced by the fully qualified representation of predicate + subject and object qualifiers. Only to be used in test data and mapping data to help with the transition to the fully qualified predicate model. Not to be used in knowledge graphs." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:subject_part_qualifier ], + sh:order 0 ; + sh:path biolink:mapped_predicate ], [ sh:datatype xsd:string ; - sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the subject of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:object_form_or_variant_qualifier ], + sh:order 1 ; + sh:path biolink:subject_aspect_qualifier ], + [ sh:class biolink:NamedThing ; + sh:description "holds between two entities that have strictly equivalent meanings, with a high degree of confidence" ; + sh:nodeKind sh:IRI ; + sh:order 18 ; + sh:path biolink:exact_match ], [ sh:class biolink:NamedThing ; sh:description "a list of terms from different schemas or terminology systems that have a narrower, more specific meaning. Narrower terms are typically shown as children in a hierarchy or tree." ; sh:nodeKind sh:IRI ; sh:order 19 ; sh:path biolink:narrow_match ], + [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; + sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:causal_mechanism_qualifier ], + [ sh:class biolink:OrganismTaxon ; + sh:description "A statement qualifier representing a taxonomic category of species in which a relationship expressed in an association took place." ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:species_context_qualifier ], [ sh:datatype xsd:string ; - sh:description "Composes with the core concept to describe new concepts of a different ontological type. e.g. a process in which the core concept participates, a function/activity/role held by the core concept, or a characteristic/quality that inheres in the core concept. The purpose of the aspect slot is to indicate what aspect is being affected in an 'affects' association. This qualifier specifies a change in the object of an association (aka: statement)." ; + sh:description "A qualifier that composes with a core subject/object concept to define a specific type, variant, alternative version of this concept. The composed concept remains a subtype or instance of the core concept. For example, the qualifier ‘mutation’ combines with the core concept ‘Gene X’ to express the compose concept ‘a mutation of Gene X’. This qualifier specifies a change in the object of an association (aka: statement)." ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:object_aspect_qualifier ], - [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:order 11 ; + sh:path biolink:object_form_or_variant_qualifier ], + [ sh:datatype xsd:string ; + sh:description "A qualifier that composes with a core subject/object concept to describe something that is derived from the core concept. For example, the qualifier ‘metabolite’ combines with a ‘Chemical X’ core concept to express the composed concept ‘a metabolite of Chemical X’. This qualifier is for the object of an association (or statement)." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 7 ; - sh:path rdf:predicate ], + sh:order 13 ; + sh:path biolink:object_derivative_qualifier ], [ sh:datatype xsd:string ; - sh:description "A statement qualifier representing an anatomical location where an relationship expressed in an association took place (can be a tissue, cell type, or sub-cellular location)." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:anatomical_context_qualifier ], + sh:order 14 ; + sh:path biolink:object_context_qualifier ], [ sh:datatype xsd:string ; sh:description "Predicate to be used in an association when subject and object qualifiers are present and the full reading of the statement requires a qualification to the predicate in use in order to refine or increase the specificity of the full statement reading. This qualifier holds a relationship to be used instead of that expressed by the primary predicate, in a ‘full statement’ reading of the association, where qualifier-based semantics are included. This is necessary only in cases where the primary predicate does not work in a full statement reading." ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:qualified_predicate ], - [ sh:class biolink:NamedThing ; - sh:description "holds between two entities that have strictly equivalent meanings, with a high degree of confidence" ; - sh:nodeKind sh:IRI ; - sh:order 18 ; - sh:path biolink:exact_match ], - [ sh:description "A statement qualifier representing a type of molecular control mechanism through which an effect of a chemical on a gene or gene product is mediated (e.g. 'agonism', 'inhibition', 'allosteric modulation', 'channel blocker')" ; - sh:in ( "binding" "inhibition" "antibody_inhibition" "antagonism" "molecular_channel_blockage" "inverse_agonism" "negative_allosteric_modulation" "agonism" "molecular_channel_opening" "positive_allosteric_modulation" "potentiation" "activation" "inducer" "transcriptional_regulation" "signaling_mediated_control" "stabilization" "stimulation" "releasing_activity" ) ; + [ sh:datatype xsd:string ; + sh:description "defines a specific part/component of the core concept (used in cases there this specific part has no IRI we can use to directly represent it, e.g. 'ESR1 transcript' q: polyA tail). This qualifier is for the object of an association (or statement)." ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:causal_mechanism_qualifier ] ; + sh:order 12 ; + sh:path biolink:object_part_qualifier ], + [ sh:description "Composes with the core concept (+ aspect if provided) to describe a change in its direction or degree. This qualifier qualifies the subject of an association (aka: statement)." ; + sh:in ( "increased" "upregulated" "decreased" "downregulated" ) ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:subject_direction_qualifier ], + [ sh:description "A high-level grouping for the relationship type. AKA minimal predicate. This is analogous to category for nodes." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 7 ; + sh:path rdf:predicate ] ; sh:targetClass biolink:PredicateMapping . biolink:Procedure a sh:NodeShape ; sh:closed true ; sh:description "A series of actions conducted in a certain order or manner" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; @@ -26094,105 +26097,102 @@ biolink:Procedure a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ] ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:Procedure . biolink:SocioeconomicAttribute a sh:NodeShape ; sh:closed true ; sh:description "Attributes relating to a socioeconomic manifestation" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + sh:property [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; sh:order 2 ; sh:path biolink:has_quantitative_value ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], + sh:order 12 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:class biolink:NamedThing ; + sh:description "connects an attribute to a value" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:has_qualitative_value ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ] ; + sh:order 13 ; + sh:path biolink:has_attribute ] ; sh:targetClass biolink:SocioeconomicAttribute . biolink:TaxonomicRank a sh:NodeShape ; @@ -26211,15 +26211,15 @@ biolink:Treatment a sh:NodeShape ; sh:closed true ; sh:description "A treatment is targeted at a disease or phenotype and may involve multiple drug 'exposures', medical devices and/or procedures" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], - [ sh:class biolink:Device ; - sh:description "connects an entity to one or more (medical) devices" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_device ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; @@ -26228,31 +26228,17 @@ biolink:Treatment a sh:NodeShape ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:timepoint ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:class biolink:Drug ; - sh:description "connects an entity to one or more drugs" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_drug ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 7 ; sh:path biolink:synonym ], @@ -26261,42 +26247,56 @@ biolink:Treatment a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_procedure ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + [ sh:class biolink:Drug ; + sh:description "connects an entity to one or more drugs" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_drug ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:class biolink:Device ; + sh:description "connects an entity to one or more (medical) devices" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_device ] ; sh:targetClass biolink:Treatment . biolink:Zygosity a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:class biolink:NamedThing ; + sh:property [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; @@ -26305,29 +26305,6 @@ biolink:Zygosity a sh:NodeShape ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], [ sh:class biolink:QuantityValue ; sh:description "connects an attribute to a value" ; sh:nodeKind sh:BlankNode ; @@ -26336,6 +26313,11 @@ biolink:Zygosity a sh:NodeShape ; [ sh:datatype xsd:string ; sh:order 11 ; sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -26343,205 +26325,223 @@ biolink:Zygosity a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ] ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ] ; sh:targetClass biolink:Zygosity . biolink:Case a sh:NodeShape ; sh:closed true ; sh:description "An individual (human) organism that has a patient role in some clinical context." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ] ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ] ; sh:targetClass biolink:Case . biolink:CellLine a sh:NodeShape ; sh:closed true ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ] ; + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:CellLine . biolink:IndividualOrganism a sh:NodeShape ; sh:closed true ; sh:description "An instance of an organism. For example, Richard Nixon, Charles Darwin, my pet cat. Example ID: ORCID:0000-0002-5355-2576" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], + sh:order 10 ; + sh:path rdfs:label ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:order 9 ; sh:path rdf:type ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ] ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ] ; sh:targetClass biolink:IndividualOrganism . biolink:Outcome a sh:NodeShape ; @@ -26554,114 +26554,78 @@ biolink:Transcript a sh:NodeShape ; sh:closed true ; sh:description "An RNA synthesized on a DNA or RNA template by an RNA polymerase." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:order 1 ; + sh:path biolink:in_taxon_label ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; - sh:path biolink:id ] ; - sh:targetClass biolink:Transcript . - -biolink:Drug a sh:NodeShape ; - sh:closed true ; - sh:description "A substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease" ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 9 ; - sh:path biolink:has_chemical_role ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:path biolink:id ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:max_tolerated_dose ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; + sh:order 2 ; sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; - sh:maxCount 1 ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:drug_regulatory_status_world_wide ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], + sh:path biolink:xref ], [ sh:datatype xsd:boolean ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:is_toxic ], - [ sh:description "a human-readable description of an entity" ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 17 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; + sh:targetClass biolink:Transcript . + +biolink:Drug a sh:NodeShape ; + sh:closed true ; + sh:description "A substance intended for use in the diagnosis, cure, mitigation, treatment, or prevention of disease" ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:datatype xsd:string ; + sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:highest_FDA_approval_status ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], [ sh:description "the method or process of administering a pharmaceutical compound to achieve a therapeutic effect in humans or animals." ; sh:in ( "inhalation" "oral" "absorption_through_the_skin" "intravenous_injection" ) ; sh:order 4 ; @@ -26671,45 +26635,81 @@ biolink:Drug a sh:NodeShape ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:trade_name ], - [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:is_supplement ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 9 ; + sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:id ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 15 ; - sh:path biolink:category ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 6 ; - sh:path biolink:available_from ], [ sh:datatype xsd:string ; - sh:description "Should be the highest level of FDA approval this chemical entity or device has, regardless of which disease, condition or phenotype it is currently being reviewed to treat. For specific levels of FDA approval for a specific condition, disease, phenotype, etc., see the association slot, 'clinical approval status.'" ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:highest_FDA_approval_status ], + sh:order 7 ; + sh:path biolink:max_tolerated_dose ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "An agglomeration of drug regulatory status worldwide. Not specific to FDA." ; + sh:maxCount 1 ; + sh:order 3 ; + sh:path biolink:drug_regulatory_status_world_wide ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 20 ; sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; + sh:order 16 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:iri ], + sh:order 17 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 11 ; sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path dct:description ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:iri ], + [ sh:datatype xsd:boolean ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:is_toxic ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 6 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; - sh:order 16 ; - sh:path rdf:type ] ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 15 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:is_supplement ] ; sh:targetClass biolink:Drug . biolink:ExposureEvent a sh:NodeShape ; @@ -26732,42 +26732,44 @@ biolink:MaterialSample a sh:NodeShape ; sh:closed true ; sh:description "A sample is a limited quantity of something (e.g. an individual or set of individuals from a population, or a portion of a substance) to be used for testing, analysis, inspection, investigation, demonstration, or trial use. [SIO]" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], + sh:order 9 ; + sh:path dct:description ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 0 ; sh:path biolink:provided_by ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:deprecated ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:order 7 ; sh:path rdf:type ], @@ -26775,12 +26777,10 @@ biolink:MaterialSample a sh:NodeShape ; sh:maxCount 1 ; sh:order 2 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ] ; + sh:order 6 ; + sh:path biolink:category ] ; sh:targetClass biolink:MaterialSample . biolink:Pathway a sh:NodeShape ; @@ -26789,55 +26789,15 @@ biolink:Pathway a sh:NodeShape ; sh:property [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], [ sh:class biolink:PhysicalEntity ; sh:description "holds between a process and a physical entity, where the physical entity executes the process" ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:enabled_by ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; - sh:nodeKind sh:IRI ; - sh:order 2 ; - sh:path biolink:has_output ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:in_taxon_label ], - [ sh:class biolink:NamedThing ; - sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 0 ; - sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; @@ -26851,6 +26811,11 @@ biolink:Pathway a sh:NodeShape ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 15 ; + sh:path biolink:has_attribute ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; @@ -26858,41 +26823,96 @@ biolink:Pathway a sh:NodeShape ; [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 14 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an input into the process" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_input ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path rdfs:label ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:class biolink:NamedThing ; + sh:description "holds between a process and a continuant, where the continuant is an output of the process" ; + sh:nodeKind sh:IRI ; + sh:order 2 ; + sh:path biolink:has_output ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 0 ; + sh:path biolink:id ] ; sh:targetClass biolink:Pathway . biolink:LifeStage a sh:NodeShape ; sh:closed true ; sh:description "A stage of development or growth of an organism, including post-natal adult stages" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], + sh:property [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:in_taxon_label ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; @@ -26902,27 +26922,7 @@ biolink:LifeStage a sh:NodeShape ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 6 ; - sh:path biolink:id ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ] ; + sh:path biolink:id ] ; sh:targetClass biolink:LifeStage . biolink:NucleicAcidEntity a sh:NodeShape ; @@ -26933,236 +26933,236 @@ biolink:NucleicAcidEntity a sh:NodeShape ; sh:minCount 1 ; sh:order 15 ; sh:path biolink:category ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 6 ; - sh:path biolink:available_from ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path dct:description ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 17 ; sh:path rdfs:label ], - [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:is_metabolite ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:has_biological_sequence ], + sh:order 7 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 6 ; + sh:path biolink:available_from ], [ sh:datatype xsd:string ; sh:order 16 ; sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 19 ; + sh:path biolink:has_attribute ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:in_taxon_label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 14 ; sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:in_taxon ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 20 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:trade_name ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:is_toxic ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path biolink:id ], [ sh:class biolink:ChemicalRole ; sh:description "A role is particular behaviour which a chemical entity may exhibit." ; sh:nodeKind sh:IRI ; sh:order 9 ; sh:path biolink:has_chemical_role ], - [ sh:datatype xsd:string ; - sh:description "" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:trade_name ], + sh:order 18 ; + sh:path dct:description ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:description "indicates whether a molecular entity is a metabolite" ; sh:maxCount 1 ; - sh:order 20 ; - sh:path biolink:deprecated ], + sh:order 4 ; + sh:path biolink:is_metabolite ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:max_tolerated_dose ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 10 ; + sh:path biolink:provided_by ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 11 ; sh:path biolink:xref ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 19 ; - sh:path biolink:has_attribute ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:in_taxon_label ], + sh:order 0 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 10 ; - sh:path biolink:provided_by ] ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 3 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:NucleicAcidEntity . biolink:MolecularActivity a sh:NodeShape ; sh:closed true ; sh:description "An execution of a molecular function carried out by a gene product or macromolecular complex." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], - [ sh:class biolink:MolecularEntity ; - sh:description "A chemical entity that is the input for the reaction" ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_input ], + sh:order 10 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:id ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:iri ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:in_taxon_label ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:MacromolecularMachineMixin ; - sh:description "The gene product, gene, or complex that catalyzes the reaction" ; - sh:nodeKind sh:BlankNode ; - sh:order 3 ; - sh:path biolink:enabled_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:class biolink:MolecularEntity ; + sh:description "A chemical entity that is the input for the reaction" ; sh:nodeKind sh:IRI ; - sh:order 15 ; - sh:path biolink:has_attribute ], + sh:order 1 ; + sh:path biolink:has_input ], [ sh:class biolink:MolecularEntity ; sh:description "A chemical entity that is the output for the reaction" ; sh:nodeKind sh:IRI ; sh:order 2 ; sh:path biolink:has_output ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:order 12 ; sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ] ; - sh:targetClass biolink:MolecularActivity . - -biolink:PopulationOfIndividualOrganisms a sh:NodeShape ; - sh:closed true ; - sh:description "A collection of individuals from the same taxonomic class distinguished by one or more characteristics. Characteristics can include, but are not limited to, shared geographic location, genetics, phenotypes." ; - sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 10 ; + sh:order 13 ; sh:path rdfs:label ], [ sh:class biolink:Attribute ; - sh:description "may often be an organism attribute" ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 12 ; + sh:order 15 ; sh:path biolink:has_attribute ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:class biolink:MacromolecularMachineMixin ; + sh:description "The gene product, gene, or complex that catalyzes the reaction" ; + sh:nodeKind sh:BlankNode ; + sh:order 3 ; + sh:path biolink:enabled_by ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; + sh:order 9 ; sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ] ; + sh:targetClass biolink:MolecularActivity . + +biolink:PopulationOfIndividualOrganisms a sh:NodeShape ; + sh:closed true ; + sh:description "A collection of individuals from the same taxonomic class distinguished by one or more characteristics. Characteristics can include, but are not limited to, shared geographic location, genetics, phenotypes." ; + sh:ignoredProperties ( rdf:type ) ; + sh:property [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 7 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "a long-form human readable name for a thing" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:class biolink:Attribute ; + sh:description "may often be an organism attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 2 ; sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ] ; sh:targetClass biolink:PopulationOfIndividualOrganisms . biolink:MacromolecularMachineMixin a sh:NodeShape ; @@ -27180,138 +27180,138 @@ biolink:MolecularEntity a sh:NodeShape ; sh:description "A molecular entity is a chemical entity composed of individual or covalently bonded atoms." ; sh:ignoredProperties ( rdf:type ) ; sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:description "A human-readable name for an attribute or entity." ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:description "" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 5 ; - sh:path biolink:has_chemical_role ], + sh:order 1 ; + sh:path biolink:trade_name ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 17 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:order 13 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 2 ; + sh:path biolink:available_from ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:id ], + sh:order 12 ; + sh:path biolink:category ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:is_toxic ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "indicates whether a molecular entity is a metabolite" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:is_metabolite ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path rdfs:label ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 11 ; sh:path biolink:iri ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 5 ; + sh:path biolink:has_chemical_role ], [ sh:datatype xsd:string ; - sh:description "" ; + sh:order 13 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:trade_name ], + sh:order 3 ; + sh:path biolink:max_tolerated_dose ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 16 ; sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:max_tolerated_dose ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path dct:description ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 2 ; - sh:path biolink:available_from ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], - [ sh:datatype xsd:boolean ; - sh:description "indicates whether a molecular entity is a metabolite" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:is_metabolite ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 12 ; - sh:path biolink:category ] ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ] ; sh:targetClass biolink:MolecularEntity . biolink:PhysicalEntity a sh:NodeShape ; sh:closed true ; sh:description "An entity that has material reality (a.k.a. physical essence)." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:iri ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 4 ; sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], + sh:order 8 ; + sh:path rdfs:label ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path rdf:type ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 10 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 9 ; sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:iri ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:category ] ; sh:targetClass biolink:PhysicalEntity . biolink:ChemicalEntityOrGeneOrGeneProduct a sh:NodeShape ; @@ -27324,327 +27324,298 @@ biolink:Genotype a sh:NodeShape ; sh:closed true ; sh:description "An information content entity that describes a genome by specifying the total variation in genomic sequence and/or gene expression, relative to some established background" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a human-readable description of an entity" ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:order 2 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:has_biological_sequence ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:in_taxon_label ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:Zygosity ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_zygosity ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:order 7 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 9 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 3 ; + sh:path biolink:in_taxon ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 2 ; - sh:path biolink:id ] ; + sh:order 13 ; + sh:path dct:description ], + [ sh:class biolink:Zygosity ; + sh:maxCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_zygosity ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ] ; sh:targetClass biolink:Genotype . biolink:PhenotypicFeature a sh:NodeShape ; sh:closed true ; sh:description "A combination of entity and quality that makes up a phenotyping statement. An observable characteristic of an individual resulting from the interaction of its genotype with its molecular and physical environment." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], + sh:order 0 ; + sh:path biolink:in_taxon ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 13 ; + sh:path biolink:deprecated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:iri ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], + sh:order 11 ; + sh:path dct:description ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:PhenotypicFeature . biolink:SequenceVariant a sh:NodeShape ; sh:closed true ; sh:description "A sequence_variant is a non exact copy of a sequence_feature or genome exhibiting one or more sequence_alteration." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 8 ; - sh:path biolink:synonym ], - [ sh:class biolink:Gene ; - sh:description "Each allele can be associated with any number of genes" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_gene ], + sh:property [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 5 ; + sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 5 ; - sh:path biolink:provided_by ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:deprecated ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; - sh:order 14 ; - sh:path biolink:has_attribute ], + sh:order 3 ; + sh:path biolink:in_taxon ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 2 ; sh:path biolink:id ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:in_taxon_label ], + [ sh:class biolink:Gene ; + sh:description "Each allele can be associated with any number of genes" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_gene ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 14 ; + sh:path biolink:has_attribute ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 12 ; sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 8 ; + sh:path biolink:synonym ], [ sh:description "The state of the sequence w.r.t a reference sequence" ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:has_biological_sequence ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 6 ; sh:path biolink:xref ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:in_taxon ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:full_name ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:in_taxon_label ] ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ] ; sh:targetClass biolink:SequenceVariant . biolink:ChemicalEntity a sh:NodeShape ; sh:closed true ; sh:description "A chemical entity is a physical entity that pertains to chemistry or biochemistry." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:order 12 ; - sh:path rdf:type ], + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 11 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:max_tolerated_dose ], + [ sh:description "" ; + sh:in ( "over_the_counter" "prescription" ) ; + sh:order 1 ; + sh:path biolink:available_from ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path dct:description ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "" ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:trade_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 16 ; - sh:path biolink:deprecated ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 15 ; sh:path biolink:has_attribute ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 6 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:description "" ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:trade_name ], + [ sh:datatype xsd:string ; + sh:order 12 ; + sh:path rdf:type ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 9 ; - sh:path biolink:id ], + sh:order 13 ; + sh:path rdfs:label ], [ sh:datatype xsd:boolean ; sh:description "" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:is_toxic ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path rdfs:label ], + [ sh:class biolink:ChemicalRole ; + sh:description "A role is particular behaviour which a chemical entity may exhibit." ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:has_chemical_role ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 10 ; sh:path biolink:iri ], [ sh:datatype xsd:string ; - sh:description "The highest dose of a drug or treatment that does not cause unacceptable side effects. The maximum tolerated dose is determined in clinical trials by testing increasing doses on different groups of people until the highest dose with acceptable side effects is found. Also called MTD." ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:max_tolerated_dose ], - [ sh:description "a human-readable description of an entity" ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path dct:description ], + sh:minCount 1 ; + sh:order 9 ; + sh:path biolink:id ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 5 ; sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 11 ; - sh:path biolink:category ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 8 ; sh:path biolink:synonym ], - [ sh:class biolink:ChemicalRole ; - sh:description "A role is particular behaviour which a chemical entity may exhibit." ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:has_chemical_role ], - [ sh:description "" ; - sh:in ( "over_the_counter" "prescription" ) ; - sh:order 1 ; - sh:path biolink:available_from ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 6 ; - sh:path biolink:xref ] ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 16 ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:ChemicalEntity . biolink:Agent a sh:NodeShape ; sh:closed true ; sh:description "person, group, organization or project that provides a piece of information (i.e. a knowledge association)" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a professional relationship between one provider (often a person) within another provider (often an organization). Target provider identity should be specified by a CURIE. Providers may have multiple affiliations." ; - sh:order 0 ; - sh:path biolink:affiliation ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 12 ; - sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; + sh:property [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:description "Different classes of agents have distinct preferred identifiers. For publishers, use the ISBN publisher code. See https://grp.isbn-international.org/ for publisher code lookups. For editors, authors and individual providers, use the individual's ORCID if available; Otherwise, a ScopusID, ResearchID or Google Scholar ID ('GSID') may be used if the author ORCID is unknown. Institutional agents could be identified by an International Standard Name Identifier ('ISNI') code." ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; @@ -27653,15 +27624,30 @@ biolink:Agent a sh:NodeShape ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "the particulars of the place where someone or an organization is situated. For now, this slot is a simple text \"blob\" containing all relevant details of the given location for fitness of purpose. For the moment, this \"address\" can include other contact details such as email and phone number(?)." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:address ], + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 11 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "the particulars of the place where someone or an organization is situated. For now, this slot is a simple text \"blob\" containing all relevant details of the given location for fitness of purpose. For the moment, this \"address\" can include other contact details such as email and phone number(?)." ; + sh:maxCount 1 ; + sh:order 1 ; + sh:path biolink:address ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "a professional relationship between one provider (often a person) within another provider (often an organization). Target provider identity should be specified by a CURIE. Providers may have multiple affiliations." ; + sh:order 0 ; + sh:path biolink:affiliation ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; @@ -27669,100 +27655,111 @@ biolink:Agent a sh:NodeShape ; sh:path biolink:deprecated ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; - sh:path biolink:xref ] ; + sh:path biolink:xref ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 12 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "Different classes of agents have distinct preferred identifiers. For publishers, use the ISBN publisher code. See https://grp.isbn-international.org/ for publisher code lookups. For editors, authors and individual providers, use the individual's ORCID if available; Otherwise, a ScopusID, ResearchID or Google Scholar ID ('GSID') may be used if the author ORCID is unknown. Institutional agents could be identified by an International Standard Name Identifier ('ISNI') code." ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ] ; sh:targetClass biolink:Agent . biolink:ChemicalRole a sh:NodeShape ; sh:closed true ; sh:description "A role played by the molecular entity or part thereof within a chemical context." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OntologyClass ; - sh:description "connects an attribute to a class that describes it" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 1 ; - sh:path biolink:has_attribute_type ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:property [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:class biolink:QuantityValue ; - sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], + sh:order 8 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path rdfs:label ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:class biolink:OntologyClass ; + sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], + sh:minCount 1 ; + sh:nodeKind sh:IRI ; + sh:order 1 ; + sh:path biolink:has_attribute_type ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:iri ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], - [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 0 ; - sh:path rdfs:label ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ] ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ] ; sh:targetClass biolink:ChemicalRole . biolink:DiseaseOrPhenotypicFeature a sh:NodeShape ; sh:closed true ; sh:description "Either one of a disease or an individual phenotypic feature. Some knowledge resources such as Monarch treat these as distinct, others such as MESH conflate. Please see definitions of phenotypic feature and disease in this model for their independent descriptions. This class is helpful to enforce domains and ranges that may involve either a disease or a phenotypic feature." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; + sh:property [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:in_taxon ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; @@ -27775,111 +27772,114 @@ biolink:DiseaseOrPhenotypicFeature a sh:NodeShape ; sh:maxCount 1 ; sh:order 13 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:in_taxon ], + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 10 ; + sh:path rdfs:label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 5 ; sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ] ; + sh:order 7 ; + sh:path biolink:iri ] ; sh:targetClass biolink:DiseaseOrPhenotypicFeature . biolink:Gene a sh:NodeShape ; sh:closed true ; sh:description "A region (or regions) that includes all of the sequence elements necessary to encode a functional transcript. A gene locus may include regulatory regions, transcribed regions and/or other functional sequence regions." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:OrganismTaxon ; - sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; - sh:nodeKind sh:IRI ; - sh:order 4 ; - sh:path biolink:in_taxon ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:property [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 3 ; - sh:path biolink:id ], + sh:order 15 ; + sh:path biolink:deprecated ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 1 ; sh:path biolink:xref ], - [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], [ sh:datatype xsd:string ; sh:description "Symbol for a particular thing" ; sh:maxCount 1 ; sh:order 0 ; sh:path biolink:symbol ], - [ sh:description "connects a genomic feature to its sequence" ; + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:has_biological_sequence ], + sh:order 5 ; + sh:path biolink:in_taxon_label ], [ sh:description "Alternate human-readable names for a thing" ; sh:order 8 ; sh:path biolink:synonym ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:iri ], + [ sh:description "genes are typically designated by a short symbol and a full name. We map the symbol to the default display name and use an additional slot for full name" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:deprecated ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:order 13 ; + sh:path dct:description ], + [ sh:description "connects a genomic feature to its sequence" ; sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:in_taxon_label ], + sh:order 2 ; + sh:path biolink:has_biological_sequence ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 6 ; sh:path biolink:provided_by ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:class biolink:OrganismTaxon ; + sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; + sh:nodeKind sh:IRI ; + sh:order 4 ; + sh:path biolink:in_taxon ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path dct:description ] ; + sh:minCount 1 ; + sh:order 3 ; + sh:path biolink:id ] ; sh:targetClass biolink:Gene . biolink:BiologicalSex a sh:NodeShape ; @@ -27892,27 +27892,35 @@ biolink:BiologicalSex a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; sh:maxCount 1 ; sh:nodeKind sh:IRI ; sh:order 3 ; sh:path biolink:has_qualitative_value ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 10 ; sh:path biolink:category ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:full_name ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:iri ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; @@ -27928,158 +27936,150 @@ biolink:BiologicalSex a sh:NodeShape ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 13 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:description "a human-readable description of an entity" ; + sh:order 4 ; + sh:path biolink:iri ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ] ; + sh:order 8 ; + sh:path biolink:full_name ] ; sh:targetClass biolink:BiologicalSex . biolink:Disease a sh:NodeShape ; sh:closed true ; sh:description "A disorder of structure or function, especially one that produces specific signs, phenotypes or symptoms or that affects a specific location and is not simply a direct result of physical injury. A disposition to undergo pathological processes that exists in an organism because of one or more disorders in that organism." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; + sh:property [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; sh:order 1 ; sh:path biolink:in_taxon_label ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], + sh:order 11 ; + sh:path dct:description ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], + sh:order 9 ; + sh:path rdf:type ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:full_name ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; - sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ] ; + sh:order 10 ; + sh:path rdfs:label ] ; sh:targetClass biolink:Disease . biolink:AnatomicalEntity a sh:NodeShape ; sh:closed true ; sh:description "A subcellular location, cell type or gross anatomical part" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 13 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 2 ; - sh:path biolink:provided_by ], - [ sh:description "The human readable scientific name for the taxon of the entity." ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:in_taxon_label ], + sh:property [ sh:description "Alternate human-readable names for a thing" ; + sh:order 5 ; + sh:path biolink:synonym ], [ sh:class biolink:OrganismTaxon ; sh:description "connects an entity to its taxonomic classification. Only certain kinds of entities can be taxonomically classified; see 'thing with taxon'" ; sh:nodeKind sh:IRI ; sh:order 0 ; sh:path biolink:in_taxon ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 5 ; - sh:path biolink:synonym ], [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; sh:order 3 ; sh:path biolink:xref ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:iri ], + sh:order 13 ; + sh:path biolink:deprecated ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 6 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:full_name ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 11 ; + sh:path dct:description ], [ sh:class biolink:Attribute ; sh:description "may often be an organism attribute" ; sh:nodeKind sh:IRI ; sh:order 12 ; sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:order 9 ; + sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 10 ; sh:path rdfs:label ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 2 ; + sh:path biolink:provided_by ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 8 ; sh:path biolink:category ], - [ sh:description "a human-readable description of an entity" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 11 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:order 9 ; - sh:path rdf:type ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:order 7 ; + sh:path biolink:iri ], + [ sh:description "The human readable scientific name for the taxon of the entity." ; sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 6 ; - sh:path biolink:id ] ; + sh:order 1 ; + sh:path biolink:in_taxon_label ] ; sh:targetClass biolink:AnatomicalEntity . biolink:GeneOrGeneProduct a sh:NodeShape ; @@ -28111,24 +28111,21 @@ biolink:OrganismTaxon a sh:NodeShape ; sh:closed true ; sh:description "A classification of a set of organisms. Example instances: NCBITaxon:9606 (Homo sapiens), NCBITaxon:2 (Bacteria). Can also be used to represent strains or subspecies." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "A human-readable name for an attribute or entity." ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:property [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 7 ; sh:path biolink:category ], - [ sh:class biolink:TaxonomicRank ; + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 2 ; + sh:path biolink:xref ], + [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:has_taxonomic_rank ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:order 10 ; + sh:path dct:description ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:deprecated ], + sh:order 3 ; + sh:path biolink:full_name ], [ sh:datatype xsd:string ; sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; sh:order 1 ; @@ -28138,160 +28135,163 @@ biolink:OrganismTaxon a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 11 ; sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 2 ; - sh:path biolink:xref ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 4 ; + sh:path biolink:synonym ], [ sh:datatype xsd:string ; sh:order 8 ; sh:path rdf:type ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:class biolink:TaxonomicRank ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:iri ], + sh:nodeKind sh:IRI ; + sh:order 0 ; + sh:path biolink:has_taxonomic_rank ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 5 ; sh:path biolink:id ], - [ sh:description "a human-readable description of an entity" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 10 ; - sh:path dct:description ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 4 ; - sh:path biolink:synonym ], - [ sh:description "a long-form human readable name for a thing" ; + sh:order 12 ; + sh:path biolink:deprecated ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 3 ; - sh:path biolink:full_name ] ; + sh:order 6 ; + sh:path biolink:iri ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path rdfs:label ] ; sh:targetClass biolink:OrganismTaxon . biolink:EvidenceType a sh:NodeShape ; sh:closed true ; sh:description "Class of evidence that supports an association" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 8 ; - sh:path biolink:id ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 0 ; - sh:path biolink:license ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 7 ; - sh:path biolink:synonym ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], - [ sh:datatype xsd:boolean ; + sh:property [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 15 ; sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 1 ; - sh:path biolink:rights ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:full_name ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], + sh:order 9 ; + sh:path biolink:iri ], [ sh:class biolink:Attribute ; sh:description "connects any entity to an attribute" ; sh:nodeKind sh:IRI ; sh:order 14 ; sh:path biolink:has_attribute ], - [ sh:description "A human-readable name for an attribute or entity." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 12 ; - sh:path rdfs:label ], + sh:order 2 ; + sh:path biolink:format ], [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 4 ; - sh:path biolink:provided_by ], + sh:order 11 ; + sh:path rdf:type ], [ sh:datatype xsd:date ; sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; sh:order 3 ; sh:path biolink:creation_date ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 7 ; + sh:path biolink:synonym ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 13 ; sh:path dct:description ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:iri ], + sh:order 1 ; + sh:path biolink:rights ], [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 4 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:format ] ; + sh:minCount 1 ; + sh:order 8 ; + sh:path biolink:id ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 6 ; + sh:path biolink:full_name ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 0 ; + sh:path biolink:license ], + [ sh:description "A human-readable name for an attribute or entity." ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path rdfs:label ] ; sh:targetClass biolink:EvidenceType . biolink:NamedThing a sh:NodeShape ; sh:closed true ; sh:description "a databased entity or concept/class" ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:description "Alternate human-readable names for a thing" ; - sh:order 3 ; - sh:path biolink:synonym ], + sh:property [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 10 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 4 ; - sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 1 ; - sh:path biolink:xref ], - [ sh:description "a human-readable description of an entity" ; + sh:order 7 ; + sh:path rdf:type ], + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path dct:description ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 0 ; - sh:path biolink:provided_by ], + sh:order 2 ; + sh:path biolink:full_name ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 5 ; sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:order 7 ; - sh:path rdf:type ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 8 ; sh:path rdfs:label ], - [ sh:description "a long-form human readable name for a thing" ; + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:full_name ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 10 ; - sh:path biolink:has_attribute ], + sh:order 11 ; + sh:path biolink:deprecated ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 6 ; sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; - sh:order 11 ; - sh:path biolink:deprecated ] ; + sh:minCount 1 ; + sh:order 4 ; + sh:path biolink:id ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 3 ; + sh:path biolink:synonym ], + [ sh:description "a human-readable description of an entity" ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 0 ; + sh:path biolink:provided_by ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 1 ; + sh:path biolink:xref ] ; sh:targetClass biolink:NamedThing . biolink:Publication a sh:NodeShape ; @@ -28302,162 +28302,163 @@ biolink:Publication a sh:NodeShape ; sh:maxCount 1 ; sh:order 7 ; sh:path biolink:license ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 8 ; + sh:path biolink:rights ], + [ sh:datatype xsd:string ; + sh:description "executive summary of a publication" ; + sh:maxCount 1 ; + sh:order 2 ; + sh:path biolink:summary ], + [ sh:datatype xsd:string ; + sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; + sh:order 1 ; + sh:path biolink:pages ], + [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; + sh:maxCount 1 ; + sh:order 18 ; + sh:path rdfs:label ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 13 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 9 ; + sh:path biolink:format ], + [ sh:description "a long-form human readable name for a thing" ; + sh:maxCount 1 ; + sh:order 12 ; + sh:path biolink:full_name ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 19 ; sh:path dct:description ], + [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + sh:maxCount 1 ; + sh:order 10 ; + sh:path biolink:creation_date ], [ sh:datatype xsd:string ; sh:description "Different kinds of publication subtypes will have different preferred identifiers (curies when feasible). Precedence of identifiers for scientific articles is as follows: PMID if available; DOI if not; actual alternate CURIE otherwise. Enclosing publications (i.e. referenced by 'published in' node property) such as books and journals, should have industry-standard identifier such as from ISBN and ISSN." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 14 ; sh:path biolink:id ], - [ sh:class biolink:Agent ; - sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; - sh:nodeKind sh:IRI ; - sh:order 0 ; - sh:path biolink:authors ], - [ sh:description "mesh terms tagging a publication" ; - sh:order 4 ; - sh:path biolink:mesh_terms ], - [ sh:datatype xsd:string ; - sh:description "keywords tagging a publication" ; - sh:order 3 ; - sh:path biolink:keywords ], + [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; + sh:maxCount 1 ; + sh:order 15 ; + sh:path biolink:iri ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 21 ; sh:path biolink:deprecated ], + [ sh:description "mesh terms tagging a publication" ; + sh:order 4 ; + sh:path biolink:mesh_terms ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 5 ; + sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:description "executive summary of a publication" ; - sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:summary ], - [ sh:datatype xsd:string ; - sh:order 17 ; - sh:path rdf:type ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 11 ; + sh:path biolink:provided_by ], + [ sh:class biolink:Agent ; + sh:description "connects an publication to the list of authors who contributed to the publication. This property should be a comma-delimited list of author names. It is recommended that an author's name be formatted as \"surname, firstname initial.\". Note that this property is a node annotation expressing the citation list of authorship which might typically otherwise be more completely documented in biolink:PublicationToProviderAssociation defined edges which point to full details about an author and possibly, some qualifiers which clarify the specific status of a given author in the publication." ; sh:nodeKind sh:IRI ; - sh:order 20 ; - sh:path biolink:has_attribute ], + sh:order 0 ; + sh:path biolink:authors ], [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; sh:minCount 1 ; sh:order 16 ; sh:path biolink:category ], - [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; - sh:maxCount 1 ; - sh:order 15 ; - sh:path biolink:iri ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:format ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 11 ; - sh:path biolink:provided_by ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 8 ; - sh:path biolink:rights ], - [ sh:description "the 'title' of the publication is generally recorded in the 'name' property (inherited from NamedThing). The field name 'title' is now also tagged as an acceptable alias for the node property 'name' (just in case)." ; - sh:maxCount 1 ; - sh:order 18 ; - sh:path rdfs:label ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 20 ; + sh:path biolink:has_attribute ], [ sh:datatype xsd:string ; sh:description "Ontology term for publication type may be drawn from Dublin Core types (https://www.dublincore.org/specifications/dublin-core/dcmi-type-vocabulary/), FRBR-aligned Bibliographic Ontology (https://sparontologies.github.io/fabio/current/fabio.html), the MESH publication types (https://www.nlm.nih.gov/mesh/pubtypes.html), the Confederation of Open Access Repositories (COAR) Controlled Vocabulary for Resource Type Genres (http://vocabularies.coar-repositories.org/documentation/resource_types/), Wikidata (https://www.wikidata.org/wiki/Wikidata:Publication_types), or equivalent publication type ontology. When a given publication type ontology term is used within a given knowledge graph, then the CURIE identified term must be documented in the graph as a concept node of biolink:category biolink:OntologyClass." ; sh:minCount 1 ; sh:order 6 ; sh:path dct:type ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 5 ; - sh:path biolink:xref ], - [ sh:description "a long-form human readable name for a thing" ; - sh:maxCount 1 ; - sh:order 12 ; - sh:path biolink:full_name ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 13 ; - sh:path biolink:synonym ], [ sh:datatype xsd:string ; - sh:description "When a 2-tuple of page numbers are provided, they represent the start and end page of the publication within its parent publication context. For books, this may be set to the total number of pages of the book." ; - sh:order 1 ; - sh:path biolink:pages ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; - sh:maxCount 1 ; - sh:order 10 ; - sh:path biolink:creation_date ] ; + sh:order 17 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "keywords tagging a publication" ; + sh:order 3 ; + sh:path biolink:keywords ] ; sh:targetClass biolink:Publication . biolink:RetrievalSource a sh:NodeShape ; sh:closed true ; sh:description "Provides information about how a particular InformationResource served as a source from which knowledge expressed in an Edge, or data used to generate this knowledge, was retrieved." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; - sh:nodeKind sh:IRI ; - sh:order 17 ; - sh:path biolink:has_attribute ], - [ sh:description "a long-form human readable name for a thing" ; + sh:property [ sh:datatype xsd:date ; + sh:description "date on which an entity was created. This can be applied to nodes or edges" ; sh:maxCount 1 ; - sh:order 9 ; - sh:path biolink:full_name ], - [ sh:datatype xsd:string ; + sh:order 7 ; + sh:path biolink:creation_date ], + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 13 ; + sh:path biolink:category ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 10 ; + sh:path biolink:synonym ], + [ sh:description "The InformationResources that served as a source for the InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; sh:maxCount 1 ; - sh:order 6 ; - sh:path biolink:format ], + sh:order 2 ; + sh:path biolink:upstream_resource_ids ], [ sh:description "A human-readable name for an attribute or entity." ; sh:maxCount 1 ; sh:order 15 ; sh:path rdfs:label ], - [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 8 ; - sh:path biolink:provided_by ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 12 ; sh:path biolink:iri ], + [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 3 ; + sh:path biolink:xref ], [ sh:description "The InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 0 ; sh:path biolink:resource_id ], - [ sh:datatype xsd:date ; - sh:description "date on which an entity was created. This can be applied to nodes or edges" ; + [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; - sh:order 7 ; - sh:path biolink:creation_date ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 13 ; - sh:path biolink:category ], - [ sh:description "The InformationResources that served as a source for the InformationResource that served as a source for the knowledge expressed in an Edge, or data used to generate this knowledge." ; + sh:order 9 ; + sh:path biolink:full_name ], + [ sh:datatype xsd:string ; sh:maxCount 1 ; - sh:order 2 ; - sh:path biolink:upstream_resource_ids ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 10 ; - sh:path biolink:synonym ], + sh:order 6 ; + sh:path biolink:format ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 17 ; + sh:path biolink:has_attribute ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 16 ; sh:path dct:description ], + [ sh:datatype xsd:string ; + sh:maxCount 1 ; + sh:order 4 ; + sh:path biolink:license ], [ sh:datatype xsd:string ; sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; sh:maxCount 1 ; sh:minCount 1 ; sh:order 11 ; sh:path biolink:id ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 3 ; - sh:path biolink:xref ], [ sh:datatype xsd:string ; - sh:order 14 ; - sh:path rdf:type ], + sh:maxCount 1 ; + sh:order 5 ; + sh:path biolink:rights ], [ sh:description "The role of the InformationResource in the retrieval of the knowledge expressed in an Edge, or data used to generate this knowledge." ; sh:in ( "primary_knowledge_source" "aggregator_knowledge_source" "supporting_data_source" ) ; sh:maxCount 1 ; @@ -28465,80 +28466,48 @@ biolink:RetrievalSource a sh:NodeShape ; sh:order 1 ; sh:path biolink:resource_role ], [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 4 ; - sh:path biolink:license ], + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 8 ; + sh:path biolink:provided_by ], + [ sh:datatype xsd:string ; + sh:order 14 ; + sh:path rdf:type ], [ sh:datatype xsd:boolean ; sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; sh:maxCount 1 ; sh:order 18 ; - sh:path biolink:deprecated ], - [ sh:datatype xsd:string ; - sh:maxCount 1 ; - sh:order 5 ; - sh:path biolink:rights ] ; + sh:path biolink:deprecated ] ; sh:targetClass biolink:RetrievalSource . biolink:Attribute a sh:NodeShape ; sh:closed true ; sh:description "A property or characteristic of an entity. For example, an apple may have properties such as color, shape, age, crispiness. An environmental sample may have attributes such as depth, lat, long, material." ; sh:ignoredProperties ( rdf:type ) ; - sh:property [ sh:datatype xsd:string ; - sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; - sh:order 6 ; - sh:path biolink:provided_by ], - [ sh:class biolink:NamedThing ; - sh:description "connects an attribute to a value" ; - sh:maxCount 1 ; - sh:nodeKind sh:IRI ; - sh:order 3 ; - sh:path biolink:has_qualitative_value ], - [ sh:datatype xsd:string ; - sh:order 11 ; - sh:path rdf:type ], + sh:property [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; + sh:order 7 ; + sh:path biolink:xref ], [ sh:description "The human-readable 'attribute name' can be set to a string which reflects its context of interpretation, e.g. SEPIO evidence/provenance/confidence annotation or it can default to the name associated with the 'has attribute type' slot ontology term." ; sh:maxCount 1 ; sh:order 0 ; sh:path rdfs:label ], - [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; - sh:minCount 1 ; - sh:order 10 ; - sh:path biolink:category ], - [ sh:datatype xsd:boolean ; - sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; - sh:maxCount 1 ; - sh:order 14 ; - sh:path biolink:deprecated ], [ sh:description "An IRI for an entity. This is determined by the id using expansion rules." ; sh:maxCount 1 ; sh:order 4 ; sh:path biolink:iri ], - [ sh:class biolink:QuantityValue ; + [ sh:description "Name of the high level ontology class in which this entity is categorized. Corresponds to the label for the biolink entity type class. In a neo4j database this MAY correspond to the neo4j label tag. In an RDF database it should be a biolink model class URI. This field is multi-valued. It should include values for ancestors of the biolink class; for example, a protein such as Shh would have category values `biolink:Protein`, `biolink:GeneProduct`, `biolink:MolecularEntity`. In an RDF database, nodes will typically have an rdf:type triples. This can be to the most specific biolink class, or potentially to a class more specific than something in biolink. For example, a sequence feature `f` may have a rdf:type assertion to a SO class such as TF_binding_site, which is more specific than anything in biolink. Here we would have categories {biolink:GenomicEntity, biolink:MolecularEntity, biolink:NamedThing}" ; + sh:minCount 1 ; + sh:order 10 ; + sh:path biolink:category ], + [ sh:class biolink:NamedThing ; sh:description "connects an attribute to a value" ; - sh:nodeKind sh:BlankNode ; - sh:order 2 ; - sh:path biolink:has_quantitative_value ], - [ sh:description "Alternate human-readable names for a thing" ; - sh:order 9 ; - sh:path biolink:synonym ], - [ sh:class biolink:Attribute ; - sh:description "connects any entity to an attribute" ; + sh:maxCount 1 ; sh:nodeKind sh:IRI ; - sh:order 13 ; - sh:path biolink:has_attribute ], - [ sh:description "A database cross reference or alternative identifier for a NamedThing or edge between two NamedThings. This property should point to a database record or webpage that supports the existence of the edge, or gives more detail about the edge. This property can be used on a node or edge to provide multiple URIs or CURIE cross references." ; - sh:order 7 ; - sh:path biolink:xref ], + sh:order 3 ; + sh:path biolink:has_qualitative_value ], [ sh:description "a long-form human readable name for a thing" ; sh:maxCount 1 ; sh:order 8 ; sh:path biolink:full_name ], - [ sh:datatype xsd:string ; - sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; - sh:maxCount 1 ; - sh:minCount 1 ; - sh:order 5 ; - sh:path biolink:id ], [ sh:class biolink:OntologyClass ; sh:description "connects an attribute to a class that describes it" ; sh:maxCount 1 ; @@ -28546,10 +28515,41 @@ biolink:Attribute a sh:NodeShape ; sh:nodeKind sh:IRI ; sh:order 1 ; sh:path biolink:has_attribute_type ], + [ sh:description "Alternate human-readable names for a thing" ; + sh:order 9 ; + sh:path biolink:synonym ], + [ sh:datatype xsd:string ; + sh:order 11 ; + sh:path rdf:type ], + [ sh:datatype xsd:string ; + sh:description "A unique identifier for an entity. Must be either a CURIE shorthand for a URI or a complete URI" ; + sh:maxCount 1 ; + sh:minCount 1 ; + sh:order 5 ; + sh:path biolink:id ], + [ sh:class biolink:Attribute ; + sh:description "connects any entity to an attribute" ; + sh:nodeKind sh:IRI ; + sh:order 13 ; + sh:path biolink:has_attribute ], + [ sh:datatype xsd:string ; + sh:description "The value in this node property represents the knowledge provider that created or assembled the node and all of its attributes. Used internally to represent how a particular node made its way into a knowledge provider or graph." ; + sh:order 6 ; + sh:path biolink:provided_by ], [ sh:description "a human-readable description of an entity" ; sh:maxCount 1 ; sh:order 12 ; - sh:path dct:description ] ; + sh:path dct:description ], + [ sh:datatype xsd:boolean ; + sh:description "A boolean flag indicating that an entity is no longer considered current or valid." ; + sh:maxCount 1 ; + sh:order 14 ; + sh:path biolink:deprecated ], + [ sh:class biolink:QuantityValue ; + sh:description "connects an attribute to a value" ; + sh:nodeKind sh:BlankNode ; + sh:order 2 ; + sh:path biolink:has_quantitative_value ] ; sh:targetClass biolink:Attribute . biolink:OntologyClass a sh:NodeShape ; diff --git a/src/biolink_model/datamodel/model.py b/src/biolink_model/datamodel/model.py index a8031f335..d11925177 100644 --- a/src/biolink_model/datamodel/model.py +++ b/src/biolink_model/datamodel/model.py @@ -1,5 +1,5 @@ # Auto generated from biolink_model.yaml by pythongen.py version: 0.0.1 -# Generation date: 2024-03-12T16:45:26 +# Generation date: 2024-03-12T16:55:03 # Schema: Biolink-Model # # id: https://w3id.org/biolink/biolink-model diff --git a/src/biolink_model/scripts/classprefixes.py b/src/biolink_model/scripts/classprefixes.py index 21d08b169..68b837a8b 100644 --- a/src/biolink_model/scripts/classprefixes.py +++ b/src/biolink_model/scripts/classprefixes.py @@ -1,5 +1,5 @@ # Auto generated from class_prefixes.yaml by pythongen.py version: 0.0.1 -# Generation date: 2024-03-12T16:46:51 +# Generation date: 2024-03-12T16:56:28 # Schema: BiolinkClassPrefixes # # id: biolink-model-class-prefixes